What Is Data Visualization: Brief Theory, Useful Tips and Awesome Examples

  • Share on Facebook
  • Share on Twitter

By Al Boicheva

in Insights , Inspiration

3 years ago

Viewed 10,303 times

Spread the word about this article:

What Is Data Visualization Brief Theory, Useful Tips and Awesome Examples

Updated: June 23, 2022

To create data visualization in order to present your data is no longer just a nice to have skill. Now, the skill to effectively sort and communicate your data through charts is a must-have for any business in any field that deals with data. Data visualization helps businesses quickly make sense of complex data and start making decisions based on that data. This is why today we’ll talk about what is data visualization. We’ll discuss how and why does it work, what type of charts to choose in what cases, how to create effective charts, and, of course, end with beautiful examples.

So let’s jump right in. As usual, don’t hesitate to fast-travel to a particular section of your interest.

Article overview: 1. What Does Data Visualization Mean? 2. How Does it Work? 3. When to Use it? 4. Why Use it? 5. Types of Data Visualization 6. Data Visualization VS Infographics: 5 Main Differences 7. How to Create Effective Data Visualization?: 5 Useful Tips 8. Examples of Data Visualization

1. What is Data Visualization?

Data Visualization is a graphic representation of data that aims to communicate numerous heavy data in an efficient way that is easier to grasp and understand . In a way, data visualization is the mapping between the original data and graphic elements that determine how the attributes of these elements vary. The visualization is usually made by the use of charts, lines, or points, bars, and maps.

  • Data Viz is a branch of Descriptive statistics but it requires both design, computer, and statistical skills.
  • Aesthetics and functionality go hand in hand to communicate complex statistics in an intuitive way.
  • Data Viz tools and technologies are essential for making data-driven decisions.
  • It’s a fine balance between form and functionality.
  • Every STEM field benefits from understanding data.

2. How Does it Work?

If we can see it, our brains can internalize and reflect on it. This is why it’s much easier and more effective to make sense of a chart and see trends than to read a massive document that would take a lot of time and focus to rationalize. We wouldn’t want to repeat the cliche that humans are visual creatures, but it’s a fact that visualization is much more effective and comprehensive.

In a way, we can say that data Viz is a form of storytelling with the purpose to help us make decisions based on data. Such data might include:

  • Tracking sales
  • Identifying trends
  • Identifying changes
  • Monitoring goals
  • Monitoring results
  • Combining data

3. When to Use it?

Data visualization is useful for companies that deal with lots of data on a daily basis. It’s essential to have your data and trends instantly visible. Better than scrolling through colossal spreadsheets. When the trends stand out instantly this also helps your clients or viewers to understand them instead of getting lost in the clutter of numbers.

With that being said, Data Viz is suitable for:

  • Annual reports
  • Presentations
  • Social media micronarratives
  • Informational brochures
  • Trend-trafficking
  • Candlestick chart for financial analysis
  • Determining routes

Common cases when data visualization sees use are in sales, marketing, healthcare, science, finances, politics, and logistics.

4. Why Use it?

Short answer: decision making. Data Visualization comes with the undeniable benefits of quickly recognizing patterns and interpret data. More specifically, it is an invaluable tool to determine the following cases.

  • Identifying correlations between the relationship of variables.
  • Getting market insights about audience behavior.
  • Determining value vs risk metrics.
  • Monitoring trends over time.
  • Examining rates and potential through frequency.
  • Ability to react to changes.

5. Types of Data Visualization

As you probably already guessed, Data Viz is much more than simple pie charts and graphs styled in a visually appealing way. The methods that this branch uses to visualize statistics include a series of effective types.

Map visualization is a great method to analyze and display geographically related information and present it accurately via maps. This intuitive way aims to distribute data by region. Since maps can be 2D or 3D, static or dynamic, there are numerous combinations one can use in order to create a Data Viz map.

COVID-19 Spending Data Visualization POGO by George Railean

The most common ones, however, are:

  • Regional Maps: Classic maps that display countries, cities, or districts. They often represent data in different colors for different characteristics in each region.
  • Line Maps: They usually contain space and time and are ideal for routing, especially for driving or taxi routes in the area due to their analysis of specific scenes.
  • Point Maps: These maps distribute data of geographic information. They are ideal for businesses to pinpoint the exact locations of their buildings in a region.
  • Heat Maps: They indicate the weight of a geographical area based on a specific property. For example, a heat map may distribute the saturation of infected people by area.

Charts present data in the form of graphs, diagrams, and tables. They are often confused with graphs since graphs are indeed a subcategory of charts. However, there is a small difference: graphs show the mathematical relationship between groups of data and is only one of the chart methods to represent data.

Gluten in America - chart data visualization

Infographic Data Visualization by Madeline VanRemmen

With that out of the way, let’s talk about the most basic types of charts in data visualization.

Finance Statistics - Bar Graph visualization

They use a series of bars that illustrate data development.  They are ideal for lighter data and follow trends of no more than three variables or else, the bars become cluttered and hard to comprehend. Ideal for year-on-year comparisons and monthly breakdowns.

Pie chart visualization type

These familiar circular graphs divide data into portions. The bigger the slice, the bigger the portion. They are ideal for depicting sections of a whole and their sum must always be 100%. Avoid pie charts when you need to show data development over time or lack a value for any of the portions. Doughnut charts have the same use as pie charts.

Line graph - common visualization type

They use a line or more than one lines that show development over time. It allows tracking multiple variables at the same time. A great example is tracking product sales by a brand over the years. Area charts have the same use as line charts.

Scatter Plot

Scatter Plot - data visualization idea

These charts allow you to see patterns through data visualization. They have an x-axis and a y-axis for two different values. For example, if your x-axis contains information about car prices while the y-axis is about salaries, the positive or negative relationship will tell you about what a person’s car tells about their salary.

Unlike the charts we just discussed, tables show data in almost a raw format. They are ideal when your data is hard to present visually and aim to show specific numerical data that one is supposed to read rather than visualize.

Creative data table visualization

Data Visualisation | To bee or not to bee by Aishwarya Anand Singh

For example, charts are perfect to display data about a particular illness over a time period in a particular area, but a table comes to better use when you also need to understand specifics such as causes, outcomes, relapses, a period of treatment, and so on.

6. Data Visualization VS Infographics

5 main differences.

They are not that different as both visually represent data. It is often you search for infographics and find images titled Data Visualization and the other way around. In many cases, however, these titles aren’t misleading. Why is that?

  • Data visualization is made of just one element. It could be a map, a chart, or a table. Infographics , on the other hand, often include multiple Data Viz elements.
  • Unlike data visualizations that can be simple or extremely complex and heavy, infographics are simple and target wider audiences. The latter is usually comprehensible even to people outside of the field of research the infographic represents.
  • Interestingly enough, data Viz doesn’t offer narratives and conclusions, it’s a tool and basis for reaching those. While infographics, in most cases offer a story and a narrative. For example, a data visualization map may have the title “Air pollution saturation by region”, while an infographic with the same data would go “Areas A and B are the most polluted in Country C”.
  • Data visualizations can be made in Excel or use other tools that automatically generate the design unless they are set for presentation or publishing. The aesthetics of infographics , however, are of great importance and the designs must be appealing to wider audiences.
  • In terms of interaction, data visualizations often offer interactive charts, especially in an online form. Infographics, on the other hand, rarely have interaction and are usually static images.

While on topic, you could also be interested to check out these 50 engaging infographic examples that make complex data look great.

7. Tips to Create Effective Data Visualization

The process is naturally similar to creating Infographics and it revolves around understanding your data and audience. To be more precise, these are the main steps and best practices when it comes to preparing an effective visualization of data for your viewers to instantly understand.

1. Do Your Homework

Preparation is half the work already done. Before you even start visualizing data, you have to be sure you understand that data to the last detail.

Knowing your audience is undeniable another important part of the homework, as different audiences process information differently. Who are the people you’re visualizing data for? How do they process visual data? Is it enough to hand them a single pie chart or you’ll need a more in-depth visual report?

The third part of preparing is to determine exactly what you want to communicate to the audience. What kind of information you’re visualizing and does it reflect your goal?

And last, think about how much data you’ll be working with and take it into account.

2. Choose the Right Type of Chart

In a previous section, we listed the basic chart types that find use in data visualization. To determine best which one suits your work, there are a few things to consider.

  • How many variables will you have in a chart?
  • How many items will you place for each of your variables?
  • What will be the relation between the values (time period, comparison, distributions, etc.)

With that being said, a pie chart would be ideal if you need to present what portions of a whole takes each item. For example, you can use it to showcase what percent of the market share takes a particular product. Pie charts, however, are unsuitable for distributions, comparisons, and following trends through time periods. Bar graphs, scatter plots,s and line graphs are much more effective in those cases.

Another example is how to use time in your charts. It’s way more accurate to use a horizontal axis because time should run left to right. It’s way more visually intuitive.

3. Sort your Data

Start with removing every piece of data that does not add value and is basically excess for the chart. Sometimes, you have to work with a huge amount of data which will inevitably make your chart pretty complex and hard to read. Don’t hesitate to split your information into two or more charts. If that won’t work for you, you could use highlights or change the entire type of chart with something that would fit better.

Tip: When you use bar charts and columns for comparison, sort the information in an ascending or a descending way by value instead of alphabetical order.

4. Use Colors to Your Advantage

In every form of visualization, colors are your best friend and the most powerful tool. They create contrasts, accents, and emphasis and lead the eye intuitively. Even here, color theory is important.

When you design your chart, make sure you don’t use more than 5 or 6 colors. Anything more than that will make your graph overwhelming and hard to read for your viewers. However, color intensity is a different thing that you can use to your advantage. For example, when you compare the same concept in different periods of time, you could sort your data from the lightest shade of your chosen color to its darker one. It creates a strong visual progression, proper to your timeline.

Things to consider when you choose colors:

  • Different colors for different categories.
  • A consistent color palette for all charts in a series that you will later compare.
  • It’s appropriate to use color blind-friendly palettes.

5. Get Inspired

Always put your inspiration to work when you want to be at the top of your game. Look through examples, infographics, and other people’s work and see what works best for each type of data you need to implement.

This Twitter account Data Visualization Society is a great way to start. In the meantime, we’ll also handpick some amazing examples that will get you in the mood to start creating the visuals for your data.

8. Examples for Data Visualization

As another art form, Data Viz is a fertile ground for some amazing well-designed graphs that prove that data is beautiful. Now let’s check out some.

Dark Souls III Experience Data

We start with Meng Hsiao Wei’s personal project presenting his experience with playing Dark Souls 3. It’s a perfect example that infographics and data visualization are tools for personal designs as well. The research is pretty massive yet very professionally sorted into different types of charts for the different concepts. All data visualizations are made with the same color palette and look great in infographics.

Data of My Dark Souls 3 example

My dark souls 3 playing data by Meng Hsiao Wei

Greatest Movies of all Time

Katie Silver has compiled a list of the 100 greatest movies of all time based on critics and crowd reviews. The visualization shows key data points for every movie such as year of release, oscar nominations and wins, budget, gross, IMDB score, genre, filming location, setting of the film, and production studio. All movies are ordered by the release date.

Greatest Movies visualization chart

100 Greatest Movies Data Visualization by Katie Silver

The Most Violent Cities

Federica Fragapane shows data for the 50 most violent cities in the world in 2017. The items are arranged on a vertical axis based on population and ordered along the horizontal axis according to the homicide rate.

The Most Violent Cities example

The Most Violent Cities by Federica Fragapane

Family Businesses as Data

These data visualizations and illustrations were made by Valerio Pellegrini for Perspectives Magazine. They show a pie chart with sector breakdown as well as a scatter plot for contribution for employment.

Family Businesses as Data Visual

PERSPECTIVES MAGAZINE – Family Businesses by Valerio Pellegrini

Orbit Map of the Solar System

The map shows data on the orbits of more than 18000 asteroids in the solar system. Each asteroid is shown at its position on New Years’ Eve 1999, colored by type of asteroid.

Orbit Map of the Solar System graphic

An Orbit Map of the Solar System by Eleanor Lutz

The Semantics Of Headlines

Katja Flükiger has a take on how headlines tell the story. The data visualization aims to communicate how much is the selling influencing the telling. The project was completed at Maryland Institute College of Art to visualize references to immigration and color-coding the value judgments implied by word choice and context.

The Semantics Of Headlines graph

The Semantics of Headlines by Katja Flükiger

Moon and Earthquakes

This data visualization works on answering whether the moon is responsible for earthquakes. The chart features the time and intensity of earthquakes in response to the phase and orbit location of the moon.

Moon and Earthquakes statistics visual

Moon and Earthquakes by Aishwarya Anand Singh

Dawn of the Nanosats

The visualization shows the satellites launched from 2003 to 2015. The graph represents the type of institutions focused on projects as well as the nations that financed them. On the left, it is shown the number of launches per year and satellite applications.

Dawn of the Nanosats visualization

WIRED UK – Dawn of the by Nanosats by Valerio Pellegrini

Final Words

Data visualization is not only a form of science but also a form of art. Its purpose is to help businesses in any field quickly make sense of complex data and start making decisions based on that data. To make your graphs efficient and easy to read, it’s all about knowing your data and audience. This way you’ll be able to choose the right type of chart and use visual techniques to your advantage.

You may also be interested in some of these related articles:

  • Infographics for Marketing: How to Grab and Hold the Attention
  • 12 Animated Infographics That Will Engage Your Mind from Start to Finish
  • 50 Engaging Infographic Examples That Make Complex Ideas Look Great
  • Good Color Combinations That Go Beyond Trends: Inspirational Examples and Ideas

what is a visual representation of data

Add some character to your visuals

Cartoon Characters, Design Bundles, Illustrations, Backgrounds and more...

Like us on Facebook

Subscribe to our newsletter

Be the first to know what’s new in the world of graphic design and illustrations.

  • [email protected]

Browse High Quality Vector Graphics

E.g.: businessman, lion, girl…

Related Articles

22 rare creativity quotes to awaken the artist in yourself, the best youtube thumbnail makers for great video thumbnails, google slides vs keynote: a battle between equals [full comparison], 20 storyboard examples for different uses of storyboarding [apps, ux, animation, commercials], top 15 most artistic google doodle illustrations we’ve seen, check out our infographics bundle with 500+ infographic templates:, enjoyed this article.

Don’t forget to share!

  • Comments (2)

what is a visual representation of data

Al Boicheva

Al is an illustrator at GraphicMama with out-of-the-box thinking and a passion for anything creative. In her free time, you will see her drooling over tattoo art, Manga, and horror movies.

what is a visual representation of data

Thousands of vector graphics for your projects.

Hey! You made it all the way to the bottom!

Here are some other articles we think you may like:

How to Find the Right Website Design Company for Your Project?

How to Find the Right Website Design Company for Your Project?

by Lyudmil Enchev

60+ Amazing Memphis Design Examples


60+ amazing memphis design examples that radiate euphoria.

Color of the Year 2022 Very Peri

Pantone Color of the Year 2022: Very Peri

by Al Boicheva

Looking for Design Bundles or Cartoon Characters?

A source of high-quality vector graphics offering a huge variety of premade character designs, graphic design bundles, Adobe Character Animator puppets, and more.

what is a visual representation of data

Illustration with collage of pictograms of clouds, pie chart, graph pictograms on the following

Data visualization is the representation of data through use of common graphics, such as charts, plots, infographics and even animations. These visual displays of information communicate complex data relationships and data-driven insights in a way that is easy to understand.

Data visualization can be utilized for a variety of purposes, and it’s important to note that is not only reserved for use by data teams. Management also leverages it to convey organizational structure and hierarchy while data analysts and data scientists use it to discover and explain patterns and trends.  Harvard Business Review  (link resides outside ibm.com) categorizes data visualization into four key purposes: idea generation, idea illustration, visual discovery, and everyday dataviz. We’ll delve deeper into these below:

Idea generation

Data visualization is commonly used to spur idea generation across teams. They are frequently leveraged during brainstorming or  Design Thinking  sessions at the start of a project by supporting the collection of different perspectives and highlighting the common concerns of the collective. While these visualizations are usually unpolished and unrefined, they help set the foundation within the project to ensure that the team is aligned on the problem that they’re looking to address for key stakeholders.

Idea illustration

Data visualization for idea illustration assists in conveying an idea, such as a tactic or process. It is commonly used in learning settings, such as tutorials, certification courses, centers of excellence, but it can also be used to represent organization structures or processes, facilitating communication between the right individuals for specific tasks. Project managers frequently use Gantt charts and waterfall charts to illustrate  workflows .  Data modeling  also uses abstraction to represent and better understand data flow within an enterprise’s information system, making it easier for developers, business analysts, data architects, and others to understand the relationships in a database or data warehouse.

Visual discovery

Visual discovery and every day data viz are more closely aligned with data teams. While visual discovery helps data analysts, data scientists, and other data professionals identify patterns and trends within a dataset, every day data viz supports the subsequent storytelling after a new insight has been found.

Data visualization

Data visualization is a critical step in the data science process, helping teams and individuals convey data more effectively to colleagues and decision makers. Teams that manage reporting systems typically leverage defined template views to monitor performance. However, data visualization isn’t limited to performance dashboards. For example, while  text mining  an analyst may use a word cloud to to capture key concepts, trends, and hidden relationships within this unstructured data. Alternatively, they may utilize a graph structure to illustrate relationships between entities in a knowledge graph. There are a number of ways to represent different types of data, and it’s important to remember that it is a skillset that should extend beyond your core analytics team.

Use this model selection framework to choose the most appropriate model while balancing your performance requirements with cost, risks and deployment needs.

Register for the ebook on generative AI

The earliest form of data visualization can be traced back the Egyptians in the pre-17th century, largely used to assist in navigation. As time progressed, people leveraged data visualizations for broader applications, such as in economic, social, health disciplines. Perhaps most notably, Edward Tufte published  The Visual Display of Quantitative Information  (link resides outside ibm.com), which illustrated that individuals could utilize data visualization to present data in a more effective manner. His book continues to stand the test of time, especially as companies turn to dashboards to report their performance metrics in real-time. Dashboards are effective data visualization tools for tracking and visualizing data from multiple data sources, providing visibility into the effects of specific behaviors by a team or an adjacent one on performance. Dashboards include common visualization techniques, such as:

  • Tables: This consists of rows and columns used to compare variables. Tables can show a great deal of information in a structured way, but they can also overwhelm users that are simply looking for high-level trends.
  • Pie charts and stacked bar charts:  These graphs are divided into sections that represent parts of a whole. They provide a simple way to organize data and compare the size of each component to one other.
  • Line charts and area charts:  These visuals show change in one or more quantities by plotting a series of data points over time and are frequently used within predictive analytics. Line graphs utilize lines to demonstrate these changes while area charts connect data points with line segments, stacking variables on top of one another and using color to distinguish between variables.
  • Histograms: This graph plots a distribution of numbers using a bar chart (with no spaces between the bars), representing the quantity of data that falls within a particular range. This visual makes it easy for an end user to identify outliers within a given dataset.
  • Scatter plots: These visuals are beneficial in reveling the relationship between two variables, and they are commonly used within regression data analysis. However, these can sometimes be confused with bubble charts, which are used to visualize three variables via the x-axis, the y-axis, and the size of the bubble.
  • Heat maps:  These graphical representation displays are helpful in visualizing behavioral data by location. This can be a location on a map, or even a webpage.
  • Tree maps, which display hierarchical data as a set of nested shapes, typically rectangles. Treemaps are great for comparing the proportions between categories via their area size.

Access to data visualization tools has never been easier. Open source libraries, such as D3.js, provide a way for analysts to present data in an interactive way, allowing them to engage a broader audience with new data. Some of the most popular open source visualization libraries include:

  • D3.js: It is a front-end JavaScript library for producing dynamic, interactive data visualizations in web browsers.  D3.js  (link resides outside ibm.com) uses HTML, CSS, and SVG to create visual representations of data that can be viewed on any browser. It also provides features for interactions and animations.
  • ECharts:  A powerful charting and visualization library that offers an easy way to add intuitive, interactive, and highly customizable charts to products, research papers, presentations, etc.  Echarts  (link resides outside ibm.com) is based in JavaScript and ZRender, a lightweight canvas library.
  • Vega:   Vega  (link resides outside ibm.com) defines itself as “visualization grammar,” providing support to customize visualizations across large datasets which are accessible from the web.
  • deck.gl: It is part of Uber's open source visualization framework suite.  deck.gl  (link resides outside ibm.com) is a framework, which is used for  exploratory data analysis  on big data. It helps build high-performance GPU-powered visualization on the web.

With so many data visualization tools readily available, there has also been a rise in ineffective information visualization. Visual communication should be simple and deliberate to ensure that your data visualization helps your target audience arrive at your intended insight or conclusion. The following best practices can help ensure your data visualization is useful and clear:

Set the context: It’s important to provide general background information to ground the audience around why this particular data point is important. For example, if e-mail open rates were underperforming, we may want to illustrate how a company’s open rate compares to the overall industry, demonstrating that the company has a problem within this marketing channel. To drive an action, the audience needs to understand how current performance compares to something tangible, like a goal, benchmark, or other key performance indicators (KPIs).

Know your audience(s): Think about who your visualization is designed for and then make sure your data visualization fits their needs. What is that person trying to accomplish? What kind of questions do they care about? Does your visualization address their concerns? You’ll want the data that you provide to motivate people to act within their scope of their role. If you’re unsure if the visualization is clear, present it to one or two people within your target audience to get feedback, allowing you to make additional edits prior to a large presentation.

Choose an effective visual:  Specific visuals are designed for specific types of datasets. For instance, scatter plots display the relationship between two variables well, while line graphs display time series data well. Ensure that the visual actually assists the audience in understanding your main takeaway. Misalignment of charts and data can result in the opposite, confusing your audience further versus providing clarity.

Keep it simple:  Data visualization tools can make it easy to add all sorts of information to your visual. However, just because you can, it doesn’t mean that you should! In data visualization, you want to be very deliberate about the additional information that you add to focus user attention. For example, do you need data labels on every bar in your bar chart? Perhaps you only need one or two to help illustrate your point. Do you need a variety of colors to communicate your idea? Are you using colors that are accessible to a wide range of audiences (e.g. accounting for color blind audiences)? Design your data visualization for maximum impact by eliminating information that may distract your target audience.

An AI-infused integrated planning solution that helps you transcend the limits of manual planning.

Build, run and manage AI models. Prepare data and build models on any cloud using open source code or visual modeling. Predict and optimize your outcomes.

Unlock the value of enterprise data and build an insight-driven organization that delivers business advantage with IBM Consulting.                                   

Your trusted Watson co-pilot for smarter analytics and confident decisions.

Use features within IBM Watson® Studio that help you visualize and gain insights into your data, then cleanse and transform your data to build high-quality predictive models.

Data Refinery makes it easy to explore, prepare, and deliver data that people across your organization can trust.

Learn how to use Apache Superset (a modern, enterprise-ready business intelligence web application) with Netezza database to uncover the story behind the data.

Predict outcomes with flexible AI-infused forecasting and analyze what-if scenarios in real-time. IBM Planning Analytics is an integrated business planning solution that turns raw data into actionable insights. Deploy as you need, on-premises or on cloud.

tableau.com is not available in your region.

We use essential cookies to make Venngage work. By clicking “Accept All Cookies”, you agree to the storing of cookies on your device to enhance site navigation, analyze site usage, and assist in our marketing efforts.

Manage Cookies

Cookies and similar technologies collect certain information about how you’re using our website. Some of them are essential, and without them you wouldn’t be able to use Venngage. But others are optional, and you get to choose whether we use them or not.

Strictly Necessary Cookies

These cookies are always on, as they’re essential for making Venngage work, and making it safe. Without these cookies, services you’ve asked for can’t be provided.

Show cookie providers

  • Google Login

Functionality Cookies

These cookies help us provide enhanced functionality and personalisation, and remember your settings. They may be set by us or by third party providers.

Performance Cookies

These cookies help us analyze how many people are using Venngage, where they come from and how they're using it. If you opt out of these cookies, we can’t get feedback to make Venngage better for you and all our users.

  • Google Analytics

Targeting Cookies

These cookies are set by our advertising partners to track your activity and show you relevant Venngage ads on other sites as you browse the internet.

  • Google Tag Manager


  • Daily Infographics
  • Popular Templates
  • Accessibility
  • Graphic Design
  • Graphs and Charts
  • Data Visualization
  • Human Resources
  • Beginner Guides

Blog Graphic Design What is Data Visualization? (Definition, Examples, Best Practices)

What is Data Visualization? (Definition, Examples, Best Practices)

Written by: Midori Nediger Jun 05, 2020

What is Data Visualization Blog Header

Words don’t always paint the clearest picture. Raw data doesn’t always tell the most compelling story. 

The human mind is very receptive to visual information. That’s why data visualization is a powerful tool for communication.    

But if “data visualization” sounds tricky and technical don’t worry—it doesn’t have to be. 

This guide will explain the fundamentals of data visualization in a way that anyone can understand. Included are a ton of examples of different types of data visualizations and when to use them for your reports, presentations, marketing, and more.

Table of Contents

  • What is data visualization?

What is data visualization used for?

Types of data visualizations.

  • How to present data visually  (for businesses, marketers, nonprofits, and education)
  • Data visualization examples

Data visualization is used everywhere. 

Businesses use data visualization for reporting, forecasting, and marketing. 

Persona Marketing Report Template


Nonprofits use data visualizations to put stories and faces to numbers. 

Gates Foundation Infographic

Source:  Bill and Melinda Gates Foundation

Scholars and scientists use data visualization to illustrate concepts and reinforce their arguments.

Light Reactions Chemistry Concept Map Template


Reporters use data visualization to show trends and contextualize stories. 

Data Visualization Protests Reporter

While data visualizations can make your work more professional, they can also be a lot of fun.

What is data visualization? A simple definition of data visualization:

Data visualization is the visual presentation of data or information. The goal of data visualization is to communicate data or information clearly and effectively to readers. Typically, data is visualized in the form of a chart , infographic , diagram or map. 

The field of data visualization combines both art and data science. While a data visualization can be creative and pleasing to look at, it should also be functional in its visual communication of the data. 

Data Visualization Meme

Data, especially a lot of data, can be difficult to wrap your head around. Data visualization can help both you and your audience interpret and understand data. 

Data visualizations often use elements of visual storytelling to communicate a message supported by the data. 

There are many situations where you would want to present data visually. 

Data visualization can be used for:

  • Making data engaging and easily digestible
  • Identifying trends and outliers within a set of data
  • Telling a story found within the data
  • Reinforcing an argument or opinion
  • Highlighting the important parts of a set of data

Let’s look at some examples for each use case.

1. Make data digestible and easy to understand

Often, a large set of numbers can make us go cross-eyed. It can be difficult to find the significance behind rows of data. 

Data visualization allows us to frame the data differently by using illustrations, charts, descriptive text, and engaging design. Visualization also allows us to group and organize data based on categories and themes, which can make it easier to break down into understandable chunks. 

Related : How to Use Data Visualization in Your Infographics

For example, this infographic breaks down the concept of neuroplasticity in an approachable way:

Neuroplasticity Science Infographic

Source: NICABM

The same goes for complex, specialized concepts. It can often be difficult to break down the information in a way that non-specialists will understand. But an infographic that organizes the information, with visuals, can demystify concepts for novice readers.

Stocks Infographic Template Example


NEW! Introducing: Marketing Statistics Report 2022

It’s 2022 already. Marketers, are you still using data from pre-COVID times?

Don’t make decisions based on outdated data that no longer applies. It’s time you keep yourself informed of the latest marketing statistics and trends during the past two years, and learn how COVID-19 has affected marketing efforts in different industries — with this FREE marketing statistics report put together by Venngage and HubSpot .

The report uses data gathered from over 100,000 customers of HubSpot CRM. In addition to that, you’ll also know about the trends in using visuals in content marketing and the impacts of the pandemic on visual content, from 200+ marketers all over the world interviewed by Venngage.

marketing statistics report 2022 Venngage Hubspot


2. Identify trends and outliers

If you were to sift through raw data manually, it could take ages to notice patterns, trends or outlying data. But by using data visualization tools like charts, you can sort through a lot of data quickly. 

Even better, charts enable you to pick up on trends a lot quicker than you would sifting through numbers.

For example, here’s a simple chart generated by Google Search Console that shows the change in Google searches for “toilet paper”. As you can see, in March 2020 there was a huge increase in searches for toilet paper:

SEO Trends 2020 Chart

Source: How to Use SEO Data to Fuel Your Content Marketing Strategy in 2020

This chart shows an outlier in the general trend for toilet paper-related Google searches. The reason for the outlier? The outbreak of COVID-19 in North America. With a simple data visualization, we’ve been able to highlight an outlier and hint at a story behind the data. 

Uploading your data into charts, to create these kinds of visuals is easy. While working on your design in the editor, select a chart from the left panel. Open the chart and find the green IMPORT button under the DATA tab. Then upload the CSV file and your chart automatically visualizes the information. 

June 2020 Updates9

3. Tell a story within the data

Numbers on their own don’t tend to evoke an emotional response. But data visualization can tell a story that gives significance to the data. 

Designers use techniques like color theory , illustrations, design style and visual cues to appeal to the emotions of readers, put faces to numbers, and introduce a narrative to the data. 

Related : How to Tell a Story With Data (A Guide for Beginners)

For example, here’s an infographic created by World Vision. In the infographics, numbers are visualized using illustrations of cups. While comparing numbers might impress readers, reinforcing those numbers with illustrations helps to make an even greater impact. 

World Vision Goat Nonprofit Infographic

Source: World Vision

Meanwhile, this infographic uses data to draw attention to an often overlooked issue:

Coronavirus Impact On Refugees Infographic Venngage

Read More:  The Coronavirus Pandemic and the Refugee Crisis

4. Reinforce an argument or opinion

When it comes to convincing people your opinion is right, they often have to see it to believe it. An effective infographic or chart can make your argument more robust and reinforce your creativity. 

For example, you can use a comparison infographic to compare sides of an argument, different theories, product/service options, pros and cons, and more. Especially if you’re blending data types.

Product Comparison Infographic

5. Highlight an important point in a set of data

Sometimes we use data visualizations to make it easier for readers to explore the data and come to their own conclusions. But often, we use data visualizations to tell a story, make a particular argument, or encourage readers to come to a specific conclusion. 

Designers use visual cues to direct the eye to different places on a page. Visual cues are shapes, symbols, and colors that point to a specific part of the data visualization, or that make a specific part stand out.

For example, in this data visualization, contrasting colors are used to emphasize the difference in the amount of waste sent to landfills versus recycled waste:

Waste Management Infographic Template

Here’s another example. This time, a red circle and an arrow are used to highlight points on the chart where the numbers show a drop: 

Travel Expense Infographic Template

Highlighting specific data points helps your data visualization tell a compelling story.

6. Make books, blog posts, reports and videos more engaging

At Venngage, we use data visualization to make our blog posts more engaging for readers. When we write a blog post or share a post on social media, we like to summarize key points from our content using infographics. 

The added benefit of creating engaging visuals like infographics is that it has enabled our site to be featured in publications like The Wall Street Journal , Mashable , Business Insider , The Huffington Post and more. 

That’s because data visualizations are different from a lot of other types of content people consume on a daily basis. They make your brain work. They combine concrete facts and numbers with impactful visual elements. They make complex concepts easier to grasp. 

Here’s an example of an infographic we made that got a lot of media buzz:

Game of Thrones Infographic

Read the Blog Post: Every Betrayal Ever in Game of Thrones

We created this infographic because a bunch of people on our team are big Game of Thrones fans and we wanted to create a visual that would help other fans follow the show. Because we approached a topic that a lot of people cared about in an original way, the infographic got picked up by a bunch of media sites. 

Whether you’re a website looking to promote your content, a journalist looking for an original angle, or a creative building your portfolio, data visualizations can be an effective way to get people’s attention.

Data visualizations can come in many different forms. People are always coming up with new and creative ways to present data visually. 

Generally speaking, data visualizations usually fall under these main categories:

An infographic is a collection of imagery, charts, and minimal text that gives an easy-to-understand overview of a topic. 

Product Design Process Infographic Template

While infographics can take many forms, they can typically be categorized by these infographic types:

  • Statistical infographics
  • Informational infographics
  • Timeline infographics
  • Process infographics
  • Geographic infographics
  • Comparison infographics
  • Hierarchical infographics
  • List infographics
  • Resume infographics

Read More: What is an Infographic? Examples, Templates & Design Tips


In the simplest terms, a chart is a graphical representation of data. Charts use visual symbols like line, bars, dots, slices, and icons to represent data points. 

Some of the most common types of charts are:

  • Bar graphs /charts
  • Line charts
  • Bubble charts
  • Stacked bar charts
  • Word clouds
  • Pictographs
  • Area charts
  • Scatter plot charts
  • Multi-series charts

The question that inevitably follows is: what type of chart should I use to visualize my data? Does it matter?

Short answer: yes, it matters. Choosing a type of chart that doesn’t work with your data can end up misrepresenting and skewing your data. 

For example: if you’ve been in the data viz biz for a while, then you may have heard some of the controversy surrounding pie charts. A rookie mistake that people often make is using a pie chart when a bar chart would work better. 

Pie charts display portions of a whole. A pie chart works when you want to compare proportions that are substantially different. Like this:

Dark Greenhouse Gases Pie Chart Template


But when your proportions are similar, a pie chart can make it difficult to tell which slice is bigger than the other. That’s why, in most other cases, a bar chart is a safer bet.

Green Bar Chart Template

Here is a cheat sheet to help you pick the right type of chart for your data:

How to Pick Charts Infographic Cheat Sheet

Want to make better charts? Make engaging charts with Venngage’s Chart Maker .

Related : How to Choose the Best Types of Charts For Your Data

Similar to a chart, a diagram is a visual representation of information. Diagrams can be both two-dimensional and three-dimensional. 

Some of the most common types of diagrams are:

  • Venn diagrams
  • Tree diagrams
  • SWOT analysis
  • Fishbone diagrams
  • Use case diagrams

Diagrams are used for mapping out processes, helping with decision making, identifying root causes, connecting ideas, and planning out projects.

Root Cause Problem Fishbone Diagram Template


Want to make a diagram ? Create a Venn diagram and other visuals using our free Venn Diagram Maker .

A map is a visual representation of an area of land. Maps show physical features of land like regions, landscapes, cities, roads, and bodies of water. 

World Map National Geographic

Source: National Geographic

A common type of map you have probably come across in your travels is a choropleth map . Choropleth maps use different shades and colors to indicate average quantities. 

For example, a population density map uses varying shades to show the difference in population numbers from region to region:

US Population Map Template

Create your own map for free with Venngage’s Map Maker .

How to present data visually (data visualization best practices)

While good data visualization will communicate data or information clearly and effectively, bad data visualization will do the opposite. Here are some practical tips for how businesses and organizations can use data visualization to communicate information more effectively. 

Not a designer? No problem. Venngage’s Graph Maker  will help you create better graphs in minutes.

1. Avoid distorting the data

This may be the most important point in this whole blog post. While data visualizations are an opportunity to show off your creative design chops, function should never be sacrificed for fashion. 

The chart styles, colors, shapes, and sizing you use all play a role in how the data is interpreted. If you want to present your data accurately and ethically, then you need to take care to ensure that your data visualization does not present the data falsely. 

There are a number of different ways data can be distorted in a chart. Some common ways data can be distorted are:

  • Making the baselines something other than 0 to make numbers seem bigger or smaller than they are – this is called “truncating” a graph
  • Compressing or expanding the scale of the Y-axis to make a line or bar seem bigger or smaller than it should be
  • Cherry picking data so that only the data points you want to include are on a graph (i.e. only telling part of the story)
  • Using the wrong type of chart, graph or diagram for your data
  • Going against standard, expected data visualization conventions

Because people use data visualizations to reinforce their opinions, you should always read data visualizations with a critical eye. Often enough, writers may be using data visualization to skew the data in a way that supports their opinions, but that may not be entirely truthful.

Misleading Graphs Infographic Template

Read More: 5 Ways Writers Use Graphs To Mislead You

Want to create an engaging line graph? Use Venngage’s Line Graph Maker to create your own in minutes.

2. Avoid cluttering up your design with “chartjunk”

When it comes to best practices for data visualization, we should turn to one of the grandfather’s of data visualization: Edward Tufte. He coined the term “ chartjunk ”, which refers to the use of unnecessary or confusing design elements that skews or obscures the data in a chart. 

Here’s an example of a data visualization that suffers from chartjunk:

Chartjunk Example

Source: ExcelUser

In this example, the image of the coin is distracting for readers trying to interpret the data. Note how the fonts are tiny – almost unreadable. Mistakes like this are common when a designers tries to put style before function. 

Read More : The Worst Infographics of 2020 (With Lessons for 2021)

3. Tell a story with your data

Data visualizations like infographics give you the space to combine data and narrative structure in one page. Visuals like icons and bold fonts let you highlight important statistics and facts.

For example, you could customize this data visualization infographic template to show the benefit of using your product or service (and post it on social media):

Present Data Visually


  This data visualization relies heavily on text and icons to tell the story of its data:

Workplace Culture Infographic Template

This type of infographic is perfect for those who aren’t as comfortable with charts and graphs. It’s also a great way to showcase original research, get social shares and build brand awareness.

4. Combine different types of data visualizations

While you may choose to keep your data visualization simple, combining multiple types of charts and diagrams can help tell a more rounded story.

Don’t be afraid to combine charts, pictograms and diagrams into one infographic. The result will be a data visualization infographic that is engaging and rich in visual data.

Vintage Agriculture Child Labor Statistics Infographic Template

Design Tip: This data visualization infographic would be perfect for nonprofits to customize and include in an email newsletter to increase awareness (and donations).

Or take this data visualization that also combines multiple types of charts, pictograms, and images to engage readers. It could work well in a presentation or report on customer research, customer service scores, quarterly performance and much more:

Smartphone Applications Infographic Template

Design Tip: This infographic could work well in a presentation or report on customer research, customer service scores, quarterly performance and much more.

Make your own bar graph in minutes with our free Bar Graph Maker .

5. Use icons to emphasize important points

Icons are perfect for attracting the eye when scanning a page. (Remember: use visual cues!)

If there are specific data points that you want readers to pay attention to, placing an icon beside it will make it more noticeable:

Presentation Design Statistical Infographic

Design Tip: This infographic template would work well on social media to encourage shares and brand awareness.

You can also pair icons with headers to indicate the beginning of a new section.

Meanwhile, this infographic uses icons like bullet points to emphasize and illustrate important points. 

Internship Statistics Infographic Template

Design Tip: This infographic would make a great sales piece to promote your course or other service.  

6. Use bold fonts to make text information engaging

A challenge people often face when setting out to visualize information is knowing how much text to include. After all, the point of data visualization is that it presents information visually, rather than a page of text. 

Even if you have a lot of text information, you can still create present data visually. Use bold, interesting fonts to make your data exciting. Just make sure that, above all else, your text is still easy to read.

This data visualization uses different fonts for the headers and body text that are bold but clear. This helps integrate the text into the design and emphasizes particular points:

Dark Child Labor Statistics Infographic Template

Design Tip: Nonprofits could use this data visualization infographic in a newsletter or on social media to build awareness, but any business could use it to explain the need for their product or service. 

As a general rule of thumb, stick to no more than three different font types in one infographic.

This infographic uses one font for headers, another font for body text, and a third font for accent text. 

Read More: How to Choose Fonts For Your Designs (With Examples)

Content Curation Infographic Template

Design Tip: Venngage has a library of fonts to choose from. If you can’t find the icon you’re looking for , you can always request they be added. Our online editor has a chat box with 24/7 customer support.

7. Use colors strategically in your design

In design, colors are as functional as they are fashionable. You can use colors to emphasize points, categorize information, show movement or progression, and more. 

For example, this chart uses color to categorize data:

World Population Infographic Template

Design Tip : This pie chart can actually be customized in many ways. Human resources could provide a monthly update of people hired by department, nonprofits could show a breakdown of how they spent donations and real estate agents could show the average price of homes sold by neighbourhood.

You can also use light colored text and icons on dark backgrounds to make them stand out. Consider the mood that you want to convey with your infographic and pick colors that will reflect that mood. You can also use contrasting colors from your brand color palette.

This infographic template uses a bold combination of pinks and purples to give the data impact:

Beauty Industry Infographic Template

Read More: How to Pick Colors to Captivate Readers and Communicate Effectively

8. Show how parts make up a whole

It can be difficult to break a big topic down into smaller parts. Data visualization can make it a lot easier for people to conceptualize how parts make up a whole.

Using one focus visual, diagram or chart can convey parts of a whole more effectively than a text list can. Look at how this infographic neatly visualizes how marketers use blogging as part of their strategy:

Modern Marketing Statistics Infographic Template

Design Tip: Human resources could use this graphic to show the results of a company survey. Or consultants could promote their services by showing their success rates.

Or look at how this infographic template uses one focus visual to illustrate the nutritional makeup of a banana:

Banana Nutrition Infographic


9. Focus on one amazing statistic

If you are preparing a presentation, it’s best not to try and cram too many visuals into one slide. Instead, focus on one awe-inspiring statistic and make that the focus of your slide.

Use one focus visual to give the statistic even more impact. Smaller visuals like this are ideal for sharing on social media, like in this example:

Geography Statistical Infographic Template

Design Tip: You can easily swap out the icon above (of Ontario, Canada) using Venngage’s drag-and-drop online editor and its in-editor library of icons. Click on the template above to get started.

This template also focuses on one key statistic and offers some supporting information in the bar on the side:

Travel Statistical Infographic Template

10. Optimize your data visualization for mobile

Complex, information-packed infographics are great for spicing up reports, blog posts, handouts, and more. But they’re not always the best for mobile viewing. 

To optimize your data visualization for mobile viewing, use one focus chart or icon and big, legible font. You can create a series of mobile-optimized infographics to share multiple data points in a super original and attention-grabbing way.

For example, this infographic uses concise text and one chart to cut to the core message behind the data:

Social Media Infographic Example


Some amazing data visualization examples

Here are some of the best data visualization examples I’ve come across in my years writing about data viz. 

Evolution of Marketing Infographic

Evolution of Marketing Infographic

Graphic Design Trends Infographic

Graphic Design Trends 2020 Infographic

Stop Shark Finning Nonprofit Infographic

Shark Attack Nonprofit Infographic

Source: Ripetungi

Coronavirus Impact on Environment Data Visualization

Pandemic's Environmental Impact Infographic Template

What Disney Characters Tell Us About Color Theory

Color Psychology of Disney Characters Infographic

World’s Deadliest Animal Infographic

World's Deadliest Animal Gates Foundation Infographic

Source: Bill and Melinda Gates Foundation

The Secret Recipe For a Viral Creepypasta

Creepypasta Infographic

Read More: Creepypasta Study: The Secret Recipe For a Viral Horror Story

The Hero’s Journey Infographic

Hero's Journey Infographic

Read More: What Your 6 Favorite Movies Have in Common

Emotional Self Care Guide Infographic

Emotional Self Care Infographic

Source: Carley Schweet

Want to look at more amazing data visualization? Read More: 50+ Infographic Ideas, Examples & Templates for 2020 (For Marketers, Nonprofits, Schools, Healthcare Workers, and more)

Discover popular designs

what is a visual representation of data

Infographic maker

what is a visual representation of data

Brochure maker

what is a visual representation of data

White paper online

what is a visual representation of data

Newsletter creator

what is a visual representation of data

Flyer maker

what is a visual representation of data

Timeline maker

what is a visual representation of data

Letterhead maker

what is a visual representation of data

Mind map maker

what is a visual representation of data

Ebook maker

What Is Data Visualization and Why Is It Important? A Complete Introduction

They say a picture is worth a thousand words, and this is especially true for data analytics.

Data visualization is all about presenting data in a visual format, using charts, graphs, and maps to tell a meaningful story. It’s a crucial step in the data analysis process—and a technique (or art form!) that all areas of business can benefit from.

In this guide, we’ll tell you everything you need to know about data visualization (also known as data viz). We’ll explain what it is, why it matters, some of the most common types, as well as the tools you can use to create them.

This guide is ideal for anyone who wants to present, communicate, and share data-driven insights.

If you’d like to learn more data analytics skills, try this free data short course .

  • What is data visualization?
  • Why is data visualization important?
  • When should you visualize your data? 
  • Different types of data visualization and when to use them
  • Top data visualization tools
  • Best practices and principles for effective data visualization
  • Getting started with data visualization

So: What is data visualization? Let’s start with a definition.

1. What is data visualization? A definition

Data visualization is the graphical or visual representation of data. It helps to highlight the most useful insights from a dataset, making it easier to spot trends, patterns, outliers, and correlations.

Imagine you’re presented with a spreadsheet containing rows and rows of data. You probably won’t be able to decipher the data without delving into it, and it’s unlikely that you’ll be able to spot trends and patterns at first glance.

Now imagine seeing the same data presented as a bar chart, or on a color-coded map. It’s much easier to see what the data is telling you, right?

That’s the whole point of data visualization. It makes insights visible to the naked eye, so that virtually anyone can see and understand what’s going on. When done well, data visualization tells a story.

This storytelling aspect is crucial as it makes your data actionable. There’s a huge difference between simply having lots of data versus actually understanding how to use it to drive actions and decisions—and data visualization bridges that gap.

There are two broad categories of data visualization: exploration and explanation. Let’s take a look at those now.

What are the two main types of data visualization? Exploration vs. explanation

We’ll look at specific types of data visualization later on, but for now, it’s important to distinguish between exploratory and explanatory data visualization.

In a nutshell, exploratory data visualization helps you figure out what’s in your data, while explanatory visualization helps you to communicate what you’ve found. Exploration takes place while you’re still analyzing the data, while explanation comes towards the end of the process when you’re ready to share your findings.


When faced with a new dataset, one of the first things you’ll do is carry out an exploratory data analysis . This is where you investigate the dataset and identify some of its main features, laying the foundation for more thorough analysis.

At this stage, visualizations can make it easier to get a sense of what’s in your dataset and to spot any noteworthy trends or anomalies. Ultimately, you’re getting an initial lay of the land and finding clues as to what the data might be trying to tell you.


Once you’ve conducted your analysis and have figured out what the data is telling you, you’ll want to share these insights with others.

These could be key business stakeholders who can take action based on the data, for example, or public audiences who have an interest in your topic area.

Explanatory data visualizations help you tell this story, and it’s up to you to determine which visualizations will help you to do so most effectively. We’ll introduce some of the most common types of data visualization (and when to use them) in section four.

Want to learn more about data visualization, and try your hand at creating visualizations of your own?  Give this free introductory tutorial a go. We’ll show you, step by step, how to create bar charts, line graphs, and more for a real dataset in Google Sheets.

2. Why is data visualization important?

The importance of effective data visualization is rooted in the importance of data analytics in general.

We’re living in an increasingly data-rich world; at the start of 2020, the digital universe comprised approximately 44 zettabytes of data . For perspective, one zettabyte is roughly equal to a trillion gigabytes. By 2025, it’s estimated that around 463 exabytes of data will be created every 24 hours across the globe. An exabyte is equivalent to one billion gigabytes. Basically, we’re producing tons and tons of data all the time.

Data analytics allows us to make sense of (at least some of) that data. From a business perspective, it enables companies to learn from the past and plan ahead for the future. In fields like healthcare, it can help to improve patient care and treatment. In finance and insurance, it can help to assess risk and combat fraudulent activity. Essentially, we need data analytics in order to make smart decisions—and data visualization is a crucial part of that.

Data visualization helps us to understand what certain data is telling us, presenting it in a way that’s accessible to a range of audiences—not just data experts. It’s how you bridge the gap between your expertise as a data analyst or data scientist, and those people who can use or act upon the insights you discover.

A line graph and a bar chart taken from the Fitbit app.

The advantages and benefits of effective data visualization at a glance

Data visualization allows you to:

  • Get an initial understanding of your data by making trends, patterns, and outliers easily visible to the naked eye
  • Comprehend large volumes of data quickly and efficiently
  • Communicate insights and findings to non-data experts, making your data accessible and actionable
  • Tell a meaningful and impactful story, highlighting only the most relevant information for a given context

Now we know what data visualization is and why it matters, let’s take a look at when and why you might need to visualize your data.

3. When should you visualize your data?

Aside from exploratory data visualization which takes place in the early stages, data visualization usually comprises the final step in the data analysis process . To recap, the data analysis process can be set out as follows:

  • Define the question: What problem are you trying to solve?
  • Collect the data: Determine what kind of data you need and where you’ll find it.
  • Clean the data: Remove errors, duplicates, outliers, and unwanted data points—anything that might skew how your data is interpreted. You can learn more about data cleaning (and how to do it) in this guide .
  • Analyze the data: Determine the type of data analysis you need to carry out in order to find the insights you’re looking for.
  • Visualize the data and share your findings: Translate your key insights into visual format (e.g. graphs, charts, or heatmaps) and present them to the relevant audience(s).

Essentially, you visualize your data any time you want to summarize and highlight key findings and share them with others. With that in mind, let’s consider what kinds of insights you can convey with data visualizations.

What is data visualization used for?

Within the broader goal of conveying key insights, different visualizations can be used to tell different stories. Data visualizations can be used to:

  • Convey changes over time: For example, a line graph could be used to present how the value of Bitcoin changed over a certain time period.
  • Determine the frequency of events: You could use a histogram to visualize the frequency distribution of a single event over a certain time period (e.g. number of internet users per year from 2007 to 2021). Learn how to create a histogram in this guide .
  • Highlight interesting relationships or correlations between variables: If you wanted to highlight the relationship between two variables (e.g. marketing spend and revenue, or hours of weekly exercise vs. cardiovascular fitness), you could use a scatter plot to see, at a glance, if one increases as the other decreases (or vice versa).
  • Examine a network: If you want to understand what’s going on within a certain network (for example, your entire customer base), network visualizations can help you to identify (and depict) meaningful connections and clusters within your network of interest.
  • Analyze value and risk: If you want to weigh up value versus risk in order to figure out which opportunities or strategies are worth pursuing, data visualizations—such as a color-coded system—could help you to categorize and identify, at a glance, which items are feasible.

So far, we’ve taken a rather broad, high-level look at data visualization. Now let’s drill down to some specific types of data visualization and when to use them.

An example of data visualization, as seen in the Fitbit app.

4. How to visualize your data: Different types of data visualization (and when to use them)

There are many different options when it comes to visualizing your data. The visualization you choose depends on the type of data you’re working with and what you want to convey or highlight. It’s also important to consider the complexity of your data and how many different variables are involved. Not all types of data visualization lend themselves to elaborate or complex depictions, so it’s important to choose a suitable technique.

Before we explore some of the most common types of data visualization, let’s first introduce five main data visualization categories.

Five data visualization categories

When considering the different types of data viz, it helps to be aware of the different categories that these visualizations may fall into:

  • Temporal data visualizations are linear and one-dimensional. Examples include scatterplots, timelines, and line graphs.
  • Hierarchical visualizations organize groups within larger groups, and are often used to display clusters of information. Examples include tree diagrams, ring charts, and sunburst diagrams.
  • Network visualizations show the relationships and connections between multiple datasets. Examples include matrix charts, word clouds, and node-link diagrams.
  • Multidimensional or 3D visualizations are used to depict two or more variables. Examples include pie charts, Venn diagrams, stacked bar graphs, and histograms.
  • Geospatial visualizations convey various data points in relation to physical, real-world locations (for example, voting patterns across a certain country). Examples include heat maps, cartograms, and density maps.

With those categories in mind, let’s explore some of the most common types of data visualization.

Five common types of data visualization (and when to use them)

In this section, we’ll introduce some useful types of data visualization. We’ll also point you to our more comprehensive guide where you can learn about additional data visualization methods and how to use them.

1. Scatterplots

Scatterplots (or scatter graphs) visualize the relationship between two variables. One variable is shown on the x-axis, and the other on the y-axis, with each data point depicted as a single “dot” or item on the graph. This creates a “scatter” effect, hence the name.

Source: displayr.com

Scatterplots are best used for large datasets when there’s no temporal element. For example, if you wanted to visualize the relationship between a person’s height and weight, or between how many carats a diamond measures and its monetary value, you could easily visualize this using a scatterplot.

It’s important to bear in mind that scatterplots simply describe the correlation between two variables; they don’t infer any kind of cause-and-effect relationship.

2. Bar charts

Bar charts are used to plot categorical data against discrete values.

Categorical data refers to data that is not numeric, and it’s often used to describe certain traits or characteristics. Some examples of categorical data include things like education level (e.g. high school, undergrad, or post-grad) and age group (e.g. under 30, under 40, under 50, or 50 and over).

Discrete values are those which can only take on certain values—there are no “half measures” or “gray areas.” For example, the number of people attending an event would be a discrete variable, as would the number of sales made in a certain time period (think about it: you can’t make “half a sale” or have “half an event attendee.”)

Source: chartio.com

So, with a bar chart, you have your categorical data on the x-axis plotted against your discrete values on the y-axis.

The height of the bars is directly proportional to the values they represent, making it easy to compare your data at a glance.

3. Pie charts

Just like bar charts, pie charts are used to visualize categorical data.

However, while bar charts represent multiple categories of data, pie charts are used to visualize just one single variable broken down into percentages or proportions. A pie chart is essentially a circle divided into different “slices,” with each slice representing the percentage it contributes to the whole.

Thus, the size of each pie slice is proportional to how much it contributes to the whole “pie.”

Imagine you have a class of thirty students and you want to divide them up based on what color t-shirt they’re wearing on a given day.

The possible “slices” are red, green, blue, and yellow, with each color representing 40%, 30%, 25%, and 5% of the class total respectively. You could easily visualize this using a pie chart—and the yellow slice (5%) would be considerably thinner than the red slice (40%)! Pie charts are best suited for data that can be split into a maximum of five or six categories.

4. Network graphs

Not all data is simple enough to be summarized in a bar or pie chart. For those more complex datasets, there are a range of more elaborate data visualizations at your disposal—network graphs being one of them.

Network graphs show how different elements or entities within a network relate to one another, with each element represented by an individual node. These nodes are connected to other, related nodes via lines.

Source: networkofthrones.wordpress.com

Network graphs are great for spotting and representing clusters within a large network of data.

Let’s imagine you have a huge database filled with customers, and you want to segment them into meaningful clusters for marketing purposes. You could use a network graph to draw connections and parallels between all your customers or customer groups.

With any luck, certain clusters and patterns would emerge, giving you a logical means by which to group your audience.

5. Geographical maps

Geo maps are used to visualize the distribution of data in relation to a physical, geographical area.

For example, you could use a color-coded map to see how natural oil reserves are distributed across the world, or to visualize how different states voted in a political election. Maps are an extremely versatile form of data visualization, and are an excellent way of communicating all kinds of location-related data.

Some other types of maps used in data visualization include dot distribution maps (think scatterplots combined with a map), and cartograms which distort the size of geographical areas to proportionally represent a given variable (population density, for example).

Source: pmfias.com

Here, we’ve introduced just a handful of data visualization types. If you want to learn more, check out our complete guide to different types of data visualization and when to use them .

5. Top data visualization tools

When it comes to creating informative, eye-catching visualizations, there are plenty of tools at your disposal.

When choosing a tool, it’s important to consider your needs in terms of the kinds of visualizations you want to create, as well as your own technical expertise; some tools will require coding knowledge, while others are more suited to non-technical users.

In this section, we’ll briefly introduce some of the most popular data visualization tools. If you’re on the market for a data viz tool and want a more thorough comparison, this guide to the seven best data visualization tools will help you. For now, here are our top three data viz tools to get familiar with:

  • Plotly: Open-source software built on Python. Plotly is ideal if you’ve got some coding knowledge and want to create highly customizable visualizations.
  • D3.js: A free, open-source data viz library built using JavaScript. As with Plotly, you’ll need some programming knowledge in order to use this data viz tool.
  • Tableau: Perhaps one of the most popular data analytics tools , Tableau is known for its user-friendliness—you don’t need any coding knowledge to create beautiful visualizations in Tableau. And, unlike some other BI tools, it’s good at handling large volumes of data.

Before deciding on a tool, it’s worth trying out a few options. The good news is that there are plenty of data viz tools on the market— as well as a number of free tools —allowing you to create beautiful and informative visualizations—even if you’re a newcomer to the field.

What are data dashboards?

Dashboards are another useful tool for data tracking and visualization. A data dashboard essentially allows you to keep track of multiple data sources, visualizing them in one single location for easy viewing.

A common example is the Google Analytics dashboard , which displays a whole host of visualizations on one page—a geo map showing where your website visitors are located, for example, or a pie chart showing what percentage of your users access your website using specific devices.

If you want multiple stakeholders to be able to access and view certain data insights, a dashboard can help you to create a single hub with easy-to-understand visualizations.

A snapshot of a data dashboard, taken from Google Analytics.

6. What are some data visualization best practices?

Data visualization truly is an art form—but the goal is always, first and foremost, to provide valuable information and insights.

If you can do this by way of beautiful visualizations, you’re onto a winner. So, when creating data visualizations, it’s important to adhere to certain best practices.

These will help you strike the right balance, keeping your audience engaged and informed. Here’s how to excel at data visualization.

1. Define a clear purpose

Like any data analytics project, it’s important to define a clear purpose for your data visualizations.

What are the priorities in terms of what you want to convey and communicate? What should your audience take away from your visualization? It’s essential to have this defined from the outset; that way, you can ensure that you’re only presenting the most valuable information—and giving your audience something they can use and act upon.

2. Know your audience

The purpose of data visualization is to communicate insights to a specific audience, so you’ll want to give some thought to who your audience is and how familiar they are with the information you’re presenting.

What kind of context can you provide around your visualizations in order to help your audience understand them? What types of visualization are likely to be most accessible to this particular group of people? Keep your audience in mind at all times.

3. Keep it simple

When creating visualizations, it’s often the case that less is more.

Ultimately, you want your visualizations to be as digestible as possible, and that means trimming away any unnecessary information while presenting key insights clearly and succinctly. The goal is to keep cognitive load to a minimum—that is, the amount of “brainpower” or mental effort it takes to process information.

Even if the data is complex, your visualizations don’t have to be, so strive for simplicity at all times.

4. Avoid distorting the data

You should strive to present your findings as accurately as possible, so avoid any kind of visual “tricks” that could bias how your data is perceived and interpreted.

Think about the labels you use, as well as how you scale your visualizations. For example, things like “blowing up” certain data segments to make them appear more significant, or starting your graph axis on a number other than zero are both bad practices which could mislead your audience. Prioritize integrity and accuracy!

5. Ensure your visualizations are inclusive

Last but by no means least, make sure that your visualizations are accessible and inclusive.

Think about how colors, contrasts, font sizes, and the use of white space affect the readability of your visualization. Is it easy for your users to distinguish between the data and see what’s going on, regardless of whether they have twenty-twenty vision or a visual impairment?

Inclusivity and accessibility are central to good data visualization, so don’t overlook this step.

7. Getting started with data visualization

By now, you hopefully have a good understanding of what data visualization is and why it matters.

Of course, the best way to get to grips with it is to see it in action. Check out our round-up of some of the most beautiful and informative data visualization examples from around the web.

Keen to give it a go yourself? Why not download a free dataset and see what you can do! If you’d like to learn it more, then check out this list of data visualization courses out there to try.

Data visualization is an excellent skill to have, whether you’re forging a career in the data industry or just want to share valuable insights with your colleagues. If you are pursuing a career as a data analyst or data scientist, be sure to include data visualizations in your data portfolio —it’s something that employers will be looking out for.

CareerFoundry’s  Data Visualizations with Python course is designed to ease you into this vital area of data analytics. You can take it as a standalone course as well as a specialization within our full Data Analytics Program, you’ll learn and apply the principles of data viz in a real-world project, as well as getting to grips with various data visualization libraries.

Want to learn more? Try your hand at this free, introductory data analytics short course , and check out the following guides:

  • What is data quality and why is it important?
  • What is web scraping? A beginner’s guide
  • An introduction to multivariate analysis


  1. What is Data Visualization? Definition, Examples, Best Practices

    what is a visual representation of data

  2. How to Use Data Visualization in Your Infographics

    what is a visual representation of data

  3. 2 Example of Visual Representation of Data

    what is a visual representation of data

  4. Data Visualisation

    what is a visual representation of data

  5. Have you heard of data visualization? Even if you don’t know the term, you’ve probably seen some

    what is a visual representation of data

  6. Find About the Data Visualization Best Practices

    what is a visual representation of data


  1. Pie Chart and Histogram in Python Using #numpy || #Matplotlib || Easy Steps

  2. Data Lineage in the Data Productivity Cloud

  3. Visual Data Representation Techniques: Combining Art and Design

  4. Introduction: Advanced Data Visualization: Techniques, Interaction, and Data Patterns

  5. Data Visualization: Types of Data

  6. Marks & Channels in Data Visualization


  1. What Is Data Visualization: Definition, Types, Tips, and Examples

    Data Visualization is a graphic representation of data that aims to communicate numerous heavy data in an efficient way that is easier to grasp and understand. In a way, data visualization is the mapping between the original data and graphic elements that determine how the attributes of these elements vary.

  2. What Is Data Visualization?

    Data visualization is the representation of data through use of common graphics, such as charts, plots, infographics and even animations. These visual displays of information communicate complex data relationships and data-driven insights in a way that is easy to understand.

  3. What is data visualisation? A definition, examples and resources

    Data visualisation refers to the graphical representation of information and data. By using visual elements like charts, graphs, timelines and maps, data visualisation is an accessible way to see and understand trends, outliers, correlations and patterns.

  4. What is Data Visualization? (Definition, Examples, Best ... -

    Typically, data is visualized in the form of a chart, infographic, diagram or map. The field of data visualization combines both art and data science. While a data visualization can be creative and pleasing to look at, it should also be functional in its visual communication of the data. What is data visualization used for?

  5. Data Visualization: Definition, Benefits, and Examples

    Data visualization is the representation of information and data using charts, graphs, maps, and other visual tools. These visualizations allow us to easily understand any patterns, trends, or outliers in a data set.

  6. What is Data Visualization? A Guide for Data Scientists

    Data visualization may be described as graphically representing data. It is the act of translating data into a visual context, which can be done using charts, plots, animations, infographics, etc. The idea behind it is to make it easier for us (humans) to identify trends, outliers, and patterns in data.

  7. 11 Data Visualization Techniques for Every Use-Case with Examples

    Data visualization involves the use of graphical representations of data, such as graphs, charts, and maps. Compared to descriptive statistics or tables, visuals provide a more effective way to analyze data, including identifying patterns, distributions, and correlations and spotting outliers in complex datasets.

  8. What Is Data Visualization? A Complete Introductory Guide -

    Data visualization is the graphical or visual representation of data. It helps to highlight the most useful insights from a dataset, making it easier to spot trends, patterns, outliers, and correlations. Imagine you’re presented with a spreadsheet containing rows and rows of data.