Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base
  • Working with sources
  • What Is Critical Thinking? | Definition & Examples

What Is Critical Thinking? | Definition & Examples

Published on May 30, 2022 by Eoghan Ryan . Revised on May 31, 2023.

Critical thinking is the ability to effectively analyze information and form a judgment .

To think critically, you must be aware of your own biases and assumptions when encountering information, and apply consistent standards when evaluating sources .

Critical thinking skills help you to:

  • Identify credible sources
  • Evaluate and respond to arguments
  • Assess alternative viewpoints
  • Test hypotheses against relevant criteria

Table of contents

Why is critical thinking important, critical thinking examples, how to think critically, other interesting articles, frequently asked questions about critical thinking.

Critical thinking is important for making judgments about sources of information and forming your own arguments. It emphasizes a rational, objective, and self-aware approach that can help you to identify credible sources and strengthen your conclusions.

Critical thinking is important in all disciplines and throughout all stages of the research process . The types of evidence used in the sciences and in the humanities may differ, but critical thinking skills are relevant to both.

In academic writing , critical thinking can help you to determine whether a source:

  • Is free from research bias
  • Provides evidence to support its research findings
  • Considers alternative viewpoints

Outside of academia, critical thinking goes hand in hand with information literacy to help you form opinions rationally and engage independently and critically with popular media.

Scribbr Citation Checker New

The AI-powered Citation Checker helps you avoid common mistakes such as:

  • Missing commas and periods
  • Incorrect usage of “et al.”
  • Ampersands (&) in narrative citations
  • Missing reference entries

does critical thinking involve opinions

Critical thinking can help you to identify reliable sources of information that you can cite in your research paper . It can also guide your own research methods and inform your own arguments.

Outside of academia, critical thinking can help you to be aware of both your own and others’ biases and assumptions.

Academic examples

However, when you compare the findings of the study with other current research, you determine that the results seem improbable. You analyze the paper again, consulting the sources it cites.

You notice that the research was funded by the pharmaceutical company that created the treatment. Because of this, you view its results skeptically and determine that more independent research is necessary to confirm or refute them. Example: Poor critical thinking in an academic context You’re researching a paper on the impact wireless technology has had on developing countries that previously did not have large-scale communications infrastructure. You read an article that seems to confirm your hypothesis: the impact is mainly positive. Rather than evaluating the research methodology, you accept the findings uncritically.

Nonacademic examples

However, you decide to compare this review article with consumer reviews on a different site. You find that these reviews are not as positive. Some customers have had problems installing the alarm, and some have noted that it activates for no apparent reason.

You revisit the original review article. You notice that the words “sponsored content” appear in small print under the article title. Based on this, you conclude that the review is advertising and is therefore not an unbiased source. Example: Poor critical thinking in a nonacademic context You support a candidate in an upcoming election. You visit an online news site affiliated with their political party and read an article that criticizes their opponent. The article claims that the opponent is inexperienced in politics. You accept this without evidence, because it fits your preconceptions about the opponent.

There is no single way to think critically. How you engage with information will depend on the type of source you’re using and the information you need.

However, you can engage with sources in a systematic and critical way by asking certain questions when you encounter information. Like the CRAAP test , these questions focus on the currency , relevance , authority , accuracy , and purpose of a source of information.

When encountering information, ask:

  • Who is the author? Are they an expert in their field?
  • What do they say? Is their argument clear? Can you summarize it?
  • When did they say this? Is the source current?
  • Where is the information published? Is it an academic article? Is it peer-reviewed ?
  • Why did the author publish it? What is their motivation?
  • How do they make their argument? Is it backed up by evidence? Does it rely on opinion, speculation, or appeals to emotion ? Do they address alternative arguments?

Critical thinking also involves being aware of your own biases, not only those of others. When you make an argument or draw your own conclusions, you can ask similar questions about your own writing:

  • Am I only considering evidence that supports my preconceptions?
  • Is my argument expressed clearly and backed up with credible sources?
  • Would I be convinced by this argument coming from someone else?

If you want to know more about ChatGPT, AI tools , citation , and plagiarism , make sure to check out some of our other articles with explanations and examples.

  • ChatGPT vs human editor
  • ChatGPT citations
  • Is ChatGPT trustworthy?
  • Using ChatGPT for your studies
  • What is ChatGPT?
  • Chicago style
  • Paraphrasing


  • Types of plagiarism
  • Self-plagiarism
  • Avoiding plagiarism
  • Academic integrity
  • Consequences of plagiarism
  • Common knowledge

Prevent plagiarism. Run a free check.

Critical thinking refers to the ability to evaluate information and to be aware of biases or assumptions, including your own.

Like information literacy , it involves evaluating arguments, identifying and solving problems in an objective and systematic way, and clearly communicating your ideas.

Critical thinking skills include the ability to:

You can assess information and arguments critically by asking certain questions about the source. You can use the CRAAP test , focusing on the currency , relevance , authority , accuracy , and purpose of a source of information.

Ask questions such as:

  • Who is the author? Are they an expert?
  • How do they make their argument? Is it backed up by evidence?

A credible source should pass the CRAAP test  and follow these guidelines:

  • The information should be up to date and current.
  • The author and publication should be a trusted authority on the subject you are researching.
  • The sources the author cited should be easy to find, clear, and unbiased.
  • For a web source, the URL and layout should signify that it is trustworthy.

Information literacy refers to a broad range of skills, including the ability to find, evaluate, and use sources of information effectively.

Being information literate means that you:

  • Know how to find credible sources
  • Use relevant sources to inform your research
  • Understand what constitutes plagiarism
  • Know how to cite your sources correctly

Confirmation bias is the tendency to search, interpret, and recall information in a way that aligns with our pre-existing values, opinions, or beliefs. It refers to the ability to recollect information best when it amplifies what we already believe. Relatedly, we tend to forget information that contradicts our opinions.

Although selective recall is a component of confirmation bias, it should not be confused with recall bias.

On the other hand, recall bias refers to the differences in the ability between study participants to recall past events when self-reporting is used. This difference in accuracy or completeness of recollection is not related to beliefs or opinions. Rather, recall bias relates to other factors, such as the length of the recall period, age, and the characteristics of the disease under investigation.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the “Cite this Scribbr article” button to automatically add the citation to our free Citation Generator.

Ryan, E. (2023, May 31). What Is Critical Thinking? | Definition & Examples. Scribbr. Retrieved March 8, 2024, from https://www.scribbr.com/working-with-sources/critical-thinking/

Is this article helpful?

Eoghan Ryan

Eoghan Ryan

Other students also liked, student guide: information literacy | meaning & examples, what are credible sources & how to spot them | examples, applying the craap test & evaluating sources.

SEP home page

  • Table of Contents
  • Random Entry
  • Chronological
  • Editorial Information
  • About the SEP
  • Editorial Board
  • How to Cite the SEP
  • Special Characters
  • Advanced Tools
  • Support the SEP
  • PDFs for SEP Friends
  • Make a Donation
  • SEPIA for Libraries
  • Entry Contents


Academic tools.

  • Friends PDF Preview
  • Author and Citation Info
  • Back to Top

Critical Thinking

Critical thinking is a widely accepted educational goal. Its definition is contested, but the competing definitions can be understood as differing conceptions of the same basic concept: careful thinking directed to a goal. Conceptions differ with respect to the scope of such thinking, the type of goal, the criteria and norms for thinking carefully, and the thinking components on which they focus. Its adoption as an educational goal has been recommended on the basis of respect for students’ autonomy and preparing students for success in life and for democratic citizenship. “Critical thinkers” have the dispositions and abilities that lead them to think critically when appropriate. The abilities can be identified directly; the dispositions indirectly, by considering what factors contribute to or impede exercise of the abilities. Standardized tests have been developed to assess the degree to which a person possesses such dispositions and abilities. Educational intervention has been shown experimentally to improve them, particularly when it includes dialogue, anchored instruction, and mentoring. Controversies have arisen over the generalizability of critical thinking across domains, over alleged bias in critical thinking theories and instruction, and over the relationship of critical thinking to other types of thinking.

2.1 Dewey’s Three Main Examples

2.2 dewey’s other examples, 2.3 further examples, 2.4 non-examples, 3. the definition of critical thinking, 4. its value, 5. the process of thinking critically, 6. components of the process, 7. contributory dispositions and abilities, 8.1 initiating dispositions, 8.2 internal dispositions, 9. critical thinking abilities, 10. required knowledge, 11. educational methods, 12.1 the generalizability of critical thinking, 12.2 bias in critical thinking theory and pedagogy, 12.3 relationship of critical thinking to other types of thinking, other internet resources, related entries.

Use of the term ‘critical thinking’ to describe an educational goal goes back to the American philosopher John Dewey (1910), who more commonly called it ‘reflective thinking’. He defined it as

active, persistent and careful consideration of any belief or supposed form of knowledge in the light of the grounds that support it, and the further conclusions to which it tends. (Dewey 1910: 6; 1933: 9)

and identified a habit of such consideration with a scientific attitude of mind. His lengthy quotations of Francis Bacon, John Locke, and John Stuart Mill indicate that he was not the first person to propose development of a scientific attitude of mind as an educational goal.

In the 1930s, many of the schools that participated in the Eight-Year Study of the Progressive Education Association (Aikin 1942) adopted critical thinking as an educational goal, for whose achievement the study’s Evaluation Staff developed tests (Smith, Tyler, & Evaluation Staff 1942). Glaser (1941) showed experimentally that it was possible to improve the critical thinking of high school students. Bloom’s influential taxonomy of cognitive educational objectives (Bloom et al. 1956) incorporated critical thinking abilities. Ennis (1962) proposed 12 aspects of critical thinking as a basis for research on the teaching and evaluation of critical thinking ability.

Since 1980, an annual international conference in California on critical thinking and educational reform has attracted tens of thousands of educators from all levels of education and from many parts of the world. Also since 1980, the state university system in California has required all undergraduate students to take a critical thinking course. Since 1983, the Association for Informal Logic and Critical Thinking has sponsored sessions in conjunction with the divisional meetings of the American Philosophical Association (APA). In 1987, the APA’s Committee on Pre-College Philosophy commissioned a consensus statement on critical thinking for purposes of educational assessment and instruction (Facione 1990a). Researchers have developed standardized tests of critical thinking abilities and dispositions; for details, see the Supplement on Assessment . Educational jurisdictions around the world now include critical thinking in guidelines for curriculum and assessment.

For details on this history, see the Supplement on History .

2. Examples and Non-Examples

Before considering the definition of critical thinking, it will be helpful to have in mind some examples of critical thinking, as well as some examples of kinds of thinking that would apparently not count as critical thinking.

Dewey (1910: 68–71; 1933: 91–94) takes as paradigms of reflective thinking three class papers of students in which they describe their thinking. The examples range from the everyday to the scientific.

Transit : “The other day, when I was down town on 16th Street, a clock caught my eye. I saw that the hands pointed to 12:20. This suggested that I had an engagement at 124th Street, at one o’clock. I reasoned that as it had taken me an hour to come down on a surface car, I should probably be twenty minutes late if I returned the same way. I might save twenty minutes by a subway express. But was there a station near? If not, I might lose more than twenty minutes in looking for one. Then I thought of the elevated, and I saw there was such a line within two blocks. But where was the station? If it were several blocks above or below the street I was on, I should lose time instead of gaining it. My mind went back to the subway express as quicker than the elevated; furthermore, I remembered that it went nearer than the elevated to the part of 124th Street I wished to reach, so that time would be saved at the end of the journey. I concluded in favor of the subway, and reached my destination by one o’clock.” (Dewey 1910: 68–69; 1933: 91–92)

Ferryboat : “Projecting nearly horizontally from the upper deck of the ferryboat on which I daily cross the river is a long white pole, having a gilded ball at its tip. It suggested a flagpole when I first saw it; its color, shape, and gilded ball agreed with this idea, and these reasons seemed to justify me in this belief. But soon difficulties presented themselves. The pole was nearly horizontal, an unusual position for a flagpole; in the next place, there was no pulley, ring, or cord by which to attach a flag; finally, there were elsewhere on the boat two vertical staffs from which flags were occasionally flown. It seemed probable that the pole was not there for flag-flying.

“I then tried to imagine all possible purposes of the pole, and to consider for which of these it was best suited: (a) Possibly it was an ornament. But as all the ferryboats and even the tugboats carried poles, this hypothesis was rejected. (b) Possibly it was the terminal of a wireless telegraph. But the same considerations made this improbable. Besides, the more natural place for such a terminal would be the highest part of the boat, on top of the pilot house. (c) Its purpose might be to point out the direction in which the boat is moving.

“In support of this conclusion, I discovered that the pole was lower than the pilot house, so that the steersman could easily see it. Moreover, the tip was enough higher than the base, so that, from the pilot’s position, it must appear to project far out in front of the boat. Moreover, the pilot being near the front of the boat, he would need some such guide as to its direction. Tugboats would also need poles for such a purpose. This hypothesis was so much more probable than the others that I accepted it. I formed the conclusion that the pole was set up for the purpose of showing the pilot the direction in which the boat pointed, to enable him to steer correctly.” (Dewey 1910: 69–70; 1933: 92–93)

Bubbles : “In washing tumblers in hot soapsuds and placing them mouth downward on a plate, bubbles appeared on the outside of the mouth of the tumblers and then went inside. Why? The presence of bubbles suggests air, which I note must come from inside the tumbler. I see that the soapy water on the plate prevents escape of the air save as it may be caught in bubbles. But why should air leave the tumbler? There was no substance entering to force it out. It must have expanded. It expands by increase of heat, or by decrease of pressure, or both. Could the air have become heated after the tumbler was taken from the hot suds? Clearly not the air that was already entangled in the water. If heated air was the cause, cold air must have entered in transferring the tumblers from the suds to the plate. I test to see if this supposition is true by taking several more tumblers out. Some I shake so as to make sure of entrapping cold air in them. Some I take out holding mouth downward in order to prevent cold air from entering. Bubbles appear on the outside of every one of the former and on none of the latter. I must be right in my inference. Air from the outside must have been expanded by the heat of the tumbler, which explains the appearance of the bubbles on the outside. But why do they then go inside? Cold contracts. The tumbler cooled and also the air inside it. Tension was removed, and hence bubbles appeared inside. To be sure of this, I test by placing a cup of ice on the tumbler while the bubbles are still forming outside. They soon reverse” (Dewey 1910: 70–71; 1933: 93–94).

Dewey (1910, 1933) sprinkles his book with other examples of critical thinking. We will refer to the following.

Weather : A man on a walk notices that it has suddenly become cool, thinks that it is probably going to rain, looks up and sees a dark cloud obscuring the sun, and quickens his steps (1910: 6–10; 1933: 9–13).

Disorder : A man finds his rooms on his return to them in disorder with his belongings thrown about, thinks at first of burglary as an explanation, then thinks of mischievous children as being an alternative explanation, then looks to see whether valuables are missing, and discovers that they are (1910: 82–83; 1933: 166–168).

Typhoid : A physician diagnosing a patient whose conspicuous symptoms suggest typhoid avoids drawing a conclusion until more data are gathered by questioning the patient and by making tests (1910: 85–86; 1933: 170).

Blur : A moving blur catches our eye in the distance, we ask ourselves whether it is a cloud of whirling dust or a tree moving its branches or a man signaling to us, we think of other traits that should be found on each of those possibilities, and we look and see if those traits are found (1910: 102, 108; 1933: 121, 133).

Suction pump : In thinking about the suction pump, the scientist first notes that it will draw water only to a maximum height of 33 feet at sea level and to a lesser maximum height at higher elevations, selects for attention the differing atmospheric pressure at these elevations, sets up experiments in which the air is removed from a vessel containing water (when suction no longer works) and in which the weight of air at various levels is calculated, compares the results of reasoning about the height to which a given weight of air will allow a suction pump to raise water with the observed maximum height at different elevations, and finally assimilates the suction pump to such apparently different phenomena as the siphon and the rising of a balloon (1910: 150–153; 1933: 195–198).

Diamond : A passenger in a car driving in a diamond lane reserved for vehicles with at least one passenger notices that the diamond marks on the pavement are far apart in some places and close together in others. Why? The driver suggests that the reason may be that the diamond marks are not needed where there is a solid double line separating the diamond lane from the adjoining lane, but are needed when there is a dotted single line permitting crossing into the diamond lane. Further observation confirms that the diamonds are close together when a dotted line separates the diamond lane from its neighbour, but otherwise far apart.

Rash : A woman suddenly develops a very itchy red rash on her throat and upper chest. She recently noticed a mark on the back of her right hand, but was not sure whether the mark was a rash or a scrape. She lies down in bed and thinks about what might be causing the rash and what to do about it. About two weeks before, she began taking blood pressure medication that contained a sulfa drug, and the pharmacist had warned her, in view of a previous allergic reaction to a medication containing a sulfa drug, to be on the alert for an allergic reaction; however, she had been taking the medication for two weeks with no such effect. The day before, she began using a new cream on her neck and upper chest; against the new cream as the cause was mark on the back of her hand, which had not been exposed to the cream. She began taking probiotics about a month before. She also recently started new eye drops, but she supposed that manufacturers of eye drops would be careful not to include allergy-causing components in the medication. The rash might be a heat rash, since she recently was sweating profusely from her upper body. Since she is about to go away on a short vacation, where she would not have access to her usual physician, she decides to keep taking the probiotics and using the new eye drops but to discontinue the blood pressure medication and to switch back to the old cream for her neck and upper chest. She forms a plan to consult her regular physician on her return about the blood pressure medication.

Candidate : Although Dewey included no examples of thinking directed at appraising the arguments of others, such thinking has come to be considered a kind of critical thinking. We find an example of such thinking in the performance task on the Collegiate Learning Assessment (CLA+), which its sponsoring organization describes as

a performance-based assessment that provides a measure of an institution’s contribution to the development of critical-thinking and written communication skills of its students. (Council for Aid to Education 2017)

A sample task posted on its website requires the test-taker to write a report for public distribution evaluating a fictional candidate’s policy proposals and their supporting arguments, using supplied background documents, with a recommendation on whether to endorse the candidate.

Immediate acceptance of an idea that suggests itself as a solution to a problem (e.g., a possible explanation of an event or phenomenon, an action that seems likely to produce a desired result) is “uncritical thinking, the minimum of reflection” (Dewey 1910: 13). On-going suspension of judgment in the light of doubt about a possible solution is not critical thinking (Dewey 1910: 108). Critique driven by a dogmatically held political or religious ideology is not critical thinking; thus Paulo Freire (1968 [1970]) is using the term (e.g., at 1970: 71, 81, 100, 146) in a more politically freighted sense that includes not only reflection but also revolutionary action against oppression. Derivation of a conclusion from given data using an algorithm is not critical thinking.

What is critical thinking? There are many definitions. Ennis (2016) lists 14 philosophically oriented scholarly definitions and three dictionary definitions. Following Rawls (1971), who distinguished his conception of justice from a utilitarian conception but regarded them as rival conceptions of the same concept, Ennis maintains that the 17 definitions are different conceptions of the same concept. Rawls articulated the shared concept of justice as

a characteristic set of principles for assigning basic rights and duties and for determining… the proper distribution of the benefits and burdens of social cooperation. (Rawls 1971: 5)

Bailin et al. (1999b) claim that, if one considers what sorts of thinking an educator would take not to be critical thinking and what sorts to be critical thinking, one can conclude that educators typically understand critical thinking to have at least three features.

  • It is done for the purpose of making up one’s mind about what to believe or do.
  • The person engaging in the thinking is trying to fulfill standards of adequacy and accuracy appropriate to the thinking.
  • The thinking fulfills the relevant standards to some threshold level.

One could sum up the core concept that involves these three features by saying that critical thinking is careful goal-directed thinking. This core concept seems to apply to all the examples of critical thinking described in the previous section. As for the non-examples, their exclusion depends on construing careful thinking as excluding jumping immediately to conclusions, suspending judgment no matter how strong the evidence, reasoning from an unquestioned ideological or religious perspective, and routinely using an algorithm to answer a question.

If the core of critical thinking is careful goal-directed thinking, conceptions of it can vary according to its presumed scope, its presumed goal, one’s criteria and threshold for being careful, and the thinking component on which one focuses. As to its scope, some conceptions (e.g., Dewey 1910, 1933) restrict it to constructive thinking on the basis of one’s own observations and experiments, others (e.g., Ennis 1962; Fisher & Scriven 1997; Johnson 1992) to appraisal of the products of such thinking. Ennis (1991) and Bailin et al. (1999b) take it to cover both construction and appraisal. As to its goal, some conceptions restrict it to forming a judgment (Dewey 1910, 1933; Lipman 1987; Facione 1990a). Others allow for actions as well as beliefs as the end point of a process of critical thinking (Ennis 1991; Bailin et al. 1999b). As to the criteria and threshold for being careful, definitions vary in the term used to indicate that critical thinking satisfies certain norms: “intellectually disciplined” (Scriven & Paul 1987), “reasonable” (Ennis 1991), “skillful” (Lipman 1987), “skilled” (Fisher & Scriven 1997), “careful” (Bailin & Battersby 2009). Some definitions specify these norms, referring variously to “consideration of any belief or supposed form of knowledge in the light of the grounds that support it and the further conclusions to which it tends” (Dewey 1910, 1933); “the methods of logical inquiry and reasoning” (Glaser 1941); “conceptualizing, applying, analyzing, synthesizing, and/or evaluating information gathered from, or generated by, observation, experience, reflection, reasoning, or communication” (Scriven & Paul 1987); the requirement that “it is sensitive to context, relies on criteria, and is self-correcting” (Lipman 1987); “evidential, conceptual, methodological, criteriological, or contextual considerations” (Facione 1990a); and “plus-minus considerations of the product in terms of appropriate standards (or criteria)” (Johnson 1992). Stanovich and Stanovich (2010) propose to ground the concept of critical thinking in the concept of rationality, which they understand as combining epistemic rationality (fitting one’s beliefs to the world) and instrumental rationality (optimizing goal fulfillment); a critical thinker, in their view, is someone with “a propensity to override suboptimal responses from the autonomous mind” (2010: 227). These variant specifications of norms for critical thinking are not necessarily incompatible with one another, and in any case presuppose the core notion of thinking carefully. As to the thinking component singled out, some definitions focus on suspension of judgment during the thinking (Dewey 1910; McPeck 1981), others on inquiry while judgment is suspended (Bailin & Battersby 2009, 2021), others on the resulting judgment (Facione 1990a), and still others on responsiveness to reasons (Siegel 1988). Kuhn (2019) takes critical thinking to be more a dialogic practice of advancing and responding to arguments than an individual ability.

In educational contexts, a definition of critical thinking is a “programmatic definition” (Scheffler 1960: 19). It expresses a practical program for achieving an educational goal. For this purpose, a one-sentence formulaic definition is much less useful than articulation of a critical thinking process, with criteria and standards for the kinds of thinking that the process may involve. The real educational goal is recognition, adoption and implementation by students of those criteria and standards. That adoption and implementation in turn consists in acquiring the knowledge, abilities and dispositions of a critical thinker.

Conceptions of critical thinking generally do not include moral integrity as part of the concept. Dewey, for example, took critical thinking to be the ultimate intellectual goal of education, but distinguished it from the development of social cooperation among school children, which he took to be the central moral goal. Ennis (1996, 2011) added to his previous list of critical thinking dispositions a group of dispositions to care about the dignity and worth of every person, which he described as a “correlative” (1996) disposition without which critical thinking would be less valuable and perhaps harmful. An educational program that aimed at developing critical thinking but not the correlative disposition to care about the dignity and worth of every person, he asserted, “would be deficient and perhaps dangerous” (Ennis 1996: 172).

Dewey thought that education for reflective thinking would be of value to both the individual and society; recognition in educational practice of the kinship to the scientific attitude of children’s native curiosity, fertile imagination and love of experimental inquiry “would make for individual happiness and the reduction of social waste” (Dewey 1910: iii). Schools participating in the Eight-Year Study took development of the habit of reflective thinking and skill in solving problems as a means to leading young people to understand, appreciate and live the democratic way of life characteristic of the United States (Aikin 1942: 17–18, 81). Harvey Siegel (1988: 55–61) has offered four considerations in support of adopting critical thinking as an educational ideal. (1) Respect for persons requires that schools and teachers honour students’ demands for reasons and explanations, deal with students honestly, and recognize the need to confront students’ independent judgment; these requirements concern the manner in which teachers treat students. (2) Education has the task of preparing children to be successful adults, a task that requires development of their self-sufficiency. (3) Education should initiate children into the rational traditions in such fields as history, science and mathematics. (4) Education should prepare children to become democratic citizens, which requires reasoned procedures and critical talents and attitudes. To supplement these considerations, Siegel (1988: 62–90) responds to two objections: the ideology objection that adoption of any educational ideal requires a prior ideological commitment and the indoctrination objection that cultivation of critical thinking cannot escape being a form of indoctrination.

Despite the diversity of our 11 examples, one can recognize a common pattern. Dewey analyzed it as consisting of five phases:

  • suggestions , in which the mind leaps forward to a possible solution;
  • an intellectualization of the difficulty or perplexity into a problem to be solved, a question for which the answer must be sought;
  • the use of one suggestion after another as a leading idea, or hypothesis , to initiate and guide observation and other operations in collection of factual material;
  • the mental elaboration of the idea or supposition as an idea or supposition ( reasoning , in the sense on which reasoning is a part, not the whole, of inference); and
  • testing the hypothesis by overt or imaginative action. (Dewey 1933: 106–107; italics in original)

The process of reflective thinking consisting of these phases would be preceded by a perplexed, troubled or confused situation and followed by a cleared-up, unified, resolved situation (Dewey 1933: 106). The term ‘phases’ replaced the term ‘steps’ (Dewey 1910: 72), thus removing the earlier suggestion of an invariant sequence. Variants of the above analysis appeared in (Dewey 1916: 177) and (Dewey 1938: 101–119).

The variant formulations indicate the difficulty of giving a single logical analysis of such a varied process. The process of critical thinking may have a spiral pattern, with the problem being redefined in the light of obstacles to solving it as originally formulated. For example, the person in Transit might have concluded that getting to the appointment at the scheduled time was impossible and have reformulated the problem as that of rescheduling the appointment for a mutually convenient time. Further, defining a problem does not always follow after or lead immediately to an idea of a suggested solution. Nor should it do so, as Dewey himself recognized in describing the physician in Typhoid as avoiding any strong preference for this or that conclusion before getting further information (Dewey 1910: 85; 1933: 170). People with a hypothesis in mind, even one to which they have a very weak commitment, have a so-called “confirmation bias” (Nickerson 1998): they are likely to pay attention to evidence that confirms the hypothesis and to ignore evidence that counts against it or for some competing hypothesis. Detectives, intelligence agencies, and investigators of airplane accidents are well advised to gather relevant evidence systematically and to postpone even tentative adoption of an explanatory hypothesis until the collected evidence rules out with the appropriate degree of certainty all but one explanation. Dewey’s analysis of the critical thinking process can be faulted as well for requiring acceptance or rejection of a possible solution to a defined problem, with no allowance for deciding in the light of the available evidence to suspend judgment. Further, given the great variety of kinds of problems for which reflection is appropriate, there is likely to be variation in its component events. Perhaps the best way to conceptualize the critical thinking process is as a checklist whose component events can occur in a variety of orders, selectively, and more than once. These component events might include (1) noticing a difficulty, (2) defining the problem, (3) dividing the problem into manageable sub-problems, (4) formulating a variety of possible solutions to the problem or sub-problem, (5) determining what evidence is relevant to deciding among possible solutions to the problem or sub-problem, (6) devising a plan of systematic observation or experiment that will uncover the relevant evidence, (7) carrying out the plan of systematic observation or experimentation, (8) noting the results of the systematic observation or experiment, (9) gathering relevant testimony and information from others, (10) judging the credibility of testimony and information gathered from others, (11) drawing conclusions from gathered evidence and accepted testimony, and (12) accepting a solution that the evidence adequately supports (cf. Hitchcock 2017: 485).

Checklist conceptions of the process of critical thinking are open to the objection that they are too mechanical and procedural to fit the multi-dimensional and emotionally charged issues for which critical thinking is urgently needed (Paul 1984). For such issues, a more dialectical process is advocated, in which competing relevant world views are identified, their implications explored, and some sort of creative synthesis attempted.

If one considers the critical thinking process illustrated by the 11 examples, one can identify distinct kinds of mental acts and mental states that form part of it. To distinguish, label and briefly characterize these components is a useful preliminary to identifying abilities, skills, dispositions, attitudes, habits and the like that contribute causally to thinking critically. Identifying such abilities and habits is in turn a useful preliminary to setting educational goals. Setting the goals is in its turn a useful preliminary to designing strategies for helping learners to achieve the goals and to designing ways of measuring the extent to which learners have done so. Such measures provide both feedback to learners on their achievement and a basis for experimental research on the effectiveness of various strategies for educating people to think critically. Let us begin, then, by distinguishing the kinds of mental acts and mental events that can occur in a critical thinking process.

  • Observing : One notices something in one’s immediate environment (sudden cooling of temperature in Weather , bubbles forming outside a glass and then going inside in Bubbles , a moving blur in the distance in Blur , a rash in Rash ). Or one notes the results of an experiment or systematic observation (valuables missing in Disorder , no suction without air pressure in Suction pump )
  • Feeling : One feels puzzled or uncertain about something (how to get to an appointment on time in Transit , why the diamonds vary in spacing in Diamond ). One wants to resolve this perplexity. One feels satisfaction once one has worked out an answer (to take the subway express in Transit , diamonds closer when needed as a warning in Diamond ).
  • Wondering : One formulates a question to be addressed (why bubbles form outside a tumbler taken from hot water in Bubbles , how suction pumps work in Suction pump , what caused the rash in Rash ).
  • Imagining : One thinks of possible answers (bus or subway or elevated in Transit , flagpole or ornament or wireless communication aid or direction indicator in Ferryboat , allergic reaction or heat rash in Rash ).
  • Inferring : One works out what would be the case if a possible answer were assumed (valuables missing if there has been a burglary in Disorder , earlier start to the rash if it is an allergic reaction to a sulfa drug in Rash ). Or one draws a conclusion once sufficient relevant evidence is gathered (take the subway in Transit , burglary in Disorder , discontinue blood pressure medication and new cream in Rash ).
  • Knowledge : One uses stored knowledge of the subject-matter to generate possible answers or to infer what would be expected on the assumption of a particular answer (knowledge of a city’s public transit system in Transit , of the requirements for a flagpole in Ferryboat , of Boyle’s law in Bubbles , of allergic reactions in Rash ).
  • Experimenting : One designs and carries out an experiment or a systematic observation to find out whether the results deduced from a possible answer will occur (looking at the location of the flagpole in relation to the pilot’s position in Ferryboat , putting an ice cube on top of a tumbler taken from hot water in Bubbles , measuring the height to which a suction pump will draw water at different elevations in Suction pump , noticing the spacing of diamonds when movement to or from a diamond lane is allowed in Diamond ).
  • Consulting : One finds a source of information, gets the information from the source, and makes a judgment on whether to accept it. None of our 11 examples include searching for sources of information. In this respect they are unrepresentative, since most people nowadays have almost instant access to information relevant to answering any question, including many of those illustrated by the examples. However, Candidate includes the activities of extracting information from sources and evaluating its credibility.
  • Identifying and analyzing arguments : One notices an argument and works out its structure and content as a preliminary to evaluating its strength. This activity is central to Candidate . It is an important part of a critical thinking process in which one surveys arguments for various positions on an issue.
  • Judging : One makes a judgment on the basis of accumulated evidence and reasoning, such as the judgment in Ferryboat that the purpose of the pole is to provide direction to the pilot.
  • Deciding : One makes a decision on what to do or on what policy to adopt, as in the decision in Transit to take the subway.

By definition, a person who does something voluntarily is both willing and able to do that thing at that time. Both the willingness and the ability contribute causally to the person’s action, in the sense that the voluntary action would not occur if either (or both) of these were lacking. For example, suppose that one is standing with one’s arms at one’s sides and one voluntarily lifts one’s right arm to an extended horizontal position. One would not do so if one were unable to lift one’s arm, if for example one’s right side was paralyzed as the result of a stroke. Nor would one do so if one were unwilling to lift one’s arm, if for example one were participating in a street demonstration at which a white supremacist was urging the crowd to lift their right arm in a Nazi salute and one were unwilling to express support in this way for the racist Nazi ideology. The same analysis applies to a voluntary mental process of thinking critically. It requires both willingness and ability to think critically, including willingness and ability to perform each of the mental acts that compose the process and to coordinate those acts in a sequence that is directed at resolving the initiating perplexity.

Consider willingness first. We can identify causal contributors to willingness to think critically by considering factors that would cause a person who was able to think critically about an issue nevertheless not to do so (Hamby 2014). For each factor, the opposite condition thus contributes causally to willingness to think critically on a particular occasion. For example, people who habitually jump to conclusions without considering alternatives will not think critically about issues that arise, even if they have the required abilities. The contrary condition of willingness to suspend judgment is thus a causal contributor to thinking critically.

Now consider ability. In contrast to the ability to move one’s arm, which can be completely absent because a stroke has left the arm paralyzed, the ability to think critically is a developed ability, whose absence is not a complete absence of ability to think but absence of ability to think well. We can identify the ability to think well directly, in terms of the norms and standards for good thinking. In general, to be able do well the thinking activities that can be components of a critical thinking process, one needs to know the concepts and principles that characterize their good performance, to recognize in particular cases that the concepts and principles apply, and to apply them. The knowledge, recognition and application may be procedural rather than declarative. It may be domain-specific rather than widely applicable, and in either case may need subject-matter knowledge, sometimes of a deep kind.

Reflections of the sort illustrated by the previous two paragraphs have led scholars to identify the knowledge, abilities and dispositions of a “critical thinker”, i.e., someone who thinks critically whenever it is appropriate to do so. We turn now to these three types of causal contributors to thinking critically. We start with dispositions, since arguably these are the most powerful contributors to being a critical thinker, can be fostered at an early stage of a child’s development, and are susceptible to general improvement (Glaser 1941: 175)

8. Critical Thinking Dispositions

Educational researchers use the term ‘dispositions’ broadly for the habits of mind and attitudes that contribute causally to being a critical thinker. Some writers (e.g., Paul & Elder 2006; Hamby 2014; Bailin & Battersby 2016a) propose to use the term ‘virtues’ for this dimension of a critical thinker. The virtues in question, although they are virtues of character, concern the person’s ways of thinking rather than the person’s ways of behaving towards others. They are not moral virtues but intellectual virtues, of the sort articulated by Zagzebski (1996) and discussed by Turri, Alfano, and Greco (2017).

On a realistic conception, thinking dispositions or intellectual virtues are real properties of thinkers. They are general tendencies, propensities, or inclinations to think in particular ways in particular circumstances, and can be genuinely explanatory (Siegel 1999). Sceptics argue that there is no evidence for a specific mental basis for the habits of mind that contribute to thinking critically, and that it is pedagogically misleading to posit such a basis (Bailin et al. 1999a). Whatever their status, critical thinking dispositions need motivation for their initial formation in a child—motivation that may be external or internal. As children develop, the force of habit will gradually become important in sustaining the disposition (Nieto & Valenzuela 2012). Mere force of habit, however, is unlikely to sustain critical thinking dispositions. Critical thinkers must value and enjoy using their knowledge and abilities to think things through for themselves. They must be committed to, and lovers of, inquiry.

A person may have a critical thinking disposition with respect to only some kinds of issues. For example, one could be open-minded about scientific issues but not about religious issues. Similarly, one could be confident in one’s ability to reason about the theological implications of the existence of evil in the world but not in one’s ability to reason about the best design for a guided ballistic missile.

Facione (1990a: 25) divides “affective dispositions” of critical thinking into approaches to life and living in general and approaches to specific issues, questions or problems. Adapting this distinction, one can usefully divide critical thinking dispositions into initiating dispositions (those that contribute causally to starting to think critically about an issue) and internal dispositions (those that contribute causally to doing a good job of thinking critically once one has started). The two categories are not mutually exclusive. For example, open-mindedness, in the sense of willingness to consider alternative points of view to one’s own, is both an initiating and an internal disposition.

Using the strategy of considering factors that would block people with the ability to think critically from doing so, we can identify as initiating dispositions for thinking critically attentiveness, a habit of inquiry, self-confidence, courage, open-mindedness, willingness to suspend judgment, trust in reason, wanting evidence for one’s beliefs, and seeking the truth. We consider briefly what each of these dispositions amounts to, in each case citing sources that acknowledge them.

  • Attentiveness : One will not think critically if one fails to recognize an issue that needs to be thought through. For example, the pedestrian in Weather would not have looked up if he had not noticed that the air was suddenly cooler. To be a critical thinker, then, one needs to be habitually attentive to one’s surroundings, noticing not only what one senses but also sources of perplexity in messages received and in one’s own beliefs and attitudes (Facione 1990a: 25; Facione, Facione, & Giancarlo 2001).
  • Habit of inquiry : Inquiry is effortful, and one needs an internal push to engage in it. For example, the student in Bubbles could easily have stopped at idle wondering about the cause of the bubbles rather than reasoning to a hypothesis, then designing and executing an experiment to test it. Thus willingness to think critically needs mental energy and initiative. What can supply that energy? Love of inquiry, or perhaps just a habit of inquiry. Hamby (2015) has argued that willingness to inquire is the central critical thinking virtue, one that encompasses all the others. It is recognized as a critical thinking disposition by Dewey (1910: 29; 1933: 35), Glaser (1941: 5), Ennis (1987: 12; 1991: 8), Facione (1990a: 25), Bailin et al. (1999b: 294), Halpern (1998: 452), and Facione, Facione, & Giancarlo (2001).
  • Self-confidence : Lack of confidence in one’s abilities can block critical thinking. For example, if the woman in Rash lacked confidence in her ability to figure things out for herself, she might just have assumed that the rash on her chest was the allergic reaction to her medication against which the pharmacist had warned her. Thus willingness to think critically requires confidence in one’s ability to inquire (Facione 1990a: 25; Facione, Facione, & Giancarlo 2001).
  • Courage : Fear of thinking for oneself can stop one from doing it. Thus willingness to think critically requires intellectual courage (Paul & Elder 2006: 16).
  • Open-mindedness : A dogmatic attitude will impede thinking critically. For example, a person who adheres rigidly to a “pro-choice” position on the issue of the legal status of induced abortion is likely to be unwilling to consider seriously the issue of when in its development an unborn child acquires a moral right to life. Thus willingness to think critically requires open-mindedness, in the sense of a willingness to examine questions to which one already accepts an answer but which further evidence or reasoning might cause one to answer differently (Dewey 1933; Facione 1990a; Ennis 1991; Bailin et al. 1999b; Halpern 1998, Facione, Facione, & Giancarlo 2001). Paul (1981) emphasizes open-mindedness about alternative world-views, and recommends a dialectical approach to integrating such views as central to what he calls “strong sense” critical thinking. In three studies, Haran, Ritov, & Mellers (2013) found that actively open-minded thinking, including “the tendency to weigh new evidence against a favored belief, to spend sufficient time on a problem before giving up, and to consider carefully the opinions of others in forming one’s own”, led study participants to acquire information and thus to make accurate estimations.
  • Willingness to suspend judgment : Premature closure on an initial solution will block critical thinking. Thus willingness to think critically requires a willingness to suspend judgment while alternatives are explored (Facione 1990a; Ennis 1991; Halpern 1998).
  • Trust in reason : Since distrust in the processes of reasoned inquiry will dissuade one from engaging in it, trust in them is an initiating critical thinking disposition (Facione 1990a, 25; Bailin et al. 1999b: 294; Facione, Facione, & Giancarlo 2001; Paul & Elder 2006). In reaction to an allegedly exclusive emphasis on reason in critical thinking theory and pedagogy, Thayer-Bacon (2000) argues that intuition, imagination, and emotion have important roles to play in an adequate conception of critical thinking that she calls “constructive thinking”. From her point of view, critical thinking requires trust not only in reason but also in intuition, imagination, and emotion.
  • Seeking the truth : If one does not care about the truth but is content to stick with one’s initial bias on an issue, then one will not think critically about it. Seeking the truth is thus an initiating critical thinking disposition (Bailin et al. 1999b: 294; Facione, Facione, & Giancarlo 2001). A disposition to seek the truth is implicit in more specific critical thinking dispositions, such as trying to be well-informed, considering seriously points of view other than one’s own, looking for alternatives, suspending judgment when the evidence is insufficient, and adopting a position when the evidence supporting it is sufficient.

Some of the initiating dispositions, such as open-mindedness and willingness to suspend judgment, are also internal critical thinking dispositions, in the sense of mental habits or attitudes that contribute causally to doing a good job of critical thinking once one starts the process. But there are many other internal critical thinking dispositions. Some of them are parasitic on one’s conception of good thinking. For example, it is constitutive of good thinking about an issue to formulate the issue clearly and to maintain focus on it. For this purpose, one needs not only the corresponding ability but also the corresponding disposition. Ennis (1991: 8) describes it as the disposition “to determine and maintain focus on the conclusion or question”, Facione (1990a: 25) as “clarity in stating the question or concern”. Other internal dispositions are motivators to continue or adjust the critical thinking process, such as willingness to persist in a complex task and willingness to abandon nonproductive strategies in an attempt to self-correct (Halpern 1998: 452). For a list of identified internal critical thinking dispositions, see the Supplement on Internal Critical Thinking Dispositions .

Some theorists postulate skills, i.e., acquired abilities, as operative in critical thinking. It is not obvious, however, that a good mental act is the exercise of a generic acquired skill. Inferring an expected time of arrival, as in Transit , has some generic components but also uses non-generic subject-matter knowledge. Bailin et al. (1999a) argue against viewing critical thinking skills as generic and discrete, on the ground that skilled performance at a critical thinking task cannot be separated from knowledge of concepts and from domain-specific principles of good thinking. Talk of skills, they concede, is unproblematic if it means merely that a person with critical thinking skills is capable of intelligent performance.

Despite such scepticism, theorists of critical thinking have listed as general contributors to critical thinking what they variously call abilities (Glaser 1941; Ennis 1962, 1991), skills (Facione 1990a; Halpern 1998) or competencies (Fisher & Scriven 1997). Amalgamating these lists would produce a confusing and chaotic cornucopia of more than 50 possible educational objectives, with only partial overlap among them. It makes sense instead to try to understand the reasons for the multiplicity and diversity, and to make a selection according to one’s own reasons for singling out abilities to be developed in a critical thinking curriculum. Two reasons for diversity among lists of critical thinking abilities are the underlying conception of critical thinking and the envisaged educational level. Appraisal-only conceptions, for example, involve a different suite of abilities than constructive-only conceptions. Some lists, such as those in (Glaser 1941), are put forward as educational objectives for secondary school students, whereas others are proposed as objectives for college students (e.g., Facione 1990a).

The abilities described in the remaining paragraphs of this section emerge from reflection on the general abilities needed to do well the thinking activities identified in section 6 as components of the critical thinking process described in section 5 . The derivation of each collection of abilities is accompanied by citation of sources that list such abilities and of standardized tests that claim to test them.

Observational abilities : Careful and accurate observation sometimes requires specialist expertise and practice, as in the case of observing birds and observing accident scenes. However, there are general abilities of noticing what one’s senses are picking up from one’s environment and of being able to articulate clearly and accurately to oneself and others what one has observed. It helps in exercising them to be able to recognize and take into account factors that make one’s observation less trustworthy, such as prior framing of the situation, inadequate time, deficient senses, poor observation conditions, and the like. It helps as well to be skilled at taking steps to make one’s observation more trustworthy, such as moving closer to get a better look, measuring something three times and taking the average, and checking what one thinks one is observing with someone else who is in a good position to observe it. It also helps to be skilled at recognizing respects in which one’s report of one’s observation involves inference rather than direct observation, so that one can then consider whether the inference is justified. These abilities come into play as well when one thinks about whether and with what degree of confidence to accept an observation report, for example in the study of history or in a criminal investigation or in assessing news reports. Observational abilities show up in some lists of critical thinking abilities (Ennis 1962: 90; Facione 1990a: 16; Ennis 1991: 9). There are items testing a person’s ability to judge the credibility of observation reports in the Cornell Critical Thinking Tests, Levels X and Z (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005). Norris and King (1983, 1985, 1990a, 1990b) is a test of ability to appraise observation reports.

Emotional abilities : The emotions that drive a critical thinking process are perplexity or puzzlement, a wish to resolve it, and satisfaction at achieving the desired resolution. Children experience these emotions at an early age, without being trained to do so. Education that takes critical thinking as a goal needs only to channel these emotions and to make sure not to stifle them. Collaborative critical thinking benefits from ability to recognize one’s own and others’ emotional commitments and reactions.

Questioning abilities : A critical thinking process needs transformation of an inchoate sense of perplexity into a clear question. Formulating a question well requires not building in questionable assumptions, not prejudging the issue, and using language that in context is unambiguous and precise enough (Ennis 1962: 97; 1991: 9).

Imaginative abilities : Thinking directed at finding the correct causal explanation of a general phenomenon or particular event requires an ability to imagine possible explanations. Thinking about what policy or plan of action to adopt requires generation of options and consideration of possible consequences of each option. Domain knowledge is required for such creative activity, but a general ability to imagine alternatives is helpful and can be nurtured so as to become easier, quicker, more extensive, and deeper (Dewey 1910: 34–39; 1933: 40–47). Facione (1990a) and Halpern (1998) include the ability to imagine alternatives as a critical thinking ability.

Inferential abilities : The ability to draw conclusions from given information, and to recognize with what degree of certainty one’s own or others’ conclusions follow, is universally recognized as a general critical thinking ability. All 11 examples in section 2 of this article include inferences, some from hypotheses or options (as in Transit , Ferryboat and Disorder ), others from something observed (as in Weather and Rash ). None of these inferences is formally valid. Rather, they are licensed by general, sometimes qualified substantive rules of inference (Toulmin 1958) that rest on domain knowledge—that a bus trip takes about the same time in each direction, that the terminal of a wireless telegraph would be located on the highest possible place, that sudden cooling is often followed by rain, that an allergic reaction to a sulfa drug generally shows up soon after one starts taking it. It is a matter of controversy to what extent the specialized ability to deduce conclusions from premisses using formal rules of inference is needed for critical thinking. Dewey (1933) locates logical forms in setting out the products of reflection rather than in the process of reflection. Ennis (1981a), on the other hand, maintains that a liberally-educated person should have the following abilities: to translate natural-language statements into statements using the standard logical operators, to use appropriately the language of necessary and sufficient conditions, to deal with argument forms and arguments containing symbols, to determine whether in virtue of an argument’s form its conclusion follows necessarily from its premisses, to reason with logically complex propositions, and to apply the rules and procedures of deductive logic. Inferential abilities are recognized as critical thinking abilities by Glaser (1941: 6), Facione (1990a: 9), Ennis (1991: 9), Fisher & Scriven (1997: 99, 111), and Halpern (1998: 452). Items testing inferential abilities constitute two of the five subtests of the Watson Glaser Critical Thinking Appraisal (Watson & Glaser 1980a, 1980b, 1994), two of the four sections in the Cornell Critical Thinking Test Level X (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005), three of the seven sections in the Cornell Critical Thinking Test Level Z (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005), 11 of the 34 items on Forms A and B of the California Critical Thinking Skills Test (Facione 1990b, 1992), and a high but variable proportion of the 25 selected-response questions in the Collegiate Learning Assessment (Council for Aid to Education 2017).

Experimenting abilities : Knowing how to design and execute an experiment is important not just in scientific research but also in everyday life, as in Rash . Dewey devoted a whole chapter of his How We Think (1910: 145–156; 1933: 190–202) to the superiority of experimentation over observation in advancing knowledge. Experimenting abilities come into play at one remove in appraising reports of scientific studies. Skill in designing and executing experiments includes the acknowledged abilities to appraise evidence (Glaser 1941: 6), to carry out experiments and to apply appropriate statistical inference techniques (Facione 1990a: 9), to judge inductions to an explanatory hypothesis (Ennis 1991: 9), and to recognize the need for an adequately large sample size (Halpern 1998). The Cornell Critical Thinking Test Level Z (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005) includes four items (out of 52) on experimental design. The Collegiate Learning Assessment (Council for Aid to Education 2017) makes room for appraisal of study design in both its performance task and its selected-response questions.

Consulting abilities : Skill at consulting sources of information comes into play when one seeks information to help resolve a problem, as in Candidate . Ability to find and appraise information includes ability to gather and marshal pertinent information (Glaser 1941: 6), to judge whether a statement made by an alleged authority is acceptable (Ennis 1962: 84), to plan a search for desired information (Facione 1990a: 9), and to judge the credibility of a source (Ennis 1991: 9). Ability to judge the credibility of statements is tested by 24 items (out of 76) in the Cornell Critical Thinking Test Level X (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005) and by four items (out of 52) in the Cornell Critical Thinking Test Level Z (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005). The College Learning Assessment’s performance task requires evaluation of whether information in documents is credible or unreliable (Council for Aid to Education 2017).

Argument analysis abilities : The ability to identify and analyze arguments contributes to the process of surveying arguments on an issue in order to form one’s own reasoned judgment, as in Candidate . The ability to detect and analyze arguments is recognized as a critical thinking skill by Facione (1990a: 7–8), Ennis (1991: 9) and Halpern (1998). Five items (out of 34) on the California Critical Thinking Skills Test (Facione 1990b, 1992) test skill at argument analysis. The College Learning Assessment (Council for Aid to Education 2017) incorporates argument analysis in its selected-response tests of critical reading and evaluation and of critiquing an argument.

Judging skills and deciding skills : Skill at judging and deciding is skill at recognizing what judgment or decision the available evidence and argument supports, and with what degree of confidence. It is thus a component of the inferential skills already discussed.

Lists and tests of critical thinking abilities often include two more abilities: identifying assumptions and constructing and evaluating definitions.

In addition to dispositions and abilities, critical thinking needs knowledge: of critical thinking concepts, of critical thinking principles, and of the subject-matter of the thinking.

We can derive a short list of concepts whose understanding contributes to critical thinking from the critical thinking abilities described in the preceding section. Observational abilities require an understanding of the difference between observation and inference. Questioning abilities require an understanding of the concepts of ambiguity and vagueness. Inferential abilities require an understanding of the difference between conclusive and defeasible inference (traditionally, between deduction and induction), as well as of the difference between necessary and sufficient conditions. Experimenting abilities require an understanding of the concepts of hypothesis, null hypothesis, assumption and prediction, as well as of the concept of statistical significance and of its difference from importance. They also require an understanding of the difference between an experiment and an observational study, and in particular of the difference between a randomized controlled trial, a prospective correlational study and a retrospective (case-control) study. Argument analysis abilities require an understanding of the concepts of argument, premiss, assumption, conclusion and counter-consideration. Additional critical thinking concepts are proposed by Bailin et al. (1999b: 293), Fisher & Scriven (1997: 105–106), Black (2012), and Blair (2021).

According to Glaser (1941: 25), ability to think critically requires knowledge of the methods of logical inquiry and reasoning. If we review the list of abilities in the preceding section, however, we can see that some of them can be acquired and exercised merely through practice, possibly guided in an educational setting, followed by feedback. Searching intelligently for a causal explanation of some phenomenon or event requires that one consider a full range of possible causal contributors, but it seems more important that one implements this principle in one’s practice than that one is able to articulate it. What is important is “operational knowledge” of the standards and principles of good thinking (Bailin et al. 1999b: 291–293). But the development of such critical thinking abilities as designing an experiment or constructing an operational definition can benefit from learning their underlying theory. Further, explicit knowledge of quirks of human thinking seems useful as a cautionary guide. Human memory is not just fallible about details, as people learn from their own experiences of misremembering, but is so malleable that a detailed, clear and vivid recollection of an event can be a total fabrication (Loftus 2017). People seek or interpret evidence in ways that are partial to their existing beliefs and expectations, often unconscious of their “confirmation bias” (Nickerson 1998). Not only are people subject to this and other cognitive biases (Kahneman 2011), of which they are typically unaware, but it may be counter-productive for one to make oneself aware of them and try consciously to counteract them or to counteract social biases such as racial or sexual stereotypes (Kenyon & Beaulac 2014). It is helpful to be aware of these facts and of the superior effectiveness of blocking the operation of biases—for example, by making an immediate record of one’s observations, refraining from forming a preliminary explanatory hypothesis, blind refereeing, double-blind randomized trials, and blind grading of students’ work. It is also helpful to be aware of the prevalence of “noise” (unwanted unsystematic variability of judgments), of how to detect noise (through a noise audit), and of how to reduce noise: make accuracy the goal, think statistically, break a process of arriving at a judgment into independent tasks, resist premature intuitions, in a group get independent judgments first, favour comparative judgments and scales (Kahneman, Sibony, & Sunstein 2021). It is helpful as well to be aware of the concept of “bounded rationality” in decision-making and of the related distinction between “satisficing” and optimizing (Simon 1956; Gigerenzer 2001).

Critical thinking about an issue requires substantive knowledge of the domain to which the issue belongs. Critical thinking abilities are not a magic elixir that can be applied to any issue whatever by somebody who has no knowledge of the facts relevant to exploring that issue. For example, the student in Bubbles needed to know that gases do not penetrate solid objects like a glass, that air expands when heated, that the volume of an enclosed gas varies directly with its temperature and inversely with its pressure, and that hot objects will spontaneously cool down to the ambient temperature of their surroundings unless kept hot by insulation or a source of heat. Critical thinkers thus need a rich fund of subject-matter knowledge relevant to the variety of situations they encounter. This fact is recognized in the inclusion among critical thinking dispositions of a concern to become and remain generally well informed.

Experimental educational interventions, with control groups, have shown that education can improve critical thinking skills and dispositions, as measured by standardized tests. For information about these tests, see the Supplement on Assessment .

What educational methods are most effective at developing the dispositions, abilities and knowledge of a critical thinker? In a comprehensive meta-analysis of experimental and quasi-experimental studies of strategies for teaching students to think critically, Abrami et al. (2015) found that dialogue, anchored instruction, and mentoring each increased the effectiveness of the educational intervention, and that they were most effective when combined. They also found that in these studies a combination of separate instruction in critical thinking with subject-matter instruction in which students are encouraged to think critically was more effective than either by itself. However, the difference was not statistically significant; that is, it might have arisen by chance.

Most of these studies lack the longitudinal follow-up required to determine whether the observed differential improvements in critical thinking abilities or dispositions continue over time, for example until high school or college graduation. For details on studies of methods of developing critical thinking skills and dispositions, see the Supplement on Educational Methods .

12. Controversies

Scholars have denied the generalizability of critical thinking abilities across subject domains, have alleged bias in critical thinking theory and pedagogy, and have investigated the relationship of critical thinking to other kinds of thinking.

McPeck (1981) attacked the thinking skills movement of the 1970s, including the critical thinking movement. He argued that there are no general thinking skills, since thinking is always thinking about some subject-matter. It is futile, he claimed, for schools and colleges to teach thinking as if it were a separate subject. Rather, teachers should lead their pupils to become autonomous thinkers by teaching school subjects in a way that brings out their cognitive structure and that encourages and rewards discussion and argument. As some of his critics (e.g., Paul 1985; Siegel 1985) pointed out, McPeck’s central argument needs elaboration, since it has obvious counter-examples in writing and speaking, for which (up to a certain level of complexity) there are teachable general abilities even though they are always about some subject-matter. To make his argument convincing, McPeck needs to explain how thinking differs from writing and speaking in a way that does not permit useful abstraction of its components from the subject-matters with which it deals. He has not done so. Nevertheless, his position that the dispositions and abilities of a critical thinker are best developed in the context of subject-matter instruction is shared by many theorists of critical thinking, including Dewey (1910, 1933), Glaser (1941), Passmore (1980), Weinstein (1990), Bailin et al. (1999b), and Willingham (2019).

McPeck’s challenge prompted reflection on the extent to which critical thinking is subject-specific. McPeck argued for a strong subject-specificity thesis, according to which it is a conceptual truth that all critical thinking abilities are specific to a subject. (He did not however extend his subject-specificity thesis to critical thinking dispositions. In particular, he took the disposition to suspend judgment in situations of cognitive dissonance to be a general disposition.) Conceptual subject-specificity is subject to obvious counter-examples, such as the general ability to recognize confusion of necessary and sufficient conditions. A more modest thesis, also endorsed by McPeck, is epistemological subject-specificity, according to which the norms of good thinking vary from one field to another. Epistemological subject-specificity clearly holds to a certain extent; for example, the principles in accordance with which one solves a differential equation are quite different from the principles in accordance with which one determines whether a painting is a genuine Picasso. But the thesis suffers, as Ennis (1989) points out, from vagueness of the concept of a field or subject and from the obvious existence of inter-field principles, however broadly the concept of a field is construed. For example, the principles of hypothetico-deductive reasoning hold for all the varied fields in which such reasoning occurs. A third kind of subject-specificity is empirical subject-specificity, according to which as a matter of empirically observable fact a person with the abilities and dispositions of a critical thinker in one area of investigation will not necessarily have them in another area of investigation.

The thesis of empirical subject-specificity raises the general problem of transfer. If critical thinking abilities and dispositions have to be developed independently in each school subject, how are they of any use in dealing with the problems of everyday life and the political and social issues of contemporary society, most of which do not fit into the framework of a traditional school subject? Proponents of empirical subject-specificity tend to argue that transfer is more likely to occur if there is critical thinking instruction in a variety of domains, with explicit attention to dispositions and abilities that cut across domains. But evidence for this claim is scanty. There is a need for well-designed empirical studies that investigate the conditions that make transfer more likely.

It is common ground in debates about the generality or subject-specificity of critical thinking dispositions and abilities that critical thinking about any topic requires background knowledge about the topic. For example, the most sophisticated understanding of the principles of hypothetico-deductive reasoning is of no help unless accompanied by some knowledge of what might be plausible explanations of some phenomenon under investigation.

Critics have objected to bias in the theory, pedagogy and practice of critical thinking. Commentators (e.g., Alston 1995; Ennis 1998) have noted that anyone who takes a position has a bias in the neutral sense of being inclined in one direction rather than others. The critics, however, are objecting to bias in the pejorative sense of an unjustified favoring of certain ways of knowing over others, frequently alleging that the unjustly favoured ways are those of a dominant sex or culture (Bailin 1995). These ways favour:

  • reinforcement of egocentric and sociocentric biases over dialectical engagement with opposing world-views (Paul 1981, 1984; Warren 1998)
  • distancing from the object of inquiry over closeness to it (Martin 1992; Thayer-Bacon 1992)
  • indifference to the situation of others over care for them (Martin 1992)
  • orientation to thought over orientation to action (Martin 1992)
  • being reasonable over caring to understand people’s ideas (Thayer-Bacon 1993)
  • being neutral and objective over being embodied and situated (Thayer-Bacon 1995a)
  • doubting over believing (Thayer-Bacon 1995b)
  • reason over emotion, imagination and intuition (Thayer-Bacon 2000)
  • solitary thinking over collaborative thinking (Thayer-Bacon 2000)
  • written and spoken assignments over other forms of expression (Alston 2001)
  • attention to written and spoken communications over attention to human problems (Alston 2001)
  • winning debates in the public sphere over making and understanding meaning (Alston 2001)

A common thread in this smorgasbord of accusations is dissatisfaction with focusing on the logical analysis and evaluation of reasoning and arguments. While these authors acknowledge that such analysis and evaluation is part of critical thinking and should be part of its conceptualization and pedagogy, they insist that it is only a part. Paul (1981), for example, bemoans the tendency of atomistic teaching of methods of analyzing and evaluating arguments to turn students into more able sophists, adept at finding fault with positions and arguments with which they disagree but even more entrenched in the egocentric and sociocentric biases with which they began. Martin (1992) and Thayer-Bacon (1992) cite with approval the self-reported intimacy with their subject-matter of leading researchers in biology and medicine, an intimacy that conflicts with the distancing allegedly recommended in standard conceptions and pedagogy of critical thinking. Thayer-Bacon (2000) contrasts the embodied and socially embedded learning of her elementary school students in a Montessori school, who used their imagination, intuition and emotions as well as their reason, with conceptions of critical thinking as

thinking that is used to critique arguments, offer justifications, and make judgments about what are the good reasons, or the right answers. (Thayer-Bacon 2000: 127–128)

Alston (2001) reports that her students in a women’s studies class were able to see the flaws in the Cinderella myth that pervades much romantic fiction but in their own romantic relationships still acted as if all failures were the woman’s fault and still accepted the notions of love at first sight and living happily ever after. Students, she writes, should

be able to connect their intellectual critique to a more affective, somatic, and ethical account of making risky choices that have sexist, racist, classist, familial, sexual, or other consequences for themselves and those both near and far… critical thinking that reads arguments, texts, or practices merely on the surface without connections to feeling/desiring/doing or action lacks an ethical depth that should infuse the difference between mere cognitive activity and something we want to call critical thinking. (Alston 2001: 34)

Some critics portray such biases as unfair to women. Thayer-Bacon (1992), for example, has charged modern critical thinking theory with being sexist, on the ground that it separates the self from the object and causes one to lose touch with one’s inner voice, and thus stigmatizes women, who (she asserts) link self to object and listen to their inner voice. Her charge does not imply that women as a group are on average less able than men to analyze and evaluate arguments. Facione (1990c) found no difference by sex in performance on his California Critical Thinking Skills Test. Kuhn (1991: 280–281) found no difference by sex in either the disposition or the competence to engage in argumentative thinking.

The critics propose a variety of remedies for the biases that they allege. In general, they do not propose to eliminate or downplay critical thinking as an educational goal. Rather, they propose to conceptualize critical thinking differently and to change its pedagogy accordingly. Their pedagogical proposals arise logically from their objections. They can be summarized as follows:

  • Focus on argument networks with dialectical exchanges reflecting contesting points of view rather than on atomic arguments, so as to develop “strong sense” critical thinking that transcends egocentric and sociocentric biases (Paul 1981, 1984).
  • Foster closeness to the subject-matter and feeling connected to others in order to inform a humane democracy (Martin 1992).
  • Develop “constructive thinking” as a social activity in a community of physically embodied and socially embedded inquirers with personal voices who value not only reason but also imagination, intuition and emotion (Thayer-Bacon 2000).
  • In developing critical thinking in school subjects, treat as important neither skills nor dispositions but opening worlds of meaning (Alston 2001).
  • Attend to the development of critical thinking dispositions as well as skills, and adopt the “critical pedagogy” practised and advocated by Freire (1968 [1970]) and hooks (1994) (Dalgleish, Girard, & Davies 2017).

A common thread in these proposals is treatment of critical thinking as a social, interactive, personally engaged activity like that of a quilting bee or a barn-raising (Thayer-Bacon 2000) rather than as an individual, solitary, distanced activity symbolized by Rodin’s The Thinker . One can get a vivid description of education with the former type of goal from the writings of bell hooks (1994, 2010). Critical thinking for her is open-minded dialectical exchange across opposing standpoints and from multiple perspectives, a conception similar to Paul’s “strong sense” critical thinking (Paul 1981). She abandons the structure of domination in the traditional classroom. In an introductory course on black women writers, for example, she assigns students to write an autobiographical paragraph about an early racial memory, then to read it aloud as the others listen, thus affirming the uniqueness and value of each voice and creating a communal awareness of the diversity of the group’s experiences (hooks 1994: 84). Her “engaged pedagogy” is thus similar to the “freedom under guidance” implemented in John Dewey’s Laboratory School of Chicago in the late 1890s and early 1900s. It incorporates the dialogue, anchored instruction, and mentoring that Abrami (2015) found to be most effective in improving critical thinking skills and dispositions.

What is the relationship of critical thinking to problem solving, decision-making, higher-order thinking, creative thinking, and other recognized types of thinking? One’s answer to this question obviously depends on how one defines the terms used in the question. If critical thinking is conceived broadly to cover any careful thinking about any topic for any purpose, then problem solving and decision making will be kinds of critical thinking, if they are done carefully. Historically, ‘critical thinking’ and ‘problem solving’ were two names for the same thing. If critical thinking is conceived more narrowly as consisting solely of appraisal of intellectual products, then it will be disjoint with problem solving and decision making, which are constructive.

Bloom’s taxonomy of educational objectives used the phrase “intellectual abilities and skills” for what had been labeled “critical thinking” by some, “reflective thinking” by Dewey and others, and “problem solving” by still others (Bloom et al. 1956: 38). Thus, the so-called “higher-order thinking skills” at the taxonomy’s top levels of analysis, synthesis and evaluation are just critical thinking skills, although they do not come with general criteria for their assessment (Ennis 1981b). The revised version of Bloom’s taxonomy (Anderson et al. 2001) likewise treats critical thinking as cutting across those types of cognitive process that involve more than remembering (Anderson et al. 2001: 269–270). For details, see the Supplement on History .

As to creative thinking, it overlaps with critical thinking (Bailin 1987, 1988). Thinking about the explanation of some phenomenon or event, as in Ferryboat , requires creative imagination in constructing plausible explanatory hypotheses. Likewise, thinking about a policy question, as in Candidate , requires creativity in coming up with options. Conversely, creativity in any field needs to be balanced by critical appraisal of the draft painting or novel or mathematical theory.

  • Abrami, Philip C., Robert M. Bernard, Eugene Borokhovski, David I. Waddington, C. Anne Wade, and Tonje Person, 2015, “Strategies for Teaching Students to Think Critically: A Meta-analysis”, Review of Educational Research , 85(2): 275–314. doi:10.3102/0034654314551063
  • Aikin, Wilford M., 1942, The Story of the Eight-year Study, with Conclusions and Recommendations , Volume I of Adventure in American Education , New York and London: Harper & Brothers. [ Aikin 1942 available online ]
  • Alston, Kal, 1995, “Begging the Question: Is Critical Thinking Biased?”, Educational Theory , 45(2): 225–233. doi:10.1111/j.1741-5446.1995.00225.x
  • –––, 2001, “Re/Thinking Critical Thinking: The Seductions of Everyday Life”, Studies in Philosophy and Education , 20(1): 27–40. doi:10.1023/A:1005247128053
  • American Educational Research Association, 2014, Standards for Educational and Psychological Testing / American Educational Research Association, American Psychological Association, National Council on Measurement in Education , Washington, DC: American Educational Research Association.
  • Anderson, Lorin W., David R. Krathwohl, Peter W. Airiasian, Kathleen A. Cruikshank, Richard E. Mayer, Paul R. Pintrich, James Raths, and Merlin C. Wittrock, 2001, A Taxonomy for Learning, Teaching and Assessing: A Revision of Bloom’s Taxonomy of Educational Objectives , New York: Longman, complete edition.
  • Bailin, Sharon, 1987, “Critical and Creative Thinking”, Informal Logic , 9(1): 23–30. [ Bailin 1987 available online ]
  • –––, 1988, Achieving Extraordinary Ends: An Essay on Creativity , Dordrecht: Kluwer. doi:10.1007/978-94-009-2780-3
  • –––, 1995, “Is Critical Thinking Biased? Clarifications and Implications”, Educational Theory , 45(2): 191–197. doi:10.1111/j.1741-5446.1995.00191.x
  • Bailin, Sharon and Mark Battersby, 2009, “Inquiry: A Dialectical Approach to Teaching Critical Thinking”, in Juho Ritola (ed.), Argument Cultures: Proceedings of OSSA 09 , CD-ROM (pp. 1–10), Windsor, ON: OSSA. [ Bailin & Battersby 2009 available online ]
  • –––, 2016a, “Fostering the Virtues of Inquiry”, Topoi , 35(2): 367–374. doi:10.1007/s11245-015-9307-6
  • –––, 2016b, Reason in the Balance: An Inquiry Approach to Critical Thinking , Indianapolis: Hackett, 2nd edition.
  • –––, 2021, “Inquiry: Teaching for Reasoned Judgment”, in Daniel Fasko, Jr. and Frank Fair (eds.), Critical Thinking and Reasoning: Theory, Development, Instruction, and Assessment , Leiden: Brill, pp. 31–46. doi: 10.1163/9789004444591_003
  • Bailin, Sharon, Roland Case, Jerrold R. Coombs, and Leroi B. Daniels, 1999a, “Common Misconceptions of Critical Thinking”, Journal of Curriculum Studies , 31(3): 269–283. doi:10.1080/002202799183124
  • –––, 1999b, “Conceptualizing Critical Thinking”, Journal of Curriculum Studies , 31(3): 285–302. doi:10.1080/002202799183133
  • Blair, J. Anthony, 2021, Studies in Critical Thinking , Windsor, ON: Windsor Studies in Argumentation, 2nd edition. [Available online at https://windsor.scholarsportal.info/omp/index.php/wsia/catalog/book/106]
  • Berman, Alan M., Seth J. Schwartz, William M. Kurtines, and Steven L. Berman, 2001, “The Process of Exploration in Identity Formation: The Role of Style and Competence”, Journal of Adolescence , 24(4): 513–528. doi:10.1006/jado.2001.0386
  • Black, Beth (ed.), 2012, An A to Z of Critical Thinking , London: Continuum International Publishing Group.
  • Bloom, Benjamin Samuel, Max D. Engelhart, Edward J. Furst, Walter H. Hill, and David R. Krathwohl, 1956, Taxonomy of Educational Objectives. Handbook I: Cognitive Domain , New York: David McKay.
  • Boardman, Frank, Nancy M. Cavender, and Howard Kahane, 2018, Logic and Contemporary Rhetoric: The Use of Reason in Everyday Life , Boston: Cengage, 13th edition.
  • Browne, M. Neil and Stuart M. Keeley, 2018, Asking the Right Questions: A Guide to Critical Thinking , Hoboken, NJ: Pearson, 12th edition.
  • Center for Assessment & Improvement of Learning, 2017, Critical Thinking Assessment Test , Cookeville, TN: Tennessee Technological University.
  • Cleghorn, Paul. 2021. “Critical Thinking in the Elementary School: Practical Guidance for Building a Culture of Thinking”, in Daniel Fasko, Jr. and Frank Fair (eds.), Critical Thinking and Reasoning: Theory, Development, Instruction, and Assessmen t, Leiden: Brill, pp. 150–167. doi: 10.1163/9789004444591_010
  • Cohen, Jacob, 1988, Statistical Power Analysis for the Behavioral Sciences , Hillsdale, NJ: Lawrence Erlbaum Associates, 2nd edition.
  • College Board, 1983, Academic Preparation for College. What Students Need to Know and Be Able to Do , New York: College Entrance Examination Board, ERIC document ED232517.
  • Commission on the Relation of School and College of the Progressive Education Association, 1943, Thirty Schools Tell Their Story , Volume V of Adventure in American Education , New York and London: Harper & Brothers.
  • Council for Aid to Education, 2017, CLA+ Student Guide . Available at http://cae.org/images/uploads/pdf/CLA_Student_Guide_Institution.pdf ; last accessed 2022 07 16.
  • Dalgleish, Adam, Patrick Girard, and Maree Davies, 2017, “Critical Thinking, Bias and Feminist Philosophy: Building a Better Framework through Collaboration”, Informal Logic , 37(4): 351–369. [ Dalgleish et al. available online ]
  • Dewey, John, 1910, How We Think , Boston: D.C. Heath. [ Dewey 1910 available online ]
  • –––, 1916, Democracy and Education: An Introduction to the Philosophy of Education , New York: Macmillan.
  • –––, 1933, How We Think: A Restatement of the Relation of Reflective Thinking to the Educative Process , Lexington, MA: D.C. Heath.
  • –––, 1936, “The Theory of the Chicago Experiment”, Appendix II of Mayhew & Edwards 1936: 463–477.
  • –––, 1938, Logic: The Theory of Inquiry , New York: Henry Holt and Company.
  • Dominguez, Caroline (coord.), 2018a, A European Collection of the Critical Thinking Skills and Dispositions Needed in Different Professional Fields for the 21st Century , Vila Real, Portugal: UTAD. Available at http://bit.ly/CRITHINKEDUO1 ; last accessed 2022 07 16.
  • ––– (coord.), 2018b, A European Review on Critical Thinking Educational Practices in Higher Education Institutions , Vila Real: UTAD. Available at http://bit.ly/CRITHINKEDUO2 ; last accessed 2022 07 16.
  • ––– (coord.), 2018c, The CRITHINKEDU European Course on Critical Thinking Education for University Teachers: From Conception to Delivery , Vila Real: UTAD. Available at http:/bit.ly/CRITHINKEDU03; last accessed 2022 07 16.
  • Dominguez Caroline and Rita Payan-Carreira (eds.), 2019, Promoting Critical Thinking in European Higher Education Institutions: Towards an Educational Protocol , Vila Real: UTAD. Available at http:/bit.ly/CRITHINKEDU04; last accessed 2022 07 16.
  • Ennis, Robert H., 1958, “An Appraisal of the Watson-Glaser Critical Thinking Appraisal”, The Journal of Educational Research , 52(4): 155–158. doi:10.1080/00220671.1958.10882558
  • –––, 1962, “A Concept of Critical Thinking: A Proposed Basis for Research on the Teaching and Evaluation of Critical Thinking Ability”, Harvard Educational Review , 32(1): 81–111.
  • –––, 1981a, “A Conception of Deductive Logical Competence”, Teaching Philosophy , 4(3/4): 337–385. doi:10.5840/teachphil198143/429
  • –––, 1981b, “Eight Fallacies in Bloom’s Taxonomy”, in C. J. B. Macmillan (ed.), Philosophy of Education 1980: Proceedings of the Thirty-seventh Annual Meeting of the Philosophy of Education Society , Bloomington, IL: Philosophy of Education Society, pp. 269–273.
  • –––, 1984, “Problems in Testing Informal Logic, Critical Thinking, Reasoning Ability”, Informal Logic , 6(1): 3–9. [ Ennis 1984 available online ]
  • –––, 1987, “A Taxonomy of Critical Thinking Dispositions and Abilities”, in Joan Boykoff Baron and Robert J. Sternberg (eds.), Teaching Thinking Skills: Theory and Practice , New York: W. H. Freeman, pp. 9–26.
  • –––, 1989, “Critical Thinking and Subject Specificity: Clarification and Needed Research”, Educational Researcher , 18(3): 4–10. doi:10.3102/0013189X018003004
  • –––, 1991, “Critical Thinking: A Streamlined Conception”, Teaching Philosophy , 14(1): 5–24. doi:10.5840/teachphil19911412
  • –––, 1996, “Critical Thinking Dispositions: Their Nature and Assessability”, Informal Logic , 18(2–3): 165–182. [ Ennis 1996 available online ]
  • –––, 1998, “Is Critical Thinking Culturally Biased?”, Teaching Philosophy , 21(1): 15–33. doi:10.5840/teachphil19982113
  • –––, 2011, “Critical Thinking: Reflection and Perspective Part I”, Inquiry: Critical Thinking across the Disciplines , 26(1): 4–18. doi:10.5840/inquiryctnews20112613
  • –––, 2013, “Critical Thinking across the Curriculum: The Wisdom CTAC Program”, Inquiry: Critical Thinking across the Disciplines , 28(2): 25–45. doi:10.5840/inquiryct20132828
  • –––, 2016, “Definition: A Three-Dimensional Analysis with Bearing on Key Concepts”, in Patrick Bondy and Laura Benacquista (eds.), Argumentation, Objectivity, and Bias: Proceedings of the 11th International Conference of the Ontario Society for the Study of Argumentation (OSSA), 18–21 May 2016 , Windsor, ON: OSSA, pp. 1–19. Available at http://scholar.uwindsor.ca/ossaarchive/OSSA11/papersandcommentaries/105 ; last accessed 2022 07 16.
  • –––, 2018, “Critical Thinking Across the Curriculum: A Vision”, Topoi , 37(1): 165–184. doi:10.1007/s11245-016-9401-4
  • Ennis, Robert H., and Jason Millman, 1971, Manual for Cornell Critical Thinking Test, Level X, and Cornell Critical Thinking Test, Level Z , Urbana, IL: Critical Thinking Project, University of Illinois.
  • Ennis, Robert H., Jason Millman, and Thomas Norbert Tomko, 1985, Cornell Critical Thinking Tests Level X & Level Z: Manual , Pacific Grove, CA: Midwest Publication, 3rd edition.
  • –––, 2005, Cornell Critical Thinking Tests Level X & Level Z: Manual , Seaside, CA: Critical Thinking Company, 5th edition.
  • Ennis, Robert H. and Eric Weir, 1985, The Ennis-Weir Critical Thinking Essay Test: Test, Manual, Criteria, Scoring Sheet: An Instrument for Teaching and Testing , Pacific Grove, CA: Midwest Publications.
  • Facione, Peter A., 1990a, Critical Thinking: A Statement of Expert Consensus for Purposes of Educational Assessment and Instruction , Research Findings and Recommendations Prepared for the Committee on Pre-College Philosophy of the American Philosophical Association, ERIC Document ED315423.
  • –––, 1990b, California Critical Thinking Skills Test, CCTST – Form A , Millbrae, CA: The California Academic Press.
  • –––, 1990c, The California Critical Thinking Skills Test--College Level. Technical Report #3. Gender, Ethnicity, Major, CT Self-Esteem, and the CCTST , ERIC Document ED326584.
  • –––, 1992, California Critical Thinking Skills Test: CCTST – Form B, Millbrae, CA: The California Academic Press.
  • –––, 2000, “The Disposition Toward Critical Thinking: Its Character, Measurement, and Relationship to Critical Thinking Skill”, Informal Logic , 20(1): 61–84. [ Facione 2000 available online ]
  • Facione, Peter A. and Noreen C. Facione, 1992, CCTDI: A Disposition Inventory , Millbrae, CA: The California Academic Press.
  • Facione, Peter A., Noreen C. Facione, and Carol Ann F. Giancarlo, 2001, California Critical Thinking Disposition Inventory: CCTDI: Inventory Manual , Millbrae, CA: The California Academic Press.
  • Facione, Peter A., Carol A. Sánchez, and Noreen C. Facione, 1994, Are College Students Disposed to Think? , Millbrae, CA: The California Academic Press. ERIC Document ED368311.
  • Fisher, Alec, and Michael Scriven, 1997, Critical Thinking: Its Definition and Assessment , Norwich: Centre for Research in Critical Thinking, University of East Anglia.
  • Freire, Paulo, 1968 [1970], Pedagogia do Oprimido . Translated as Pedagogy of the Oppressed , Myra Bergman Ramos (trans.), New York: Continuum, 1970.
  • Gigerenzer, Gerd, 2001, “The Adaptive Toolbox”, in Gerd Gigerenzer and Reinhard Selten (eds.), Bounded Rationality: The Adaptive Toolbox , Cambridge, MA: MIT Press, pp. 37–50.
  • Glaser, Edward Maynard, 1941, An Experiment in the Development of Critical Thinking , New York: Bureau of Publications, Teachers College, Columbia University.
  • Groarke, Leo A. and Christopher W. Tindale, 2012, Good Reasoning Matters! A Constructive Approach to Critical Thinking , Don Mills, ON: Oxford University Press, 5th edition.
  • Halpern, Diane F., 1998, “Teaching Critical Thinking for Transfer Across Domains: Disposition, Skills, Structure Training, and Metacognitive Monitoring”, American Psychologist , 53(4): 449–455. doi:10.1037/0003-066X.53.4.449
  • –––, 2016, Manual: Halpern Critical Thinking Assessment , Mödling, Austria: Schuhfried. Available at https://pdfcoffee.com/hcta-test-manual-pdf-free.html; last accessed 2022 07 16.
  • Hamby, Benjamin, 2014, The Virtues of Critical Thinkers , Doctoral dissertation, Philosophy, McMaster University. [ Hamby 2014 available online ]
  • –––, 2015, “Willingness to Inquire: The Cardinal Critical Thinking Virtue”, in Martin Davies and Ronald Barnett (eds.), The Palgrave Handbook of Critical Thinking in Higher Education , New York: Palgrave Macmillan, pp. 77–87.
  • Haran, Uriel, Ilana Ritov, and Barbara A. Mellers, 2013, “The Role of Actively Open-minded Thinking in Information Acquisition, Accuracy, and Calibration”, Judgment and Decision Making , 8(3): 188–201.
  • Hatcher, Donald and Kevin Possin, 2021, “Commentary: Thinking Critically about Critical Thinking Assessment”, in Daniel Fasko, Jr. and Frank Fair (eds.), Critical Thinking and Reasoning: Theory, Development, Instruction, and Assessment , Leiden: Brill, pp. 298–322. doi: 10.1163/9789004444591_017
  • Haynes, Ada, Elizabeth Lisic, Kevin Harris, Katie Leming, Kyle Shanks, and Barry Stein, 2015, “Using the Critical Thinking Assessment Test (CAT) as a Model for Designing Within-Course Assessments: Changing How Faculty Assess Student Learning”, Inquiry: Critical Thinking Across the Disciplines , 30(3): 38–48. doi:10.5840/inquiryct201530316
  • Haynes, Ada and Barry Stein, 2021, “Observations from a Long-Term Effort to Assess and Improve Critical Thinking”, in Daniel Fasko, Jr. and Frank Fair (eds.), Critical Thinking and Reasoning: Theory, Development, Instruction, and Assessment , Leiden: Brill, pp. 231–254. doi: 10.1163/9789004444591_014
  • Hiner, Amanda L. 2021. “Equipping Students for Success in College and Beyond: Placing Critical Thinking Instruction at the Heart of a General Education Program”, in Daniel Fasko, Jr. and Frank Fair (eds.), Critical Thinking and Reasoning: Theory, Development, Instruction, and Assessment , Leiden: Brill, pp. 188–208. doi: 10.1163/9789004444591_012
  • Hitchcock, David, 2017, “Critical Thinking as an Educational Ideal”, in his On Reasoning and Argument: Essays in Informal Logic and on Critical Thinking , Dordrecht: Springer, pp. 477–497. doi:10.1007/978-3-319-53562-3_30
  • –––, 2021, “Seven Philosophical Implications of Critical Thinking: Themes, Variations, Implications”, in Daniel Fasko, Jr. and Frank Fair (eds.), Critical Thinking and Reasoning: Theory, Development, Instruction, and Assessment , Leiden: Brill, pp. 9–30. doi: 10.1163/9789004444591_002
  • hooks, bell, 1994, Teaching to Transgress: Education as the Practice of Freedom , New York and London: Routledge.
  • –––, 2010, Teaching Critical Thinking: Practical Wisdom , New York and London: Routledge.
  • Johnson, Ralph H., 1992, “The Problem of Defining Critical Thinking”, in Stephen P, Norris (ed.), The Generalizability of Critical Thinking , New York: Teachers College Press, pp. 38–53.
  • Kahane, Howard, 1971, Logic and Contemporary Rhetoric: The Use of Reason in Everyday Life , Belmont, CA: Wadsworth.
  • Kahneman, Daniel, 2011, Thinking, Fast and Slow , New York: Farrar, Straus and Giroux.
  • Kahneman, Daniel, Olivier Sibony, & Cass R. Sunstein, 2021, Noise: A Flaw in Human Judgment , New York: Little, Brown Spark.
  • Kenyon, Tim, and Guillaume Beaulac, 2014, “Critical Thinking Education and Debasing”, Informal Logic , 34(4): 341–363. [ Kenyon & Beaulac 2014 available online ]
  • Krathwohl, David R., Benjamin S. Bloom, and Bertram B. Masia, 1964, Taxonomy of Educational Objectives, Handbook II: Affective Domain , New York: David McKay.
  • Kuhn, Deanna, 1991, The Skills of Argument , New York: Cambridge University Press. doi:10.1017/CBO9780511571350
  • –––, 2019, “Critical Thinking as Discourse”, Human Development, 62 (3): 146–164. doi:10.1159/000500171
  • Lipman, Matthew, 1987, “Critical Thinking–What Can It Be?”, Analytic Teaching , 8(1): 5–12. [ Lipman 1987 available online ]
  • –––, 2003, Thinking in Education , Cambridge: Cambridge University Press, 2nd edition.
  • Loftus, Elizabeth F., 2017, “Eavesdropping on Memory”, Annual Review of Psychology , 68: 1–18. doi:10.1146/annurev-psych-010416-044138
  • Makaiau, Amber Strong, 2021, “The Good Thinker’s Tool Kit: How to Engage Critical Thinking and Reasoning in Secondary Education”, in Daniel Fasko, Jr. and Frank Fair (eds.), Critical Thinking and Reasoning: Theory, Development, Instruction, and Assessment , Leiden: Brill, pp. 168–187. doi: 10.1163/9789004444591_011
  • Martin, Jane Roland, 1992, “Critical Thinking for a Humane World”, in Stephen P. Norris (ed.), The Generalizability of Critical Thinking , New York: Teachers College Press, pp. 163–180.
  • Mayhew, Katherine Camp, and Anna Camp Edwards, 1936, The Dewey School: The Laboratory School of the University of Chicago, 1896–1903 , New York: Appleton-Century. [ Mayhew & Edwards 1936 available online ]
  • McPeck, John E., 1981, Critical Thinking and Education , New York: St. Martin’s Press.
  • Moore, Brooke Noel and Richard Parker, 2020, Critical Thinking , New York: McGraw-Hill, 13th edition.
  • Nickerson, Raymond S., 1998, “Confirmation Bias: A Ubiquitous Phenomenon in Many Guises”, Review of General Psychology , 2(2): 175–220. doi:10.1037/1089-2680.2.2.175
  • Nieto, Ana Maria, and Jorge Valenzuela, 2012, “A Study of the Internal Structure of Critical Thinking Dispositions”, Inquiry: Critical Thinking across the Disciplines , 27(1): 31–38. doi:10.5840/inquiryct20122713
  • Norris, Stephen P., 1985, “Controlling for Background Beliefs When Developing Multiple-choice Critical Thinking Tests”, Educational Measurement: Issues and Practice , 7(3): 5–11. doi:10.1111/j.1745-3992.1988.tb00437.x
  • Norris, Stephen P. and Robert H. Ennis, 1989, Evaluating Critical Thinking (The Practitioners’ Guide to Teaching Thinking Series), Pacific Grove, CA: Midwest Publications.
  • Norris, Stephen P. and Ruth Elizabeth King, 1983, Test on Appraising Observations , St. John’s, NL: Institute for Educational Research and Development, Memorial University of Newfoundland.
  • –––, 1984, The Design of a Critical Thinking Test on Appraising Observations , St. John’s, NL: Institute for Educational Research and Development, Memorial University of Newfoundland. ERIC Document ED260083.
  • –––, 1985, Test on Appraising Observations: Manual , St. John’s, NL: Institute for Educational Research and Development, Memorial University of Newfoundland.
  • –––, 1990a, Test on Appraising Observations , St. John’s, NL: Institute for Educational Research and Development, Memorial University of Newfoundland, 2nd edition.
  • –––, 1990b, Test on Appraising Observations: Manual , St. John’s, NL: Institute for Educational Research and Development, Memorial University of Newfoundland, 2nd edition.
  • OCR [Oxford, Cambridge and RSA Examinations], 2011, AS/A Level GCE: Critical Thinking – H052, H452 , Cambridge: OCR. Past papers available at https://pastpapers.co/ocr/?dir=A-Level/Critical-Thinking-H052-H452; last accessed 2022 07 16.
  • Ontario Ministry of Education, 2013, The Ontario Curriculum Grades 9 to 12: Social Sciences and Humanities . Available at http://www.edu.gov.on.ca/eng/curriculum/secondary/ssciences9to122013.pdf ; last accessed 2022 07 16.
  • Passmore, John Arthur, 1980, The Philosophy of Teaching , London: Duckworth.
  • Paul, Richard W., 1981, “Teaching Critical Thinking in the ‘Strong’ Sense: A Focus on Self-Deception, World Views, and a Dialectical Mode of Analysis”, Informal Logic , 4(2): 2–7. [ Paul 1981 available online ]
  • –––, 1984, “Critical Thinking: Fundamental to Education for a Free Society”, Educational Leadership , 42(1): 4–14.
  • –––, 1985, “McPeck’s Mistakes”, Informal Logic , 7(1): 35–43. [ Paul 1985 available online ]
  • Paul, Richard W. and Linda Elder, 2006, The Miniature Guide to Critical Thinking: Concepts and Tools , Dillon Beach, CA: Foundation for Critical Thinking, 4th edition.
  • Payette, Patricia, and Edna Ross, 2016, “Making a Campus-Wide Commitment to Critical Thinking: Insights and Promising Practices Utilizing the Paul-Elder Approach at the University of Louisville”, Inquiry: Critical Thinking Across the Disciplines , 31(1): 98–110. doi:10.5840/inquiryct20163118
  • Possin, Kevin, 2008, “A Field Guide to Critical-Thinking Assessment”, Teaching Philosophy , 31(3): 201–228. doi:10.5840/teachphil200831324
  • –––, 2013a, “Some Problems with the Halpern Critical Thinking Assessment (HCTA) Test”, Inquiry: Critical Thinking across the Disciplines , 28(3): 4–12. doi:10.5840/inquiryct201328313
  • –––, 2013b, “A Serious Flaw in the Collegiate Learning Assessment (CLA) Test”, Informal Logic , 33(3): 390–405. [ Possin 2013b available online ]
  • –––, 2013c, “A Fatal Flaw in the Collegiate Learning Assessment Test”, Assessment Update , 25 (1): 8–12.
  • –––, 2014, “Critique of the Watson-Glaser Critical Thinking Appraisal Test: The More You Know, the Lower Your Score”, Informal Logic , 34(4): 393–416. [ Possin 2014 available online ]
  • –––, 2020, “CAT Scan: A Critical Review of the Critical-Thinking Assessment Test”, Informal Logic , 40 (3): 489–508. [Available online at https://informallogic.ca/index.php/informal_logic/article/view/6243]
  • Rawls, John, 1971, A Theory of Justice , Cambridge, MA: Harvard University Press.
  • Rear, David, 2019, “One Size Fits All? The Limitations of Standardised Assessment in Critical Thinking”, Assessment & Evaluation in Higher Education , 44(5): 664–675. doi: 10.1080/02602938.2018.1526255
  • Rousseau, Jean-Jacques, 1762, Émile , Amsterdam: Jean Néaulme.
  • Scheffler, Israel, 1960, The Language of Education , Springfield, IL: Charles C. Thomas.
  • Scriven, Michael, and Richard W. Paul, 1987, Defining Critical Thinking , Draft statement written for the National Council for Excellence in Critical Thinking Instruction. Available at http://www.criticalthinking.org/pages/defining-critical-thinking/766 ; last accessed 2022 07 16.
  • Sheffield, Clarence Burton Jr., 2018, “Promoting Critical Thinking in Higher Education: My Experiences as the Inaugural Eugene H. Fram Chair in Applied Critical Thinking at Rochester Institute of Technology”, Topoi , 37(1): 155–163. doi:10.1007/s11245-016-9392-1
  • Siegel, Harvey, 1985, “McPeck, Informal Logic and the Nature of Critical Thinking”, in David Nyberg (ed.), Philosophy of Education 1985: Proceedings of the Forty-First Annual Meeting of the Philosophy of Education Society , Normal, IL: Philosophy of Education Society, pp. 61–72.
  • –––, 1988, Educating Reason: Rationality, Critical Thinking, and Education , New York: Routledge.
  • –––, 1999, “What (Good) Are Thinking Dispositions?”, Educational Theory , 49(2): 207–221. doi:10.1111/j.1741-5446.1999.00207.x
  • Simon, Herbert A., 1956, “Rational Choice and the Structure of the Environment”, Psychological Review , 63(2): 129–138. doi: 10.1037/h0042769
  • Simpson, Elizabeth, 1966–67, “The Classification of Educational Objectives: Psychomotor Domain”, Illinois Teacher of Home Economics , 10(4): 110–144, ERIC document ED0103613. [ Simpson 1966–67 available online ]
  • Skolverket, 2018, Curriculum for the Compulsory School, Preschool Class and School-age Educare , Stockholm: Skolverket, revised 2018. Available at https://www.skolverket.se/download/18.31c292d516e7445866a218f/1576654682907/pdf3984.pdf; last accessed 2022 07 15.
  • Smith, B. Othanel, 1953, “The Improvement of Critical Thinking”, Progressive Education , 30(5): 129–134.
  • Smith, Eugene Randolph, Ralph Winfred Tyler, and the Evaluation Staff, 1942, Appraising and Recording Student Progress , Volume III of Adventure in American Education , New York and London: Harper & Brothers.
  • Splitter, Laurance J., 1987, “Educational Reform through Philosophy for Children”, Thinking: The Journal of Philosophy for Children , 7(2): 32–39. doi:10.5840/thinking1987729
  • Stanovich Keith E., and Paula J. Stanovich, 2010, “A Framework for Critical Thinking, Rational Thinking, and Intelligence”, in David D. Preiss and Robert J. Sternberg (eds), Innovations in Educational Psychology: Perspectives on Learning, Teaching and Human Development , New York: Springer Publishing, pp 195–237.
  • Stanovich Keith E., Richard F. West, and Maggie E. Toplak, 2011, “Intelligence and Rationality”, in Robert J. Sternberg and Scott Barry Kaufman (eds.), Cambridge Handbook of Intelligence , Cambridge: Cambridge University Press, 3rd edition, pp. 784–826. doi:10.1017/CBO9780511977244.040
  • Tankersley, Karen, 2005, Literacy Strategies for Grades 4–12: Reinforcing the Threads of Reading , Alexandria, VA: Association for Supervision and Curriculum Development.
  • Thayer-Bacon, Barbara J., 1992, “Is Modern Critical Thinking Theory Sexist?”, Inquiry: Critical Thinking Across the Disciplines , 10(1): 3–7. doi:10.5840/inquiryctnews199210123
  • –––, 1993, “Caring and Its Relationship to Critical Thinking”, Educational Theory , 43(3): 323–340. doi:10.1111/j.1741-5446.1993.00323.x
  • –––, 1995a, “Constructive Thinking: Personal Voice”, Journal of Thought , 30(1): 55–70.
  • –––, 1995b, “Doubting and Believing: Both are Important for Critical Thinking”, Inquiry: Critical Thinking across the Disciplines , 15(2): 59–66. doi:10.5840/inquiryctnews199515226
  • –––, 2000, Transforming Critical Thinking: Thinking Constructively , New York: Teachers College Press.
  • Toulmin, Stephen Edelston, 1958, The Uses of Argument , Cambridge: Cambridge University Press.
  • Turri, John, Mark Alfano, and John Greco, 2017, “Virtue Epistemology”, in Edward N. Zalta (ed.), The Stanford Encyclopedia of Philosophy (Winter 2017 Edition). URL = < https://plato.stanford.edu/archives/win2017/entries/epistemology-virtue/ >
  • Vincent-Lancrin, Stéphan, Carlos González-Sancho, Mathias Bouckaert, Federico de Luca, Meritxell Fernández-Barrerra, Gwénaël Jacotin, Joaquin Urgel, and Quentin Vidal, 2019, Fostering Students’ Creativity and Critical Thinking: What It Means in School. Educational Research and Innovation , Paris: OECD Publishing.
  • Warren, Karen J. 1988. “Critical Thinking and Feminism”, Informal Logic , 10(1): 31–44. [ Warren 1988 available online ]
  • Watson, Goodwin, and Edward M. Glaser, 1980a, Watson-Glaser Critical Thinking Appraisal, Form A , San Antonio, TX: Psychological Corporation.
  • –––, 1980b, Watson-Glaser Critical Thinking Appraisal: Forms A and B; Manual , San Antonio, TX: Psychological Corporation,
  • –––, 1994, Watson-Glaser Critical Thinking Appraisal, Form B , San Antonio, TX: Psychological Corporation.
  • Weinstein, Mark, 1990, “Towards a Research Agenda for Informal Logic and Critical Thinking”, Informal Logic , 12(3): 121–143. [ Weinstein 1990 available online ]
  • –––, 2013, Logic, Truth and Inquiry , London: College Publications.
  • Willingham, Daniel T., 2019, “How to Teach Critical Thinking”, Education: Future Frontiers , 1: 1–17. [Available online at https://prod65.education.nsw.gov.au/content/dam/main-education/teaching-and-learning/education-for-a-changing-world/media/documents/How-to-teach-critical-thinking-Willingham.pdf.]
  • Zagzebski, Linda Trinkaus, 1996, Virtues of the Mind: An Inquiry into the Nature of Virtue and the Ethical Foundations of Knowledge , Cambridge: Cambridge University Press. doi:10.1017/CBO9781139174763
How to cite this entry . Preview the PDF version of this entry at the Friends of the SEP Society . Look up topics and thinkers related to this entry at the Internet Philosophy Ontology Project (InPhO). Enhanced bibliography for this entry at PhilPapers , with links to its database.
  • Association for Informal Logic and Critical Thinking (AILACT)
  • Critical Thinking Across the European Higher Education Curricula (CRITHINKEDU)
  • Critical Thinking Definition, Instruction, and Assessment: A Rigorous Approach
  • Critical Thinking Research (RAIL)
  • Foundation for Critical Thinking
  • Insight Assessment
  • Partnership for 21st Century Learning (P21)
  • The Critical Thinking Consortium
  • The Nature of Critical Thinking: An Outline of Critical Thinking Dispositions and Abilities , by Robert H. Ennis

abilities | bias, implicit | children, philosophy for | civic education | decision-making capacity | Dewey, John | dispositions | education, philosophy of | epistemology: virtue | logic: informal

Copyright © 2022 by David Hitchcock < hitchckd @ mcmaster . ca >

  • Accessibility

Support SEP

Mirror sites.

View this site from another server:

  • Info about mirror sites

The Stanford Encyclopedia of Philosophy is copyright © 2024 by The Metaphysics Research Lab , Department of Philosophy, Stanford University

Library of Congress Catalog Data: ISSN 1095-5054

What Does Critical Thinking Involve: 5 Essential Skill

Critical thinking is the ability to analyze, evaluate, and synthesize information from various sources and perspectives. It involves applying logic, reasoning, and creativity to solve problems, make decisions, and form judgments. Critical thinking also requires being open-minded, curious, and respectful of different views and evidence. Critical thinking is an essential skill for learning, working, and living in a complex and diverse world.

does critical thinking involve opinions

Sanju Pradeepa

what does critical thinking involve

So you want to become a better thinker? That’s great news. The ability to think critically about information and arguments is one of the most important skills you can develop. Critical thinking involves analyzing information objectively and rationally, evaluating arguments and evidence, and forming independent judgments.

This article will break down five essential skills that make up critical thinking. Master these skills, and you’ll be well on your way to stronger reasoning, better decision-making, and avoiding manipulation by misleading information. The path to independent thinking starts here; read on to begin building your critical thinking blueprint.

Table of Contents

What does critical thinking involve.

what does critical thinking involve

To think critically, you need to employ certain skills. Here are the top 5:

Observation : Observe the world around you with an open and curious mind. Notice the details and ask questions. Try to understand different perspectives and the reasoning behind them. The more you observe, the more you’ll strengthen your critical thinking.

Analysis : Analyze information objectively by examining the evidence and arguments. Look for logical flaws and inconsistencies. Question assumptions and consider alternative interpretations. Break down information into its basic elements to understand how it’s structured.

Inference : Infer conclusions that logically follow from the evidence and information you have. Make educated guesses when information is incomplete. But be willing to reconsider your inferences based on new evidence.

Evaluation : Evaluate the credibility and strength of claims, arguments, evidence, and information. Consider the expertise, potential biases, and logical reasoning of the sources. Determine if alternative conclusions also reasonably follow from the evidence.

Explanation : Explain your thinking clearly and logically to others. Share your inferences, analyses, and evaluations, not just your conclusions. Explaining your thinking helps strengthen your own critical thinking and allows others to provide feedback to further improve your reasoning skills.

With regular practice of these five skills, you’ll develop the habit of thinking critically, deliberately, and systematically. And that will allow you to make thoughtful judgments and have more productive discussions.

Types of critical thinking

7 Types of Critical Thinking: A Guide to Analyzing Problems

Skill #1: identifying assumptions.

To think critically, you need to identify the assumptions in arguments and claims. Assumptions are the unspoken beliefs or ideas that shape our thinking. Recognizing them helps determine if an argument is reasonable or flawed.

Look for qualifying words like “all”, “always”, or “never”. For example, the claim “All people who care about the environment are vegans” assumes that the only way to care about the environment is through a vegan diet. Obviously not true!

Check for implied “shoulds” or “musts”. For example, “Good students always do all their homework on time” assumes that homework completion is the only measure of a good student. Not necessarily the case!

Look for hyperbole or exaggerated language. For example, “No one cares about this issue” assumes a level of consensus that likely doesn’t exist. In reality, there are probably many who do care.

Identify appeals to popularity, tradition, or authority. Just because “everyone does it this way” or “it’s always been done like this” doesn’t mean it’s logical or right. And just because an authority figure says it doesn’t make it so.

By recognizing assumptions in the arguments and claims you encounter each day, you’ll start to think more critically about the messages and ideas that shape your world. And that’s a skill that will serve you well.

Skill #2: Evaluating Arguments:

Evaluating arguments is a crucial skill that involves analyzing the logic and evidence behind a claim. To evaluate an argument effectively:

Identify the argument’s main conclusion and supporting premises.

The conclusion is the main claim being made, while the premises are the reasons and evidence given to support that conclusion. Look for signal words like “therefore” or “thus” that introduce the conclusion.

Determine if the premises are true and actually support the conclusion.

For an argument to be logical, its premises must be both true and relevant to the conclusion. Ask yourself questions like:

  • Are there any unsupported assumptions?
  • Is there any contradictory evidence?
  • Are there alternative explanations that make more sense?
  • Do the premises actually lead to the conclusion, or is there a “logical leap”?

Consider counterarguments and opposing views.

A strong argument acknowledges counterarguments and provides convincing responses to them. Think about the main objections or alternative positions, and see if the argument adequately addresses them. If not, that is a weakness in the argument.

Evaluate the evidence and examples.

Anecdotes, examples, statistics, facts, and expert opinions are all types of evidence used to support arguments. Examine how credible, accurate, and relevant the evidence seems. Consider if contrary evidence has been left out.

Determine if the argument’s tone is objective and reasonable.

The tone and language of an argument can also affect its persuasiveness. Watch out for emotionally charged language, personal attacks, or an extremist perspective, as these can signal a weak or misleading argument.

By systematically working through these steps, you can determine how logically sound and persuasive an argument really is. The ability to evaluate arguments in this way is invaluable for critical thinking.

Skill #3: Drawing Logical Conclusions

To draw logical conclusions, you need to evaluate the evidence and arguments to determine what can reasonably be inferred. This is a key critical thinking skill that allows you to make objective and well-reasoned judgments.

Identify the available evidence.

Look at the facts, data, examples, observations, and information you have access to. Consider the reliability, accuracy, and credibility of each piece of evidence. Some evidence may be more persuasive or trustworthy than other evidence.

Determine an y assumptions.

Figure out what is implied but not directly stated. Examine any presuppositions or beliefs that are taken for granted. The question is whether those assumptions are reasonable and supported by evidence.

Consider alternative explanations.

Don’t just go with the first conclusion that comes to mind. Think about other possible inferences or conclusions that could be drawn. See if there are any alternative ways of interpreting the evidence that also make sense. Consider objections or counterarguments to your initial conclusion.

Evaluate the strength of the evidence.

Some evidence is more compelling than other evidence. Stronger evidence is usually based on scientific methods, objective observations, and expert opinions. Weaker evidence tends to be anecdotal, based primarily on personal experiences or opinions. The amount of evidence also matters; the more evidence, the stronger the support for a particular conclusion.

Draw an impartial conclusion.

Finally, weigh all the evidence, assumptions, and alternative explanations objectively to determine what can logically be concluded. The conclusion should not reflect any personal biases or preferences but should be based solely on the reasoning and evidence. Your conclusion can differ from initial impressions or intuitions once you’ve critically analyzed the issue.

Following these steps will allow you to reach logical and unbiased conclusions based on the evidence and sound reasoning. Regular practice drawing logical conclusions will strengthen your critical thinking skills over time.

Critical an non critical thinking

Critical Thinking and Non-Critical Thinking: Key Differences

Skill #4: considering multiple perspectives:.

To think critically, you need to consider other perspectives and opinions. This helps you gain a more balanced and well-rounded view of issues. It allows you to understand why others may see things differently than you, even if you don’t agree with them.

Consider the source.

Evaluate the background and possible biases of the information. Consider the expertise, credibility, and possible motives of the individuals or groups expressing each perspective. This context can help determine how much weight to give different views.

Look for common ground.

Even when perspectives differ greatly, there are often some areas of agreement or shared values. Finding common ground can help establish connection and understanding. Look for any underlying interests or concerns that are shared, even if the means of addressing them differ.

Question your reasonable and consistently unreasonable assumptions.

It’s easy to assume your way of thinking is the norm, but that is rarely the case. Make an effort to identify your own assumptions and consider how they shape your perspective. How might those assumptions differ for other groups? Challenging your assumptions opens you up to new ways of understanding.

For any issue, there are multiple ways of explaining and interpreting events or information. Try to identify other plausible explanations that differ from your own. Even unlikely explanations can broaden your thinking. Ask yourself questions like “What else could this mean?” or “How might this look from another angle?” to explore alternative explanations. Considering other perspectives, questioning assumptions, and exploring alternative explanations are habits of mind that lead to fair and well-reasoned thinking. While you may not end up agreeing with all views, making the effort to understand them will strengthen your critical thinking skills. What perspectives could you consider to gain new insights today?

Skill #5: Drawing Logical Conclusions

To draw logical conclusions, you need to analyze the evidence and arguments you’ve gathered and determine what follows from them in a reasonable and consistent manner. This is the final step that pulls all the other critical thinking skills together.

Identify assumptions and logical fallacies.

Look for any assumptions or logical fallacies in the information or arguments. Question if there are any gaps in the evidence or if certain perspectives have been left out. Addressing these weaknesses will lead to sounder conclusions.

Don’t just go with the most obvious conclusion. Consider other plausible explanations or interpretations of the evidence. Try to find additional evidence that can help determine which alternatives are the strongest.

Determine the most reasonable conclusion.

Evaluate which conclusion is most logically consistent with the evidence, addresses counterarguments, and is backed by the most credible information. The conclusion should not introduce new, unsupported claims or speculation. It flows naturally from a reasoned analysis of all that came before.

Consider the implications and consequences.

Think about the impacts and effects of your conclusion. Determine if it may lead to other issues or require additional evidence. Make sure your conclusion does not contradict the values of inclusiveness, empathy, or social justice. Modify or reframe it as needed.

Express confidence in your conclusion appropriately.

State how confident you are in your conclusion based on the strength of the evidence and reasoning. Don’t claim more certainty than is warranted. Be willing to reevaluate based on new evidence. The hallmark of critical thinking is an open and curious mind. With practice, drawing logical conclusions can become second nature. Apply these skills to determine the most reasonable and well-supported conclusions while also identifying where more evidence or consideration is needed. Strong critical thinking leads to conclusions you can stand behind with confidence.

Using critical thinking in different areas

Using critical thinking in different areas

lets see how to use critical thinking skills in different areas of our lives.

1. Critical Thinking in Education

Critical thinking skills are essential in education. As a student, developing strong critical thinking abilities will serve you well, both in the classroom and beyond. Here are five key critical thinking skills to cultivate:

Analyzing information means breaking it down into smaller parts to gain a deeper understanding. Ask questions like:

What are the key elements or arguments?

What evidence supports them?

  • Are there any holes or weaknesses?
  • How do the parts relate to each other?

Practice analysis in your assignments by thoroughly examining sources and arguments. Summarize and evaluate evidence to determine how well it supports key claims.


Interpreting information involves explaining it in your own words and determining what it means. Some ways to strengthen your interpretation skills include:

  • Who created this information, and what are their credentials or potential biases?
  • Is the information based on evidence and logical reasoning? Or is it mostly opinion?
  • How current, accurate, and trustworthy is this information?
  • How useful or applicable is this information for my needs?

Look for logical fallacies or weaknesses in arguments and consider alternative perspectives. Evaluate evidence and opinions critically before accepting them.

Making inferences involves using the available information to draw reasonable conclusions. Practice making inferences by:

  • looking for clues or details that point to a particular conclusion, even if not directly stated.
  • Combining multiple pieces of information to deduce new insights
  • Proposing hypothetical explanations for situations where there are information gaps.
  • Distinguishing between inferences, assumptions, and opinions. Base inferences on factual evidence.


Explaining information means communicating it to others in a clear, coherent manner. Strong explanations:

  • have a logical flow and structure. Group related ideas together.
  • Provide context and background information to help others understand the key concepts.
  • Use specific examples and visual aids like diagrams, charts, or graphs when needed. Define any complex terms or jargon. Keep the language concise yet comprehensive.
  • Address any counterarguments or alternative perspectives. Explain how they relate to your position.

Developing these critical thinking skills takes practice. Apply them whenever you can—in class discussions, assignments, projects, and everyday life.

Lack of critical thinking

Lack of Critical Thinking: 14 Reasons Why Do We Lack

2. using critical thinking in your career.

Critical thinking skills are crucial for success in any career. How well you can analyze information, evaluate arguments, solve complex problems, and make reasoned decisions will determine how far you can go. Here are five critical thinking skills to develop for career advancement:

Analyzing Information

The ability to analyze and understand data, research, and reports is key. Look for biases or logical fallacies in the information. Determine if arguments are backed by evidence. Ask probing questions to fully comprehend complex ideas. Strong analytical skills will make you an asset in any role.

Evaluating Arguments

Evaluate the merit and validity of arguments and opinions. Consider whether beliefs are backed by facts or if logical flaws exist. Look for manipulation or emotional tactics meant to provoke reactions over reason. The skill to assess the strength of reasoning and evidence in an impartial manner is invaluable.


Complex problem-solving involves identifying issues, creating solutions, and evaluating options objectively. Approach problems logically and creatively. Ask open-ended questions to clarify the problem and determine the root causes. Be flexible in generating alternatives before determining optimal solutions. Problem-solving skills allow you to overcome challenges and advance organizational goals.

Decision Making

Make well-reasoned choices by considering options objectively based on facts and logical analysis. Identify your own biases and preconceptions to avoid clouding your judgment. Consider both the short- and long-term consequences of your decisions. Discuss options with others to gain additional perspectives. Strong decision-making skills will establish you as a leader in your field.

Use logical reasoning to form sound judgments and draw accurate conclusions. Apply deductive and inductive reasoning appropriately based on the situation. Question your own assumptions and positions to determine if they are justified and supported by evidence. The ability to think logically and critically about complex issues will make you an invaluable resource in any organization.

Developing and applying these critical thinking skills regularly will allow you to reach your full potential in your career. Strong reasoning and an objective, analytical mindset are talents that will benefit you and any organization you serve. With practice, you can elevate your thinking and open up new opportunities for advancement.

3. Applying Critical Thinking in Daily Life

Applying critical thinking in your everyday life takes practice. Start with these five key skills:


Observe the world around you with an open and curious mind. Pay close attention to details and ask questions about what you see experience. Look beneath the surface of situations and try to figure out the underlying causes or reasons for things.

Analyze information and arguments by examining the evidence, reasoning, and logic. Identify ambiguity, assumptions, reasons, and alternative perspectives. Break down ideas into their component parts to gain a deeper understanding. Consider how the new information relates to what you already know.

Interpret information and situations by figuring out their significance or meaning. Try to determine the implications, inferences, and conclusions that can be drawn. Look for patterns and connections that may not be obvious at first glance. Consider alternative ways of understanding what you observe and analyze.

Evaluate information, arguments, and actions by judging credibility, accuracy, and quality. Determine strengths, weaknesses, pros, and cons. Assess logical soundness, factual accuracy, and reasonableness. Consider the perspectives and biases of the sources. Make judgments about whether something achieves what it intends to achieve.

Explain your thinking, reasoning, perspectives, and judgments to others in a clear, coherent, and compelling way. Provide logical reasoning and evidence to support your views. Anticipate questions, objections, and counterarguments to address them. Explain complex ideas in a straightforward manner that is easy to follow and understand.

Applying these critical thinking skills in your daily life will make you a clearer thinker and help you make better decisions. With regular practice, thinking critically can become second nature.

4. Critical Thinking in the Workplace

Critical thinking skills are essential in the workplace. They allow you to analyze situations, make good judgments, and solve complex problems. Here are five critical thinking skills that will make you an asset to any organization:

Identifying assumptions and biases

We all have implicit biases and make assumptions, often without realizing it. Strong critical thinkers question their own assumptions and consider issues from multiple perspectives. They also recognize biases in other people’s arguments and opinions. Identifying biases helps create a fair and just work environment.

Evaluating arguments and evidence

Not all information or opinions should be accepted at face value. Look for logical flaws, false assumptions, and unsupported claims. Consider the accuracy, reliability, and credibility of evidence and sources. Evaluate how persuasive or convincing an argument is. These skills allow you to make well-informed decisions and recommendations.

Asking the right questions

Knowing what questions to ask and asking them at the right time is key to critical thinking. Ask follow-up questions to make sure you fully understand the issue. Question the status quo and conventional wisdom. Probe for alternative explanations or solutions. Asking good questions fuels innovation, problem-solving, and continuous improvement.

Drawing reasonable conclusions

After gathering and evaluating information, determine what conclusions can logically and justifiably be drawn. Make sure any conclusions are backed by evidence and sound reasoning, not speculation or opinion. Consider alternative conclusions as well, and be willing to revise your views as new information comes to light. The ability to draw accurate, well-supported conclusions is invaluable.

Thinking creatively

While critical thinking implies logic and reasoning, it also involves thinking innovatively about problems and opportunities. Challenge assumptions and conventional wisdom. Make unexpected or unusual associations between ideas. Speculate on new possibilities or ways of doing things. Creative, “outside the box” thinking leads to new products, services, solutions and competitive advantages.

5. Teaching critical thinking to children

Teaching critical thinking skills to children at an early age will benefit them for life. Help kids develop these 5 essential skills through fun activities, games, and open discussions:

Asking Questions

Encourage kids to ask lots of questions. Play games where they have to ask questions to guess something, like 20 questions. Show them how to ask open-ended questions that start with who, what, where, when, why, and how. Questions lead to discoveries and new ideas.

Evaluating Information

Help children consider where information comes from and if it’s trustworthy. Discuss how to determine if something might be exaggerated or misleading. Show them how to look for facts and evidence to back up claims. Evaluate news stories and internet sources together. These skills build media literacy and guard against the spread of misinformation.

Drawing Reasonable Conclusions

Present kids with situations, stories, or puzzles that require making inferences. Ask them what they think might happen next or why something occurred. Discuss how to draw conclusions that are based on facts, not guesses or opinions. Explain how conclusions should be logical and reasonable. Play games like Clue to practice putting clues together to solve a mystery.

Considering Alternatives

Encourage children to think about other ways of doing things or other solutions to problems. Discuss how there are often multiple perspectives to consider. Pose open-ended scenarios and ask them to generate options. Evaluate options together based on facts and reason. Considering alternatives helps foster an open and curious mindset .

Communicating Effectively

Discuss how to share thoughts and ideas constructively. Demonstrate active listening and explain how to build on what others say. Practice debating various sides of an issue while remaining respectful. Help kids understand the importance of communicating in a clear, concise, and logical manner based on facts and reason. Strong communication skills are vital for critical thinking.

Developing these critical thinking skills from an early age will prepare children to become independent thinkers and informed citizens. With practice, these skills become a habit of mind that will benefit them throughout life.

Examples of Critical Thinking in Everyday Life

Examples of Critical Thinking in Everyday Life

Critical thinking is a skill that applies to many areas of life, not just in an academic or professional setting. In your day-to-day life, there are many opportunities to engage your critical thinking abilities. Here are a few examples of how critical thinking comes into play in everyday situations:

Making important life decisions

  • When deciding on major life changes like moving to a new city, changing careers, or ending a relationship, critical thinking is key. You need to logically evaluate your options, determine pros and cons, and make a well-reasoned choice.

Solving problems.

  • Whether it’s figuring out why your internet isn’t working or determining the best way to organize your schedule, critical thinking helps you efficiently troubleshoot issues. Ask clarifying questions, examine possible solutions, evaluate alternatives, and determine the most viable option.

Avoiding logical fallacies and flawed arguments

  • In conversations, news reports, and the media, logical fallacies and poor reasoning frequently appear. Sharpen your critical thinking skills to spot fallacies like ad hominem attacks, false equivalences, strawmen, and circular reasoning. Look for evidence, logical coherence, and solid support for arguments and claims.

Making sound judgments.

  • Every day, we make many small judgments and decisions that are enhanced by critical thinking. Things like determining whether a source is credible, if a claim seems reasonable, or if there are any flaws in an argument Critical thinking gives you the ability to judge objectively and rationally rather than relying on instinct or emotion alone.

With regular practice, critical thinking can become second nature and an integral part of your daily routine. Make an effort to engage your mind fully in everyday situations, ask questions, evaluate information, and make the most logical and well-supported choices. Your life and relationships will benefit from this disciplined approach to thinking and reasoning.

Bad critical thinking examples

Bad Critical Thinking Examples: 14 Tips for Better Decisions

So there you have it—five essential skills for sharpening your critical thinking. Developing strong reasoning abilities takes practice and persistence, but the payoff is huge. When you can think critically about information and arguments, you’ll make better decisions, have more meaningful discussions, and gain valuable insights. You’ll see the world with more clarity and wisdom. You’ll become a lifelong learner, open to growth and understanding. So keep reading, keep questioning, keep analyzing, and keep reflecting—you’ve got the blueprint now to build your critical thinking muscle each and every day. Think critically and think freely!

  • 5 Top Critical Thinking Skills (And How To Improve Them) from Indeed
  • Critical Thinking: What It Is and Why It’s Important
  • Critical Thinking in Everyday Life: 9 Strategies

Believe in mind Newsletter

Let’s boost your self-growth with Believe in Mind.

Interested in self-reflection tips, learning hacks, and knowing ways to calm down your mind? We offer you the best content which you have been looking for.

Follow Me on

You May Like Also

Leave a Comment Cancel reply

Save my name, email, and website in this browser for the next time I comment.


  • Study Skills
  • Critical Thinking

Search SkillsYouNeed:

Learning Skills:

  • A - Z List of Learning Skills
  • What is Learning?
  • Learning Approaches
  • Learning Styles
  • 8 Types of Learning Styles
  • Understanding Your Preferences to Aid Learning
  • Lifelong Learning
  • Decisions to Make Before Applying to University
  • Top Tips for Surviving Student Life
  • Living Online: Education and Learning
  • 8 Ways to Embrace Technology-Based Learning Approaches

Critical Thinking Skills

  • Critical Thinking and Fake News
  • Understanding and Addressing Conspiracy Theories
  • Critical Analysis
  • Top Tips for Study
  • Staying Motivated When Studying
  • Student Budgeting and Economic Skills
  • Getting Organised for Study
  • Finding Time to Study
  • Sources of Information
  • Assessing Internet Information
  • Using Apps to Support Study
  • What is Theory?
  • Styles of Writing
  • Effective Reading
  • Critical Reading
  • Note-Taking from Reading
  • Note-Taking for Verbal Exchanges
  • Planning an Essay
  • How to Write an Essay
  • The Do’s and Don’ts of Essay Writing
  • How to Write a Report
  • Academic Referencing
  • Assignment Finishing Touches
  • Reflecting on Marked Work
  • 6 Skills You Learn in School That You Use in Real Life
  • Top 10 Tips on How to Study While Working
  • Exam Skills
  • Writing a Dissertation or Thesis
  • Research Methods
  • Teaching, Coaching, Mentoring and Counselling
  • Employability Skills for Graduates

Subscribe to our FREE newsletter and start improving your life in just 5 minutes a day.

You'll get our 5 free 'One Minute Life Skills' and our weekly newsletter.

We'll never share your email address and you can unsubscribe at any time.

What is Critical Thinking?

Critical thinking is the ability to think clearly and rationally, understanding the logical connection between ideas.  Critical thinking has been the subject of much debate and thought since the time of early Greek philosophers such as Plato and Socrates and has continued to be a subject of discussion into the modern age, for example the ability to recognise fake news .

Critical thinking might be described as the ability to engage in reflective and independent thinking.

In essence, critical thinking requires you to use your ability to reason. It is about being an active learner rather than a passive recipient of information.

Critical thinkers rigorously question ideas and assumptions rather than accepting them at face value. They will always seek to determine whether the ideas, arguments and findings represent the entire picture and are open to finding that they do not.

Critical thinkers will identify, analyse and solve problems systematically rather than by intuition or instinct.

Someone with critical thinking skills can:

Understand the links between ideas.

Determine the importance and relevance of arguments and ideas.

Recognise, build and appraise arguments.

Identify inconsistencies and errors in reasoning.

Approach problems in a consistent and systematic way.

Reflect on the justification of their own assumptions, beliefs and values.

Critical thinking is thinking about things in certain ways so as to arrive at the best possible solution in the circumstances that the thinker is aware of. In more everyday language, it is a way of thinking about whatever is presently occupying your mind so that you come to the best possible conclusion.

Critical Thinking is:

A way of thinking about particular things at a particular time; it is not the accumulation of facts and knowledge or something that you can learn once and then use in that form forever, such as the nine times table you learn and use in school.

The Skills We Need for Critical Thinking

The skills that we need in order to be able to think critically are varied and include observation, analysis, interpretation, reflection, evaluation, inference, explanation, problem solving, and decision making.

Specifically we need to be able to:

Think about a topic or issue in an objective and critical way.

Identify the different arguments there are in relation to a particular issue.

Evaluate a point of view to determine how strong or valid it is.

Recognise any weaknesses or negative points that there are in the evidence or argument.

Notice what implications there might be behind a statement or argument.

Provide structured reasoning and support for an argument that we wish to make.

The Critical Thinking Process

You should be aware that none of us think critically all the time.

Sometimes we think in almost any way but critically, for example when our self-control is affected by anger, grief or joy or when we are feeling just plain ‘bloody minded’.

On the other hand, the good news is that, since our critical thinking ability varies according to our current mindset, most of the time we can learn to improve our critical thinking ability by developing certain routine activities and applying them to all problems that present themselves.

Once you understand the theory of critical thinking, improving your critical thinking skills takes persistence and practice.

Try this simple exercise to help you to start thinking critically.

Think of something that someone has recently told you. Then ask yourself the following questions:

Who said it?

Someone you know? Someone in a position of authority or power? Does it matter who told you this?

What did they say?

Did they give facts or opinions? Did they provide all the facts? Did they leave anything out?

Where did they say it?

Was it in public or in private? Did other people have a chance to respond an provide an alternative account?

When did they say it?

Was it before, during or after an important event? Is timing important?

Why did they say it?

Did they explain the reasoning behind their opinion? Were they trying to make someone look good or bad?

How did they say it?

Were they happy or sad, angry or indifferent? Did they write it or say it? Could you understand what was said?

What are you Aiming to Achieve?

One of the most important aspects of critical thinking is to decide what you are aiming to achieve and then make a decision based on a range of possibilities.

Once you have clarified that aim for yourself you should use it as the starting point in all future situations requiring thought and, possibly, further decision making. Where needed, make your workmates, family or those around you aware of your intention to pursue this goal. You must then discipline yourself to keep on track until changing circumstances mean you have to revisit the start of the decision making process.

However, there are things that get in the way of simple decision making. We all carry with us a range of likes and dislikes, learnt behaviours and personal preferences developed throughout our lives; they are the hallmarks of being human. A major contribution to ensuring we think critically is to be aware of these personal characteristics, preferences and biases and make allowance for them when considering possible next steps, whether they are at the pre-action consideration stage or as part of a rethink caused by unexpected or unforeseen impediments to continued progress.

The more clearly we are aware of ourselves, our strengths and weaknesses, the more likely our critical thinking will be productive.

The Benefit of Foresight

Perhaps the most important element of thinking critically is foresight.

Almost all decisions we make and implement don’t prove disastrous if we find reasons to abandon them. However, our decision making will be infinitely better and more likely to lead to success if, when we reach a tentative conclusion, we pause and consider the impact on the people and activities around us.

The elements needing consideration are generally numerous and varied. In many cases, consideration of one element from a different perspective will reveal potential dangers in pursuing our decision.

For instance, moving a business activity to a new location may improve potential output considerably but it may also lead to the loss of skilled workers if the distance moved is too great. Which of these is the more important consideration? Is there some way of lessening the conflict?

These are the sort of problems that may arise from incomplete critical thinking, a demonstration perhaps of the critical importance of good critical thinking.

Further Reading from Skills You Need

The Skills You Need Guide for Students

The Skills You Need Guide for Students

Skills You Need

Develop the skills you need to make the most of your time as a student.

Our eBooks are ideal for students at all stages of education, school, college and university. They are full of easy-to-follow practical information that will help you to learn more effectively and get better grades.

In Summary:

Critical thinking is aimed at achieving the best possible outcomes in any situation. In order to achieve this it must involve gathering and evaluating information from as many different sources possible.

Critical thinking requires a clear, often uncomfortable, assessment of your personal strengths, weaknesses and preferences and their possible impact on decisions you may make.

Critical thinking requires the development and use of foresight as far as this is possible. As Doris Day sang, “the future’s not ours to see”.

Implementing the decisions made arising from critical thinking must take into account an assessment of possible outcomes and ways of avoiding potentially negative outcomes, or at least lessening their impact.

  • Critical thinking involves reviewing the results of the application of decisions made and implementing change where possible.

It might be thought that we are overextending our demands on critical thinking in expecting that it can help to construct focused meaning rather than examining the information given and the knowledge we have acquired to see if we can, if necessary, construct a meaning that will be acceptable and useful.

After all, almost no information we have available to us, either externally or internally, carries any guarantee of its life or appropriateness.  Neat step-by-step instructions may provide some sort of trellis on which our basic understanding of critical thinking can blossom but it doesn’t and cannot provide any assurance of certainty, utility or longevity.

Continue to: Critical Thinking and Fake News Critical Reading

See also: Analytical Skills Understanding and Addressing Conspiracy Theories Introduction to Neuro-Linguistic Programming (NLP)


How it works

For Business

Join Mind Tools

Article • 8 min read

Critical Thinking

Developing the right mindset and skills.

By the Mind Tools Content Team

We make hundreds of decisions every day and, whether we realize it or not, we're all critical thinkers.

We use critical thinking each time we weigh up our options, prioritize our responsibilities, or think about the likely effects of our actions. It's a crucial skill that helps us to cut out misinformation and make wise decisions. The trouble is, we're not always very good at it!

In this article, we'll explore the key skills that you need to develop your critical thinking skills, and how to adopt a critical thinking mindset, so that you can make well-informed decisions.

What Is Critical Thinking?

Critical thinking is the discipline of rigorously and skillfully using information, experience, observation, and reasoning to guide your decisions, actions, and beliefs. You'll need to actively question every step of your thinking process to do it well.

Collecting, analyzing and evaluating information is an important skill in life, and a highly valued asset in the workplace. People who score highly in critical thinking assessments are also rated by their managers as having good problem-solving skills, creativity, strong decision-making skills, and good overall performance. [1]

Key Critical Thinking Skills

Critical thinkers possess a set of key characteristics which help them to question information and their own thinking. Focus on the following areas to develop your critical thinking skills:

Being willing and able to explore alternative approaches and experimental ideas is crucial. Can you think through "what if" scenarios, create plausible options, and test out your theories? If not, you'll tend to write off ideas and options too soon, so you may miss the best answer to your situation.

To nurture your curiosity, stay up to date with facts and trends. You'll overlook important information if you allow yourself to become "blinkered," so always be open to new information.

But don't stop there! Look for opposing views or evidence to challenge your information, and seek clarification when things are unclear. This will help you to reassess your beliefs and make a well-informed decision later. Read our article, Opening Closed Minds , for more ways to stay receptive.

Logical Thinking

You must be skilled at reasoning and extending logic to come up with plausible options or outcomes.

It's also important to emphasize logic over emotion. Emotion can be motivating but it can also lead you to take hasty and unwise action, so control your emotions and be cautious in your judgments. Know when a conclusion is "fact" and when it is not. "Could-be-true" conclusions are based on assumptions and must be tested further. Read our article, Logical Fallacies , for help with this.

Use creative problem solving to balance cold logic. By thinking outside of the box you can identify new possible outcomes by using pieces of information that you already have.


Many of the decisions we make in life are subtly informed by our values and beliefs. These influences are called cognitive biases and it can be difficult to identify them in ourselves because they're often subconscious.

Practicing self-awareness will allow you to reflect on the beliefs you have and the choices you make. You'll then be better equipped to challenge your own thinking and make improved, unbiased decisions.

One particularly useful tool for critical thinking is the Ladder of Inference . It allows you to test and validate your thinking process, rather than jumping to poorly supported conclusions.

Developing a Critical Thinking Mindset

Combine the above skills with the right mindset so that you can make better decisions and adopt more effective courses of action. You can develop your critical thinking mindset by following this process:

Gather Information

First, collect data, opinions and facts on the issue that you need to solve. Draw on what you already know, and turn to new sources of information to help inform your understanding. Consider what gaps there are in your knowledge and seek to fill them. And look for information that challenges your assumptions and beliefs.

Be sure to verify the authority and authenticity of your sources. Not everything you read is true! Use this checklist to ensure that your information is valid:

  • Are your information sources trustworthy ? (For example, well-respected authors, trusted colleagues or peers, recognized industry publications, websites, blogs, etc.)
  • Is the information you have gathered up to date ?
  • Has the information received any direct criticism ?
  • Does the information have any errors or inaccuracies ?
  • Is there any evidence to support or corroborate the information you have gathered?
  • Is the information you have gathered subjective or biased in any way? (For example, is it based on opinion, rather than fact? Is any of the information you have gathered designed to promote a particular service or organization?)

If any information appears to be irrelevant or invalid, don't include it in your decision making. But don't omit information just because you disagree with it, or your final decision will be flawed and bias.

Now observe the information you have gathered, and interpret it. What are the key findings and main takeaways? What does the evidence point to? Start to build one or two possible arguments based on what you have found.

You'll need to look for the details within the mass of information, so use your powers of observation to identify any patterns or similarities. You can then analyze and extend these trends to make sensible predictions about the future.

To help you to sift through the multiple ideas and theories, it can be useful to group and order items according to their characteristics. From here, you can compare and contrast the different items. And once you've determined how similar or different things are from one another, Paired Comparison Analysis can help you to analyze them.

The final step involves challenging the information and rationalizing its arguments.

Apply the laws of reason (induction, deduction, analogy) to judge an argument and determine its merits. To do this, it's essential that you can determine the significance and validity of an argument to put it in the correct perspective. Take a look at our article, Rational Thinking , for more information about how to do this.

Once you have considered all of the arguments and options rationally, you can finally make an informed decision.

Afterward, take time to reflect on what you have learned and what you found challenging. Step back from the detail of your decision or problem, and look at the bigger picture. Record what you've learned from your observations and experience.

Critical thinking involves rigorously and skilfully using information, experience, observation, and reasoning to guide your decisions, actions and beliefs. It's a useful skill in the workplace and in life.

You'll need to be curious and creative to explore alternative possibilities, but rational to apply logic, and self-aware to identify when your beliefs could affect your decisions or actions.

You can demonstrate a high level of critical thinking by validating your information, analyzing its meaning, and finally evaluating the argument.

Critical Thinking Infographic

See Critical Thinking represented in our infographic: An Elementary Guide to Critical Thinking .

does critical thinking involve opinions

You've accessed 1 of your 2 free resources.

Get unlimited access

Discover more content

Book Insights

The 21 Irrefutable Laws of Leadership: Follow Them and They Will Follow You

John C. Maxwell

Helping People Take Responsibility

What Does It Mean to Take Ownership of Your Work?

Add comment

Comments (1)

priyanka ghogare

does critical thinking involve opinions

Introducing Mind Tools for Business

Mind Tools for Business is a comprehensive library of award-winning performance and management support resources.

Whether you want to increase engagement, upskill teams, or complement your existing workplace programs – this is content designed to achieve impactful results.

Sign-up to our newsletter

Subscribing to the Mind Tools newsletter will keep you up-to-date with our latest updates and newest resources.

Subscribe now

Business Skills

Personal Development

Leadership and Management

Most Popular

Newest Releases

Article a9j93be

What Are Henri Fayol's Five Functions of Management?

Article asjiu77

Henri Fayol's Principles of Management

Mind Tools Store

About Mind Tools Content

Discover something new today

Connecting remote and hybrid workers to organizational mission.

Bringing people together through a shared purpose

Is Our Partnership at Risk?

Identify Those Areas of Partnership Work Which May Have Been Left Open to Risk

How Emotionally Intelligent Are You?

Boosting Your People Skills


What's Your Leadership Style?

Learn About the Strengths and Weaknesses of the Way You Like to Lead

Recommended for you

How to use mind mapping.

Break Large Projects or Topics Into Manageable Chunks

Business Operations and Process Management

Strategy Tools

Customer Service

Business Ethics and Values

Handling Information and Data

Project Management

Knowledge Management

Self-Development and Goal Setting

Time Management

Presentation Skills

Learning Skills

Career Skills

Communication Skills

Negotiation, Persuasion and Influence

Working With Others

Difficult Conversations

Creativity Tools


Work-Life Balance

Stress Management and Wellbeing

Coaching and Mentoring

Change Management

Team Management

Managing Conflict

Delegation and Empowerment

Performance Management

Leadership Skills

Developing Your Team

Talent Management

Problem Solving

Decision Making

GCFGlobal Logo

  • Get started with computers
  • Learn Microsoft Office
  • Apply for a job
  • Improve my work skills
  • Design nice-looking docs
  • Getting Started
  • Smartphones & Tablets
  • Typing Tutorial
  • Online Learning
  • Basic Internet Skills
  • Online Safety
  • Social Media
  • Zoom Basics
  • Google Docs
  • Google Sheets
  • Career Planning
  • Resume Writing
  • Cover Letters
  • Job Search and Networking
  • Business Communication
  • Entrepreneurship 101
  • Careers without College
  • Job Hunt for Today
  • 3D Printing
  • Freelancing 101
  • Personal Finance
  • Sharing Economy
  • Decision-Making
  • Graphic Design
  • Photography
  • Image Editing
  • Learning WordPress
  • Language Learning
  • Critical Thinking
  • For Educators
  • Translations
  • Staff Picks
  • English expand_more expand_less

Critical Thinking and Decision-Making  - What is Critical Thinking?

Critical thinking and decision-making  -, what is critical thinking, critical thinking and decision-making what is critical thinking.

GCFLearnFree Logo

Critical Thinking and Decision-Making: What is Critical Thinking?

Lesson 1: what is critical thinking, what is critical thinking.

Critical thinking is a term that gets thrown around a lot. You've probably heard it used often throughout the years whether it was in school, at work, or in everyday conversation. But when you stop to think about it, what exactly is critical thinking and how do you do it ?

Watch the video below to learn more about critical thinking.

Simply put, critical thinking is the act of deliberately analyzing information so that you can make better judgements and decisions . It involves using things like logic, reasoning, and creativity, to draw conclusions and generally understand things better.

illustration of the terms logic, reasoning, and creativity

This may sound like a pretty broad definition, and that's because critical thinking is a broad skill that can be applied to so many different situations. You can use it to prepare for a job interview, manage your time better, make decisions about purchasing things, and so much more.

The process

illustration of "thoughts" inside a human brain, with several being connected and "analyzed"

As humans, we are constantly thinking . It's something we can't turn off. But not all of it is critical thinking. No one thinks critically 100% of the time... that would be pretty exhausting! Instead, it's an intentional process , something that we consciously use when we're presented with difficult problems or important decisions.

Improving your critical thinking

illustration of the questions "What do I currently know?" and "How do I know this?"

In order to become a better critical thinker, it's important to ask questions when you're presented with a problem or decision, before jumping to any conclusions. You can start with simple ones like What do I currently know? and How do I know this? These can help to give you a better idea of what you're working with and, in some cases, simplify more complex issues.  

Real-world applications

illustration of a hand holding a smartphone displaying an article that reads, "Study: Cats are better than dogs"

Let's take a look at how we can use critical thinking to evaluate online information . Say a friend of yours posts a news article on social media and you're drawn to its headline. If you were to use your everyday automatic thinking, you might accept it as fact and move on. But if you were thinking critically, you would first analyze the available information and ask some questions :

  • What's the source of this article?
  • Is the headline potentially misleading?
  • What are my friend's general beliefs?
  • Do their beliefs inform why they might have shared this?

illustration of "Super Cat Blog" and "According to survery of cat owners" being highlighted from an article on a smartphone

After analyzing all of this information, you can draw a conclusion about whether or not you think the article is trustworthy.

Critical thinking has a wide range of real-world applications . It can help you to make better decisions, become more hireable, and generally better understand the world around you.

illustration of a lightbulb, a briefcase, and the world


Critical Thinking in Reading and Composition

Glossary of Grammatical and Rhetorical Terms

gawrav/Getty Images

  • An Introduction to Punctuation
  • Ph.D., Rhetoric and English, University of Georgia
  • M.A., Modern English and American Literature, University of Leicester
  • B.A., English, State University of New York

Critical thinking is the process of independently analyzing, synthesizing, and evaluating information as a guide to behavior and beliefs.

The American Philosophical Association has defined critical thinking as "the process of purposeful, self-regulatory judgment. The process gives reasoned consideration to evidence , contexts , conceptualizations, methods, and criteria" (1990). Critical thinking is sometimes broadly defined as "thinking about thinking."

Critical thinking skills include the ability to interpret, verify, and reason, all of which involve applying the principles of logic . The process of using critical thinking to guide writing is called critical writing .


  • " Critical Thinking is essential as a tool of inquiry. As such, Critical Thinking is a liberating force in education and a powerful resource in one’s personal and civic life. While not synonymous with good thinking, Critical Thinking is a pervasive and self-rectifying human phenomenon. The ideal critical thinker is habitually inquisitive, well-informed, trustful of reason, open-minded, flexible, fair-minded in evaluation, honest in facing personal biases, prudent in making judgments, willing to reconsider, clear about issues, orderly in complex matters, diligent in seeking relevant information, reasonable in the selection of criteria, focused in inquiry, and persistent in seeking results which are as precise as the subject and the circumstances of inquiry permit." (American Philosophical Association, "Consensus Statement Regarding Critical Thinking," 1990)
  • Thought and Language "In order to understand reasoning [...], it is necessary to pay careful attention to the relationship between thought and language . The relationship seems to be straightforward: thought is expressed in and through language. But this claim, while true, is an oversimplification. People often fail to say what they mean. Everyone has had the experience of having their \ misunderstood by others. And we all use words not merely to express our thoughts but also to shape them. Developing our critical thinking skills, therefore, requires an understanding of the ways in which words can (and often fail to) express our thoughts." (William Hughes and Jonathan Lavery, Critical Thinking: An Introduction to the Basic Skills , 4th ed. Broadview, 2004)
  • Dispositions That Foster or Impede Critical thinking "Dispositions that foster critical thinking include [a] facility in perceiving irony , ambiguity , and multiplicity of meanings or points of view; the development of open-mindedness, autonomous thought, and reciprocity (Piaget's term for the ability to empathize with other individuals, social groups, nationalities, ideologies, etc.). Dispositions that act as impediments to critical thinking include defense mechanisms (such as absolutism or primary certitude, denial, projection), culturally conditioned assumptions, authoritarianism, egocentrism, and ethnocentrism, rationalization, compartmentalization, stereotyping and prejudice." (Donald Lazere, "Invention, Critical Thinking, and the Analysis of Political Rhetoric." Perspectives on Rhetorical Invention , ed. by Janet M. Atwill and Janice M. Lauer. University of Tennessee Press, 2002)
  • Critical Thinking and Composing - "[T]he most intensive and demanding tool for eliciting sustained critical thought is a well-designed writing assignment on a subject matter problem. The underlying premise is that writing is closely linked with thinking and that in presenting students with significant problems to write about—and in creating an environment that demands their best writing—we can promote their general cognitive and intellectual growth. When we make students struggle with their writing, we are making them struggle with thought itself. Emphasizing writing and critical thinking , therefore, generally increases the academic rigor of a course. Often the struggle of writing, linked as it is to the struggle of thinking and to the growth of a person's intellectual powers, awakens students to the real nature of learning." (John C. Bean,  Engaging Ideas: The Professor's Guide to Integrating Writing, Critical Thinking, and Active Learning in the Classroom , 2nd ed. Wiley, 2011) - "Finding a fresh approach to a writing assignment means that you must see the subject without the blinders of preconception. When people expect to see a thing in a certain way, it usually appears that way, whether or not that is its true image. Similarly, thinking based on prefabricated ideas produces writing that says nothing new, that offers nothing important to the reader. As a writer, you have a responsibility to go beyond the expected views and present your subject so that the reader sees it with fresh eyes. . . . [C]ritical thinking is a fairly systematic method of defining a problem and synthesizing knowledge about it, thereby creating the perspective you need to develop new ideas. . . . " Classical rhetoricians used a series of three questions to help focus an argument . Today these questions can still help writers understand the topic about which they are writing. An sit? (Is the problem a fact?); Quid sit (What is the definition of the problem?); and Quale sit? (What kind of problem is it?). By asking these questions, writers see their subject from many new angles before they begin to narrow the focus to one particular aspect." (Kristin R. Woolever, About Writing: A Rhetoric for Advanced Writers . Wadsworth, 1991)

Logical Fallacies

Ad Misericordiam

Appeal to Authority

Appeal to Force

Appeal to Humor

Appeal to Ignorance

Appeal to the People

Begging the Question

Circular Argument

Complex Question

Contradictory Premises

Dicto Simpliciter , Equivocation

False Analogy

False Dilemma

Gambler's Fallacy

Hasty Generalization


Non Sequitur

Poisoning the Well

Red Herring

Slippery Slope

Stacking the Deck

  • Critical Thinking Definition, Skills, and Examples
  • Audience Analysis in Speech and Composition
  • How to Facilitate Learning and Critical Thinking
  • What Is a Personal Essay (Personal Statement)?
  • Persuasion and Rhetorical Definition
  • Use Social Media to Teach Ethos, Pathos and Logos
  • Holistic Grading (Composition)
  • IRAC Method of Legal Writing
  • Verbal Hygiene in Language Usage
  • 2020-21 Common Application Essay Option 4—Solving a Problem
  • Writer Purpose in Rhetoric and Composition
  • Definition and Examples of Plain English
  • Definition and Examples of Theme-Writing
  • Figure of Thought in Rhetoric
  • Dead Metaphor Definition and Examples
  • What Is Tone In Writing?

Module 1: Success Skills

Critical thinking, introduction, learning objectives.

  • define critical thinking
  • identify the role that logic plays in critical thinking
  • apply critical thinking skills to problem-solving scenarios
  • apply critical thinking skills to evaluation of information

Woman lying on her back outdoors, in a reflective posture

Consider these thoughts about the critical thinking process, and how it applies not just to our school lives but also our personal and professional lives.

“Thinking Critically and Creatively”

Critical thinking skills are perhaps the most fundamental skills involved in making judgments and solving problems. You use them every day, and you can continue improving them.

The ability to think critically about a matter—to analyze a question, situation, or problem down to its most basic parts—is what helps us evaluate the accuracy and truthfulness of statements, claims, and information we read and hear. It is the sharp knife that, when honed, separates fact from fiction, honesty from lies, and the accurate from the misleading. We all use this skill to one degree or another almost every day. For example, we use critical thinking every day as we consider the latest consumer products and why one particular product is the best among its peers. Is it a quality product because a celebrity endorses it? Because a lot of other people may have used it? Because it is made by one company versus another? Or perhaps because it is made in one country or another? These are questions representative of critical thinking.

The academic setting demands more of us in terms of critical thinking than everyday life. It demands that we evaluate information and analyze myriad issues. It is the environment where our critical thinking skills can be the difference between success and failure. In this environment we must consider information in an analytical, critical manner. We must ask questions—What is the source of this information? Is this source an expert one and what makes it so? Are there multiple perspectives to consider on an issue? Do multiple sources agree or disagree on an issue? Does quality research substantiate information or opinion? Do I have any personal biases that may affect my consideration of this information?

It is only through purposeful, frequent, intentional questioning such as this that we can sharpen our critical thinking skills and improve as students, learners and researchers.

—Dr. Andrew Robert Baker,  Foundations of Academic Success: Words of Wisdom

Defining Critical Thinking

Thinking comes naturally. You don’t have to make it happen—it just does. But you can make it happen in different ways. For example, you can think positively or negatively. You can think with “heart” and you can think with rational judgment. You can also think strategically and analytically, and mathematically and scientifically. These are a few of multiple ways in which the mind can process thought.

What are some forms of thinking you use? When do you use them, and why?

As a college student, you are tasked with engaging and expanding your thinking skills. One of the most important of these skills is critical thinking. Critical thinking is important because it relates to nearly all tasks, situations, topics, careers, environments, challenges, and opportunities. It’s not restricted to a particular subject area.

Handwritten poster. Guidelines for Critical Thinking when…talking/ reading/ blogging/ writing/ living. 4: justify your answers with text evidence (…because…) and examples from your life/world; agree and disagree with others and authors; ask questions of others and authors; complete sentences, correct punctuation/ capitols. 3: agree and disagree with others and authors; justify your opinions, tell why you agree and disagree; speak and write in complete sentences. 2: answers questions but not justify them; agree and disagree but you can’t tell why; incomplete sentences, incorrect punctuation. 1: does not contribute to the conversation; does not share your thinking; does not agree or disagree with others. Justify: to defend your thinking by showing and telling with examples and evidence.

Critical thinking is clear, reasonable, reflective thinking focused on deciding what to believe or do. It means asking probing questions like, “How do we know?” or “Is this true in every case or just in this instance?” It involves being skeptical and challenging assumptions, rather than simply memorizing facts or blindly accepting what you hear or read.

Imagine, for example, that you’re reading a history textbook. You wonder who wrote it and why, because you detect certain assumptions in the writing. You find that the author has a limited scope of research focused only on a particular group within a population. In this case, your critical thinking reveals that there are “other sides to the story.”

Who are critical thinkers, and what characteristics do they have in common? Critical thinkers are usually curious and reflective people. They like to explore and probe new areas and seek knowledge, clarification, and new solutions. They ask pertinent questions, evaluate statements and arguments, and they distinguish between facts and opinion. They are also willing to examine their own beliefs, possessing a manner of humility that allows them to admit lack of knowledge or understanding when needed. They are open to changing their mind. Perhaps most of all, they actively enjoy learning, and seeking new knowledge is a lifelong pursuit.

This may well be you!

No matter where you are on the road to being a critical thinker, you can always more fully develop your skills. Doing so will help you develop more balanced arguments, express yourself clearly, read critically, and absorb important information efficiently. Critical thinking skills will help you in any profession or any circumstance of life, from science to art to business to teaching.

Critical Thinking in Action

The following video, from Lawrence Bland, presents the major concepts and benefits of critical thinking.

Critical Thinking and Logic

Critical thinking is fundamentally a process of questioning information and data. You may question the information you read in a textbook, or you may question what a politician or a professor or a classmate says. You can also question a commonly-held belief or a new idea. With critical thinking, anything and everything is subject to question and examination.

Logic’s Relationship to Critical Thinking

The word logic comes from the Ancient Greek logike , referring to the science or art of reasoning. Using logic, a person evaluates arguments and strives to distinguish between good and bad reasoning, or between truth and falsehood. Using logic, you can evaluate ideas or claims people make, make good decisions, and form sound beliefs about the world. [1]

Questions of Logic in Critical Thinking

Let’s use a simple example of applying logic to a critical-thinking situation. In this hypothetical scenario, a man has a PhD in political science, and he works as a professor at a local college. His wife works at the college, too. They have three young children in the local school system, and their family is well known in the community.

The man is now running for political office. Are his credentials and experience sufficient for entering public office? Will he be effective in the political office? Some voters might believe that his personal life and current job, on the surface, suggest he will do well in the position, and they will vote for him.

In truth, the characteristics described don’t guarantee that the man will do a good job. The information is somewhat irrelevant. What else might you want to know? How about whether the man had already held a political office and done a good job? In this case, we want to ask, How much information is adequate in order to make a decision based on logic instead of assumptions?

The following questions, presented in Figure 1, below, are ones you may apply to formulating a logical, reasoned perspective in the above scenario or any other situation:

  • What’s happening? Gather the basic information and begin to think of questions.
  • Why is it important? Ask yourself why it’s significant and whether or not you agree.
  • What don’t I see? Is there anything important missing?
  • How do I know? Ask yourself where the information came from and how it was constructed.
  • Who is saying it? What’s the position of the speaker and what is influencing them?
  • What else? What if? What other ideas exist and are there other possibilities?

Infographic titled "Questions a Critical Thinker Asks." From the top, text reads: What's Happening? Gather the basic information and begin to think of questions (image of two stick figures talking to each other). Why is it Important? Ask yourself why it's significant and whether or not you agree. (Image of bearded stick figure sitting on a rock.) What Don't I See? Is there anything important missing? (Image of stick figure wearing a blindfold, whistling, walking away from a sign labeled Answers.) How Do I Know? Ask yourself where the information came from and how it was constructed. (Image of stick figure in a lab coat, glasses, holding a beaker.) Who is Saying It? What's the position of the speaker and what is influencing them? (Image of stick figure reading a newspaper.) What Else? What If? What other ideas exist and are there other possibilities? (Stick figure version of Albert Einstein with a thought bubble saying "If only time were relative...".

Problem-Solving With Critical Thinking

For most people, a typical day is filled with critical thinking and problem-solving challenges. In fact, critical thinking and problem-solving go hand-in-hand. They both refer to using knowledge, facts, and data to solve problems effectively. But with problem-solving, you are specifically identifying, selecting, and defending your solution. Below are some examples of using critical thinking to problem-solve:

  • Your roommate was upset and said some unkind words to you, which put a crimp in your relationship. You try to see through the angry behaviors to determine how you might best support your roommate and help bring your relationship back to a comfortable spot.

Young man in black jacket looking deep in thought, in foreground of busy street scene

  • Your final art class project challenges you to conceptualize form in new ways. On the last day of class when students present their projects, you describe the techniques you used to fulfill the assignment. You explain why and how you selected that approach.
  • Your math teacher sees that the class is not quite grasping a concept. She uses clever questioning to dispel anxiety and guide you to new understanding of the concept.
  • You have a job interview for a position that you feel you are only partially qualified for, although you really want the job and you are excited about the prospects. You analyze how you will explain your skills and experiences in a way to show that you are a good match for the prospective employer.
  • You are doing well in college, and most of your college and living expenses are covered. But there are some gaps between what you want and what you feel you can afford. You analyze your income, savings, and budget to better calculate what you will need to stay in college and maintain your desired level of spending.

Problem-Solving Action Checklist

Problem-solving can be an efficient and rewarding process, especially if you are organized and mindful of critical steps and strategies. Remember, too, to assume the attributes of a good critical thinker. If you are curious, reflective, knowledge-seeking, open to change, probing, organized, and ethical, your challenge or problem will be less of a hurdle, and you’ll be in a good position to find intelligent solutions.

Evaluating Information With Critical Thinking

Evaluating information can be one of the most complex tasks you will be faced with in college. But if you utilize the following four strategies, you will be well on your way to success:

  • Read for understanding by using text coding
  • Examine arguments
  • Clarify thinking

Photo of a group of students standing around a poster on the wall, where they're adding post-it notes with handwriting on them

1. Read for Understanding Using Text Coding

When you read and take notes, use the text coding strategy . Text coding is a way of tracking your thinking while reading. It entails marking the text and recording what you are thinking either in the margins or perhaps on Post-it notes. As you make connections and ask questions in response to what you read,  you monitor your comprehension and enhance your long-term understanding of the material.

With text coding, mark important arguments and key facts. Indicate where you agree and disagree or have further questions. You don’t necessarily need to read every word, but make sure you understand the concepts or the intentions behind what is written. Feel free to develop your own shorthand style when reading or taking notes. The following are a few options to consider using while coding text.

See more text coding from PBWorks and Collaborative for Teaching and Learning .

2. Examine Arguments

When you examine arguments or claims that an author, speaker, or other source is making, your goal is to identify and examine the hard facts. You can use the spectrum of authority strategy for this purpose. The spectrum of authority strategy assists you in identifying the “hot” end of an argument—feelings, beliefs, cultural influences, and societal influences—and the “cold” end of an argument—scientific influences. The following video explains this strategy.

3. Clarify Thinking

When you use critical thinking to evaluate information, you need to clarify your thinking to yourself and likely to others. Doing this well is mainly a process of asking and answering probing questions, such as the logic questions discussed earlier. Design your questions to fit your needs, but be sure to cover adequate ground. What is the purpose? What question are we trying to answer? What point of view is being expressed? What assumptions are we or others making? What are the facts and data we know, and how do we know them? What are the concepts we’re working with? What are the conclusions, and do they make sense? What are the implications?

4. Cultivate “Habits of Mind”

“Habits of mind” are the personal commitments, values, and standards you have about the principle of good thinking. Consider your intellectual commitments, values, and standards. Do you approach problems with an open mind, a respect for truth, and an inquiring attitude? Some good habits to have when thinking critically are being receptive to having your opinions changed, having respect for others, being independent and not accepting something is true until you’ve had the time to examine the available evidence, being fair-minded, having respect for a reason, having an inquiring mind, not making assumptions, and always, especially, questioning your own conclusions—in other words, developing an intellectual work ethic. Try to work these qualities into your daily life.

  • "logic." Wordnik . n.d. Web. 16 Feb 2016 . ↵
  • "Student Success-Thinking Critically In Class and Online."  Critical Thinking Gateway . St Petersburg College, n.d. Web. 16 Feb 2016. ↵
  • Outcome: Critical Thinking. Provided by : Lumen Learning. License : CC BY: Attribution
  • Self Check: Critical Thinking. Provided by : Lumen Learning. License : CC BY: Attribution
  • Foundations of Academic Success. Authored by : Thomas C. Priester, editor. Provided by : Open SUNY Textbooks. Located at : http://textbooks.opensuny.org/foundations-of-academic-success/ . License : CC BY-NC-SA: Attribution-NonCommercial-ShareAlike
  • Image of woman thinking. Authored by : Moyan Brenn. Located at : https://flic.kr/p/8YV4K5 . License : CC BY: Attribution
  • Critical Thinking. Provided by : Critical and Creative Thinking Program. Located at : http://cct.wikispaces.umb.edu/Critical+Thinking . License : CC BY: Attribution
  • Critical Thinking Skills. Authored by : Linda Bruce. Provided by : Lumen Learning. Project : https://courses.lumenlearning.com/lumencollegesuccess/chapter/critical-thinking-skills/. License : CC BY: Attribution
  • Image of critical thinking poster. Authored by : Melissa Robison. Located at : https://flic.kr/p/bwAzyD . License : CC BY: Attribution
  • Thinking Critically. Authored by : UBC Learning Commons. Provided by : The University of British Columbia, Vancouver Campus. Located at : http://www.oercommons.org/courses/learning-toolkit-critical-thinking/view . License : CC BY: Attribution
  • Critical Thinking 101: Spectrum of Authority. Authored by : UBC Leap. Located at : https://youtu.be/9G5xooMN2_c . License : CC BY: Attribution
  • Image of students putting post-its on wall. Authored by : Hector Alejandro. Located at : https://flic.kr/p/7b2Ax2 . License : CC BY: Attribution
  • Image of man thinking. Authored by : Chad Santos. Located at : https://flic.kr/p/phLKY . License : CC BY: Attribution
  • Critical Thinking.wmv. Authored by : Lawrence Bland. Located at : https://youtu.be/WiSklIGUblo . License : All Rights Reserved . License Terms : Standard YouTube License

Classroom Q&A

With larry ferlazzo.

In this EdWeek blog, an experiment in knowledge-gathering, Ferlazzo will address readers’ questions on classroom management, ELL instruction, lesson planning, and other issues facing teachers. Send your questions to [email protected]. Read more from this blog.

Integrating Critical Thinking Into the Classroom

does critical thinking involve opinions

  • Share article

(This is the second post in a three-part series. You can see Part One here .)

The new question-of-the-week is:

What is critical thinking and how can we integrate it into the classroom?

Part One ‘s guests were Dara Laws Savage, Patrick Brown, Meg Riordan, Ph.D., and Dr. PJ Caposey. Dara, Patrick, and Meg were also guests on my 10-minute BAM! Radio Show . You can also find a list of, and links to, previous shows here.

Today, Dr. Kulvarn Atwal, Elena Quagliarello, Dr. Donna Wilson, and Diane Dahl share their recommendations.

‘Learning Conversations’

Dr. Kulvarn Atwal is currently the executive head teacher of two large primary schools in the London borough of Redbridge. Dr. Atwal is the author of The Thinking School: Developing a Dynamic Learning Community , published by John Catt Educational. Follow him on Twitter @Thinkingschool2 :

In many classrooms I visit, students’ primary focus is on what they are expected to do and how it will be measured. It seems that we are becoming successful at producing students who are able to jump through hoops and pass tests. But are we producing children that are positive about teaching and learning and can think critically and creatively? Consider your classroom environment and the extent to which you employ strategies that develop students’ critical-thinking skills and their self-esteem as learners.

Development of self-esteem

One of the most significant factors that impacts students’ engagement and achievement in learning in your classroom is their self-esteem. In this context, self-esteem can be viewed to be the difference between how they perceive themselves as a learner (perceived self) and what they consider to be the ideal learner (ideal self). This ideal self may reflect the child that is associated or seen to be the smartest in the class. Your aim must be to raise students’ self-esteem. To do this, you have to demonstrate that effort, not ability, leads to success. Your language and interactions in the classroom, therefore, have to be aspirational—that if children persist with something, they will achieve.

Use of evaluative praise

Ensure that when you are praising students, you are making explicit links to a child’s critical thinking and/or development. This will enable them to build their understanding of what factors are supporting them in their learning. For example, often when we give feedback to students, we may simply say, “Well done” or “Good answer.” However, are the students actually aware of what they did well or what was good about their answer? Make sure you make explicit what the student has done well and where that links to prior learning. How do you value students’ critical thinking—do you praise their thinking and demonstrate how it helps them improve their learning?

Learning conversations to encourage deeper thinking

We often feel as teachers that we have to provide feedback to every students’ response, but this can limit children’s thinking. Encourage students in your class to engage in learning conversations with each other. Give as many opportunities as possible to students to build on the responses of others. Facilitate chains of dialogue by inviting students to give feedback to each other. The teacher’s role is, therefore, to facilitate this dialogue and select each individual student to give feedback to others. It may also mean that you do not always need to respond at all to a student’s answer.

Teacher modelling own thinking

We cannot expect students to develop critical-thinking skills if we aren’t modeling those thinking skills for them. Share your creativity, imagination, and thinking skills with the students and you will nurture creative, imaginative critical thinkers. Model the language you want students to learn and think about. Share what you feel about the learning activities your students are participating in as well as the thinking you are engaging in. Your own thinking and learning will add to the discussions in the classroom and encourage students to share their own thinking.

Metacognitive questioning

Consider the extent to which your questioning encourages students to think about their thinking, and therefore, learn about learning! Through asking metacognitive questions, you will enable your students to have a better understanding of the learning process, as well as their own self-reflections as learners. Example questions may include:

  • Why did you choose to do it that way?
  • When you find something tricky, what helps you?
  • How do you know when you have really learned something?


‘Adventures of Discovery’

Elena Quagliarello is the senior editor of education for Scholastic News , a current events magazine for students in grades 3–6. She graduated from Rutgers University, where she studied English and earned her master’s degree in elementary education. She is a certified K–12 teacher and previously taught middle school English/language arts for five years:

Critical thinking blasts through the surface level of a topic. It reaches beyond the who and the what and launches students on a learning journey that ultimately unlocks a deeper level of understanding. Teaching students how to think critically helps them turn information into knowledge and knowledge into wisdom. In the classroom, critical thinking teaches students how to ask and answer the questions needed to read the world. Whether it’s a story, news article, photo, video, advertisement, or another form of media, students can use the following critical-thinking strategies to dig beyond the surface and uncover a wealth of knowledge.

A Layered Learning Approach

Begin by having students read a story, article, or analyze a piece of media. Then have them excavate and explore its various layers of meaning. First, ask students to think about the literal meaning of what they just read. For example, if students read an article about the desegregation of public schools during the 1950s, they should be able to answer questions such as: Who was involved? What happened? Where did it happen? Which details are important? This is the first layer of critical thinking: reading comprehension. Do students understand the passage at its most basic level?

Ask the Tough Questions

The next layer delves deeper and starts to uncover the author’s purpose and craft. Teach students to ask the tough questions: What information is included? What or who is left out? How does word choice influence the reader? What perspective is represented? What values or people are marginalized? These questions force students to critically analyze the choices behind the final product. In today’s age of fast-paced, easily accessible information, it is essential to teach students how to critically examine the information they consume. The goal is to equip students with the mindset to ask these questions on their own.

Strike Gold

The deepest layer of critical thinking comes from having students take a step back to think about the big picture. This level of thinking is no longer focused on the text itself but rather its real-world implications. Students explore questions such as: Why does this matter? What lesson have I learned? How can this lesson be applied to other situations? Students truly engage in critical thinking when they are able to reflect on their thinking and apply their knowledge to a new situation. This step has the power to transform knowledge into wisdom.

Adventures of Discovery

There are vast ways to spark critical thinking in the classroom. Here are a few other ideas:

  • Critical Expressionism: In this expanded response to reading from a critical stance, students are encouraged to respond through forms of artistic interpretations, dramatizations, singing, sketching, designing projects, or other multimodal responses. For example, students might read an article and then create a podcast about it or read a story and then act it out.
  • Transmediations: This activity requires students to take an article or story and transform it into something new. For example, they might turn a news article into a cartoon or turn a story into a poem. Alternatively, students may rewrite a story by changing some of its elements, such as the setting or time period.
  • Words Into Action: In this type of activity, students are encouraged to take action and bring about change. Students might read an article about endangered orangutans and the effects of habitat loss caused by deforestation and be inspired to check the labels on products for palm oil. They might then write a letter asking companies how they make sure the palm oil they use doesn’t hurt rain forests.
  • Socratic Seminars: In this student-led discussion strategy, students pose thought-provoking questions to each other about a topic. They listen closely to each other’s comments and think critically about different perspectives.
  • Classroom Debates: Aside from sparking a lively conversation, classroom debates naturally embed critical-thinking skills by asking students to formulate and support their own opinions and consider and respond to opposing viewpoints.

Critical thinking has the power to launch students on unforgettable learning experiences while helping them develop new habits of thought, reflection, and inquiry. Developing these skills prepares students to examine issues of power and promote transformative change in the world around them.


‘Quote Analysis’

Dr. Donna Wilson is a psychologist and the author of 20 books, including Developing Growth Mindsets , Teaching Students to Drive Their Brains , and Five Big Ideas for Effective Teaching (2 nd Edition). She is an international speaker who has worked in Asia, the Middle East, Australia, Europe, Jamaica, and throughout the U.S. and Canada. Dr. Wilson can be reached at [email protected] ; visit her website at www.brainsmart.org .

Diane Dahl has been a teacher for 13 years, having taught grades 2-4 throughout her career. Mrs. Dahl currently teaches 3rd and 4th grade GT-ELAR/SS in Lovejoy ISD in Fairview, Texas. Follow her on Twitter at @DahlD, and visit her website at www.fortheloveofteaching.net :

A growing body of research over the past several decades indicates that teaching students how to be better thinkers is a great way to support them to be more successful at school and beyond. In the book, Teaching Students to Drive Their Brains , Dr. Wilson shares research and many motivational strategies, activities, and lesson ideas that assist students to think at higher levels. Five key strategies from the book are as follows:

  • Facilitate conversation about why it is important to think critically at school and in other contexts of life. Ideally, every student will have a contribution to make to the discussion over time.
  • Begin teaching thinking skills early in the school year and as a daily part of class.
  • As this instruction begins, introduce students to the concept of brain plasticity and how their brilliant brains change during thinking and learning. This can be highly motivational for students who do not yet believe they are good thinkers!
  • Explicitly teach students how to use the thinking skills.
  • Facilitate student understanding of how the thinking skills they are learning relate to their lives at school and in other contexts.

Below are two lessons that support critical thinking, which can be defined as the objective analysis and evaluation of an issue in order to form a judgment.

Mrs. Dahl prepares her 3rd and 4th grade classes for a year of critical thinking using quote analysis .

During Native American studies, her 4 th grade analyzes a Tuscarora quote: “Man has responsibility, not power.” Since students already know how the Native Americans’ land had been stolen, it doesn’t take much for them to make the logical leaps. Critical-thought prompts take their thinking even deeper, especially at the beginning of the year when many need scaffolding. Some prompts include:

  • … from the point of view of the Native Americans?
  • … from the point of view of the settlers?
  • How do you think your life might change over time as a result?
  • Can you relate this quote to anything else in history?

Analyzing a topic from occupational points of view is an incredibly powerful critical-thinking tool. After learning about the Mexican-American War, Mrs. Dahl’s students worked in groups to choose an occupation with which to analyze the war. The chosen occupations were: anthropologist, mathematician, historian, archaeologist, cartographer, and economist. Then each individual within each group chose a different critical-thinking skill to focus on. Finally, they worked together to decide how their occupation would view the war using each skill.

For example, here is what each student in the economist group wrote:

  • When U.S.A. invaded Mexico for land and won, Mexico ended up losing income from the settlements of Jose de Escandon. The U.S.A. thought that they were gaining possible tradable land, while Mexico thought that they were losing precious land and resources.
  • Whenever Texas joined the states, their GDP skyrocketed. Then they went to war and spent money on supplies. When the war was resolving, Texas sold some of their land to New Mexico for $10 million. This allowed Texas to pay off their debt to the U.S., improving their relationship.
  • A detail that converged into the Mexican-American War was that Mexico and the U.S. disagreed on the Texas border. With the resulting treaty, Texas ended up gaining more land and economic resources.
  • Texas gained land from Mexico since both countries disagreed on borders. Texas sold land to New Mexico, which made Texas more economically structured and allowed them to pay off their debt.

This was the first time that students had ever used the occupations technique. Mrs. Dahl was astonished at how many times the kids used these critical skills in other areas moving forward.


Thanks to Dr. Auwal, Elena, Dr. Wilson, and Diane for their contributions!

Please feel free to leave a comment with your reactions to the topic or directly to anything that has been said in this post.

Consider contributing a question to be answered in a future post. You can send one to me at [email protected] . When you send it in, let me know if I can use your real name if it’s selected or if you’d prefer remaining anonymous and have a pseudonym in mind.

You can also contact me on Twitter at @Larryferlazzo .

Education Week has published a collection of posts from this blog, along with new material, in an e-book form. It’s titled Classroom Management Q&As: Expert Strategies for Teaching .

Just a reminder; you can subscribe and receive updates from this blog via email (The RSS feed for this blog, and for all Ed Week articles, has been changed by the new redesign—new ones won’t be available until February). And if you missed any of the highlights from the first nine years of this blog, you can see a categorized list below.

  • This Year’s Most Popular Q&A Posts
  • Race & Racism in Schools
  • School Closures & the Coronavirus Crisis
  • Classroom-Management Advice
  • Best Ways to Begin the School Year
  • Best Ways to End the School Year
  • Student Motivation & Social-Emotional Learning
  • Implementing the Common Core
  • Facing Gender Challenges in Education
  • Teaching Social Studies
  • Cooperative & Collaborative Learning
  • Using Tech in the Classroom
  • Student Voices
  • Parent Engagement in Schools
  • Teaching English-Language Learners
  • Reading Instruction
  • Writing Instruction
  • Education Policy Issues
  • Differentiating Instruction
  • Math Instruction
  • Science Instruction
  • Advice for New Teachers
  • Author Interviews
  • Entering the Teaching Profession
  • The Inclusive Classroom
  • Learning & the Brain
  • Administrator Leadership
  • Teacher Leadership
  • Relationships in Schools
  • Professional Development
  • Instructional Strategies
  • Best of Classroom Q&A
  • Professional Collaboration
  • Classroom Organization
  • Mistakes in Education
  • Project-Based Learning

I am also creating a Twitter list including all contributors to this column .

The opinions expressed in Classroom Q&A With Larry Ferlazzo are strictly those of the author(s) and do not reflect the opinions or endorsement of Editorial Projects in Education, or any of its publications.

Sign Up for EdWeek Update

Edweek top school jobs.

Second grade teacher Kaylee Hutcheson greets her students as they enter their classroom to start their day at Hawthorne Elementary School in Mexico, Mo., on Feb. 14, 2024.

Sign Up & Sign In

module image 9

The Peak Performance Center

The Peak Performance Center

The pursuit of performance excellence, critical thinking.

Critical Thinking header

critical thinking

critical thinking refers to the process of actively analyzing, assessing, synthesizing, evaluating and reflecting on information gathered from observation, experience, or communication. It is thinking in a clear, logical, reasoned, and reflective manner to solve problems or make decisions. Basically, critical thinking is taking a hard look at something to understand what it really means.

Critical Thinkers

Critical thinkers do not simply accept all ideas, theories, and conclusions as facts. They have a mindset of questioning ideas and conclusions. They make reasoned judgments that are logical and well thought out by assessing the evidence that supports a specific theory or conclusion.

When presented with a new piece of new information, critical thinkers may ask questions such as;

“What information supports that?”

“How was this information obtained?”

“Who obtained the information?”

“How do we know the information is valid?”

“Why is it that way?”

“What makes it do that?”

“How do we know that?”

“Are there other possibilities?”

Critical Thinking

Combination of analytical and Creative Thinking

Many people perceive critical thinking just as analytical thinking . However, critical thinking incorporates both analytical thinking and creative thinking. Critical thinking does involve breaking down information into parts and analyzing the parts in a logical, step-by-step manner. However, it also involves challenging consensus to formulate new creative ideas and generate innovative solutions. It is critical thinking that helps to evaluate and improve your creative ideas.

Critical Thinking Skills

Elements of Critical Thinking

Critical thinking involves:

  • Gathering relevant information
  • Evaluating information
  • Asking questions
  • Assessing bias or unsubstantiated assumptions
  • Making inferences from the information and filling in gaps
  • Using abstract ideas to interpret information
  • Formulating ideas
  • Weighing opinions
  • Reaching well-reasoned conclusions
  • Considering alternative possibilities
  • Testing conclusions
  • Verifying if evidence/argument support the conclusions

Developing Critical Thinking Skills

Critical thinking is considered a higher order thinking skills, such as analysis, synthesis, deduction, inference, reason, and evaluation. In order to demonstrate critical thinking, you would need to develop skills in;

Interpreting : understanding the significance or meaning of information

Analyzing : breaking information down into its parts

Connecting : making connections between related items or pieces of information.

Integrating : connecting and combining information to better understand the relationship between the information.

Evaluating : judging the value, credibility, or strength of something

Reasoning : creating an argument through logical steps

Deducing : forming a logical opinion about something based on the information or evidence that is available

Inferring : figuring something out through reasoning based on assumptions and ideas

Generating : producing new information, ideas, products, or ways of viewing things.

Blooms Taxonomy

Bloom's Taxonomy Revised

Mind Mapping

Chunking Information


does critical thinking involve opinions

Copyright © 2024 | WordPress Theme by MH Themes

web analytics

University of Leeds logo

  • Study and research support
  • Academic skills

Critical thinking

What is critical thinking.

The word "critical" can mean different things in different contexts. For example, it can refer to the importance of something, or can also mean pointing out the negative aspects of something, ie to criticise something.

However, critical thinking at university does not mean looking only for the most important aspects of a topic or just criticising ideas. It is also about not accepting what you read or hear at face value, but always questioning the information, ideas and arguments you find in your studies.

Critical thinking is a key skill that should be applied to all aspects of your studies. As a university student, you need to be able to think critically about the resources and information you use in your work. You need to ask the right questions when reading the work of others; your writing needs to show you have the ability to weigh up different arguments and perspectives and use evidence to help you form your own opinions, arguments, theories and ideas. Critical thinking is about questioning and learning with an open mind.

View video using Microsoft Stream (link opens in a new window, available for University members only)

Critical thinking should help you to:

  • interpret evidence, data, arguments, etc. and be able to identify the significance to your assignment question
  • develop well-reasoned arguments of your own for your assignments
  • use and draw on evidence to justify your arguments and ideas
  • synthesise your thoughts and the thoughts of differing authors/researchers/theorists.

Related resources

If you are new to critical thinking at university, sign up for our short online course at FutureLearn: Critical thinking at university: an introduction

If you are a final year student, you can find out more about being critical in your dissertation or final year research project from our resource The Final Chapter .

Ryan M. Niemiec Psy.D.

How to Build Your Judgment and Critical Thinking

Blessed are the critical thinkers: for they help us understand and find truth..

Posted April 28, 2022 | Reviewed by Lybi Ma

  • Each person has the strength of judgment they can tap into.
  • A critical thinking blessing is one practical strategy you can use for building this strength.
  • Observing the processes of good critical thinkers can help you enhance this strength.

Ismagilov/Getty Images/iStockphoto

Us vs. them. In-group vs. out-group. Good guys vs. bad guys. Polarization is at an all-time high. What might be an antidote?

One step in the right direction is to increase our character strength of judgment , also called critical thinking . This strength is about the pursuit of truth. It reminds us that truth is not found in impressions, stereotypes, quick glances, and preconceived notions. It is found with a persevering and always-evolving process of reflection, introspection, analysis, and open-mindedness to other views. It is found not by flipping on a political news program but by flipping on your thinking in new ways. It is found not by surfing through social media headlines but by looking for exceptions to your existing views.

How can we build this character strength? One strategy is to observe, study, and learn from those who express the strength well. What does an exemplar of critical thinking say about this strength? How do they act? Let’s find out.

Davis, an accomplished musician and decorated police chief, was a master critical thinker. He has been known throughout his community for his logic and good judgment. He has loved looking at every detail of a situation, especially his beliefs about things. He has been analytical about anything potentially controversial such as spirituality , politics , family life, and personal problems. He doesn't take his beliefs about things for granted. Rather, he goes deeper. He has sought out universal truths (and never took those for granted either).

When interviewed about his critical thinking, Davis offered several insights and practical strategies for appreciating and building this strength.

You are known as a great critical thinker. How do you use this strength of character?

When I am faced with a dilemma or controversy, I ask myself several questions:

  • How is my belief or what I’m thinking about now not true ?
  • What are the exceptions to my belief?
  • What would someone from a different culture or lived experience say about my ideas?
  • What am I missing, forgetting, or not including?
  • If I wouldn’t stake my life on my conclusion or my belief, what part of it makes me most hesitant?
  • If I was to become just a little bit more accurate or get a bit more detail on the situation, what would it be?

Wow, you really have a solid approach of “drilling down” to get to the core of that which is most essential.

I think of it like I am peeling layers of veneer in my mind. I try to peel away my first impression and I peel away my biases such as the automatic tendency to look for support for my beliefs. I peel away the layer of expectations I have of society. I peel away my automatic reactions to please or to impress others. I just keep going in the pursuit of a greater truth. Then, I remind myself that that greater truth I find is not perfect and absolute and finished, but it is better than what I started with.

Judgment or critical thinking is the ultimate “mind strength.” Doesn’t that mean you get lost in your head and miss the heart?

I see the mind and heart as one. They are completely interconnected. Each offers a different lens or starting point. A good critical thinker sees and experiences both of these lenses and others. My typical approach is to start with the analyses I mentioned to get past the multitude of biases I am subject to. I know that when I get closer to a truth I am touching my heart. I can feel it in my chest. Some people do this process in reverse and start with the heart. Each person makes their own decision on what’s best for them.

Spoken like a true critical thinker. Who takes the reverse process? Can you offer an example?

Actually, I do. As a critical thinker, I don’t want to get locked into one approach. It behooves me to be open to different analyses and ways of interacting. For example, when a person is very locked into a particular way of thinking that I perceive to be unhealthy or have negative consequences, my first step is to “appeal to their heart.” I empathize with them; I show them understanding, even though I may not agree with them. I can always offer that gift of understanding. I might also share with them how their views do not seem to align with their values. From there, my critical thinking helps me provide details and logical reasons for the misalignment I perceive. Still, I maintain an open-mindedness to be wrong, to be challenged, to be corrected.

What you are describing seems to have implications that go far beyond you and the people you interact with. How would you describe the potential of your approach?

I think of the pursuit of truth as very spiritual. A universal truth provides connection and sustenance between people. It reaches and expresses our common humanity. This is of great importance to philosophers, proponents of religion, and people across nations. When a truth is identified, there is greater acceptance within a divided group and across groups. This reminds us of some of the spiritual truths of the human condition that we are more alike than different, genetically speaking 99.9 percent the same, and also that all of us on the planet are all in this together.

Getting Practical: Use the Critical Thinking Blessing

You can use the critical thinking-judgment beatitude, "Blessed are the critical thinkers: for they help us understand and find truth" (Niemiec, 2021), to appreciate the depth of this strength of critical thinking-judgment in yourself and in others.

does critical thinking involve opinions

  • In yourself : In what situations has this beatitude been a reality for you?
  • In others : Identify someone in your life who is high in critical thinking-judgment. Explain to them how you have benefitted from observing and experiencing this strength from them.

This article is part of an exclusive blog series on the 24 character strengths blessings/beatitudes. See the new, scientific article, called Character Strengths Beatitudes: A Secular Application of Ancient Wisdom to Appreciate Strengths for Spiritual Happiness and Spiritual Growth (Niemiec, 2021), published in the journal Religions .

Judgment/critical thinking is one of 24 universal character strengths found across countries, cultures, and beliefs, as uncovered by modern-day scientists.

Ryan M. Niemiec Psy.D.

Ryan M. Niemiec, Psy.D. , is the education director at the VIA Institute on Character.

  • Find a Therapist
  • Find a Treatment Center
  • Find a Psychiatrist
  • Find a Support Group
  • Find Teletherapy
  • United States
  • Brooklyn, NY
  • Chicago, IL
  • Houston, TX
  • Los Angeles, CA
  • New York, NY
  • Portland, OR
  • San Diego, CA
  • San Francisco, CA
  • Seattle, WA
  • Washington, DC
  • Asperger's
  • Bipolar Disorder
  • Chronic Pain
  • Eating Disorders
  • Passive Aggression
  • Personality
  • Goal Setting
  • Positive Psychology
  • Stopping Smoking
  • Low Sexual Desire
  • Relationships
  • Child Development
  • Therapy Center NEW
  • Diagnosis Dictionary
  • Types of Therapy

January 2024 magazine cover

Overcome burnout, your burdens, and that endless to-do list.

  • Coronavirus Disease 2019
  • Affective Forecasting
  • Neuroscience
  • Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer

global cognition logo

Global Cognition

Critical thinking in decision making.

by Winston Sieck updated September 12, 2021

think ahead sign symbolizing critical thinking in decision making

Critical thinking is often talked about as a stand-alone activity. Like some other individual activities, thinking critically may just feel good. Yet, critical thinking seems most useful when it aids other cognitive processes, such as applying critical thinking in decision making.

Anne Helsdingen from the Open University of the Netherlands and her colleagues studied an interesting issue about critical thinking in decision making. They wanted to know whether teaching critical thinking skills can improve judgment and decision making in general.

Helsdingen and her team define critical thinking as reasoned thinking with a purpose. They also describe some core critical thinking skills and abilities, such as being able to:

  • Appreciate that your own opinions may be wrong
  • Accept statements as true even when they conflict with your own views
  • Temporarily adopt an initial position with which you disagree, and then reason from that starting point

A challenge, according to these researchers, is how to teach skills for critical thinking in decision making so that they transfer to new decision making problems. Transfer means being able to apply what you have learned to new tasks or new situations.

To tackle this problem, they start with a useful cognitive model of how decisions are made . Numerous researchers have worked with similar versions of the model of the years. One version is called “explanation-based decision making,” or the “story model.”

The idea is that people encounter situations. When they do, they recognize important parts of the situation from past experience. They then create a story (or explanation) about what’s going on and what will happen. They make decisions based on their story, and how things have turned out in similar stories past.

A problem with making decisions this way is that our stories tend to be less complete than we think – a failure of metacognition. We also overlook inconsistent details because we’re sucked in by the good story. According to Helsdingen, we might improve our intuitive approach by bringing critical thinking in the decision making process.

The researchers tested a method for including critical thinking in decision making. First, they explained the story model of decision making. Then, they prompted the learners to reflect on their story and thinking critically about it. Some of the questions they included to prompt critical thinking were:

  • Do you have all the necessary information?
  • Is there any conflict in the evidence?
  • The devil’s advocate tells you that your story is wrong. Make up an alternative story. Is it more plausible than the original?

The students in the study read through cases about crimes that had been committed. Their job was to decide on the priority of each case for the police. They got feedback, so they could learn what makes cases more important in police work.

Some of the students received the critical thinking skills training while making these decisions. Others did not.

How well they made these crime decisions was not the most important thing, though. The main thing was how well they would do in a different situation after learning about critical thinking in decision making. That is, would their new skills transfer?

The researchers tested for transfer by having the students make different decisions about traffic offenses. The overall results suggested that the training on how to include critical thinking in decision making was effective. The benefits did transfer to the new decision making task.

As you come across decisions that you need to make, pay some attention to the stories you are telling yourself in the process. Use some of the ideas above and other critical thinking skills to improve your story and decision. Writing is also an excellent strategy for making good decisions . It may seem like a bit of extra work at first, but with practice will become more natural for your future decisions.

Image Credit:  Critical thinking asylum

Helsdingen, A., van Gog, T., & van Merriënboer, J. (2011). The effects of practice schedule and critical thinking prompts on learning and transfer of a complex judgment task. Journal of Educational Psychology, 103 (2), 383-398 DOI: 10.1037/a0022370

' src=

About Winston Sieck

Dr. Winston Sieck is a cognitive psychologist working to advance the development of thinking skills. He is founder and president of Global Cognition, and director of Thinker Academy .

Reader Interactions

' src=

January 13, 2013 at 6:36 pm

Thanks for sharing this research and the ‘story’. We are often asked whether you can learn to be a better critical thinker – I wouldn’t be teaching it if I didn’t believe it to be the case! But it helps to have research to support this belief.

Our work is focused on critical thinking in organizational, workplace settings with all sorts of employees, including managers and executives. My experience is pretty similar to that you gave in the case; in the moment, on a particular case, the ‘decision’ may not be improved.

As the researchers and you point out, the proof is in the pudding. Can people learn and apply simple critical thinking techniques, consistently and effectively, and, does this lead to better outcomes?

We find that it can be overwhelming to try to teach too much at a clip. We boil it down to simple questions, job aids, and worksheets that can help people – especially people working on teams – to establish a common vocabulary, and create an environment that reinforces critical thinking rather than viewing it as generating conflict and controversy.

' src=

February 21, 2014 at 4:02 am

I am interested in teaching critical thinking skills to Law Enforcement, specifically to a group of people age 14 to 18 who are interested in pursuing a Law Enforcement Career (The Police Explorer Program) but then later to already established officers.

A law enforcement officer (LEO) is called upon to make decisions and wield power which effect others lives, and they are often required to do this on the spot, with a limited amount of time and information available. They make these decisions every day and I am looking for ways to sharpen their skills and help them make the best decisions possible with the information they have on hand.

I couldn’t help but notice that this study happened to be centered on LEO scenarios. I was wondering if I could adapt this study to a class for young people. Any thoughts?

Also, how could I get the specifics of this study, to include the specific scenarios used?

' src=

February 21, 2014 at 9:34 am

That sounds really interesting, Eric. I contacted Anne Helsdingen on your behalf, and shared your contact information with her.

' src=

February 28, 2016 at 11:40 pm

For the last five years I have taught CT to serving LEOs, although only slowly at first; it is a sharp departure from traditional police training. While new theories come out on how to fix a profession currently under enormous pressure, many of them have been around for 10 or 20 years whereas CT has been developed over at least 25 centuries. I would be happy to share my work and experiences to to hear of others’ work too.

  • Save Your Ammo
  • Publications

GC Blog Topics

  • Culture & Communication
  • Thinking & Deciding
  • Learning Skills
  • Learning Science

Online Courses

  • Thinker Academy
  • Study Skills Course
  • For Parents
  • For Teachers



Balancing Emotion and Reason to Develop Critical Thinking About Popularized Neurosciences

  • Open access
  • Published: 07 September 2020
  • Volume 29 , pages 1139–1176, ( 2020 )

Cite this article

You have full access to this open access article

  • François Lombard   ORCID: orcid.org/0000-0002-8933-0385 1 ,
  • Daniel K. Schneider   ORCID: orcid.org/0000-0002-8088-885X 2 ,
  • Marie Merminod   ORCID: orcid.org/0000-0002-8237-0317 3 &
  • Laura Weiss   ORCID: orcid.org/0000-0002-8367-1891 3  

8700 Accesses

10 Citations

1 Altmetric

Explore all metrics

Bioscientific advances raise numerous new ethical dilemmas. Neuroscience research opens possibilities of tracing and even modifying human brain processes, such as decision-making, revenge, or pain control. Social media and science popularization challenge the boundaries between truth, fiction, and deliberate misinformation, calling for critical thinking (CT). Biology teachers often feel ill-equipped to organize student debates that address sensitive issues, opinions, and emotions in classrooms. Recent brain research confirms that opinions cannot be understood as solely objective and logical and are strongly influenced by the form of empathy. Emotional empathy engages strongly with salient aspects but blinds to others’ reactions while cognitive empathy allows perspective and independent CT. In order to address the complex socioscientific issues (SSIs) that recent neuroscience raises, cognitive empathy is a significant skill rarely developed in schools. We will focus on the processes of opinion building and argue that learners first need a good understanding of methods and techniques to discuss potential uses and other people’s possible emotional reactions. Subsequently, in order to develop cognitive empathy, students are asked to describe opposed emotional reactions as dilemmas by considering alternative viewpoints and values. Using a design-based-research paradigm, we propose a new learning design method for independent critical opinion building based on the development of cognitive empathy. We discuss an example design to illustrate the generativity of the method. The collected data suggest that students developed decentering competency and scientific methods literacy. Generalizability of the design principles to enhance other CT designs is discussed.

Similar content being viewed by others

does critical thinking involve opinions

The Uses of the Imagination in Moral Neuroeducation

does critical thinking involve opinions

Disgust and the Limits of Reason: Countering the Fear of Contamination and Resistance to Education in a Post-modern Climate

does critical thinking involve opinions

The role of peers on student ethical decision making: evidence in support of the social intuitionist model

David Ohreen

Avoid common mistakes on your manuscript.

1 Introduction

Socioscientific issues (SSIs) raised by the rapid progress and potential applications of life sciences and technology in areas such as genetics, medicine, and neuroscience challenge students and future citizens with new moral dilemmas. For example, results from recent neuroscience research have attracted considerable attention in the media, with popularized information often claiming that neuroimaging can be used to decipher various human mental processes and possibly modify them. Insights into brain functioning seem to challenge the classical boundaries of psychology, biology, philosophy, and popularized science that students are confronted with. They raise intense and complex SSIs for which there is no large body of ethical or educational reflection (Illes and Racine 2005 ). There are serious issues and some controversy surrounding the confusion of brain activity with mental processes or states of mind (Lundegård and Hamza 2014 ) and the emotive power of brain scans; for example, Check ( 2005 ) and McCabe and Castel ( 2008 ) show that neuroimages can have much greater convincing power than the methods and the scientific data they produce a warrant. Ali et al. 2014 call this phenomenon neuroenchantment . Proper interpretation of the neuroimaging data frequently presented in popularized science is a key epistemological and ethical challenge (Illes and Racine 2005 ) that schools do not generally address, leaving future citizens unprepared to face these new issues. Students need to be better equipped with reasonable thinking for deciding what to believe or do: critical thinking (CT).

What citizens know of science is currently shaped mainly by out-of-school sources such as traditional and social media (Fenichel and Schweingruber 2010 ). Developing CT in students is an important educational goal in many curricula, e.g., the CIIP ( 2011 ) in Switzerland. However, the PISA study shows that there is room for improvement (Schleicher 2019 ). While the internet offers access to invaluable information, the propagation of “fake news” has become a worrying issue (Brossard and Scheufele 2013 ; Rider and Peters 2018 ; Vosoughi et al. 2018 ). Additionally, Bavel and Pereira ( 2018 ) argue that our increased access to information has isolated us in ideological bubbles where we mostly encounter information that reflects our own opinions and values. The overwhelming amount of information available on social media paradoxically does not help understand other opinions; rather, it hinders CT and especially perspective-taking (Jiménez-Aleixandre and Puig 2012 ; Rowe et al. 2015 ; Willingham 2008 ).

Adding to these difficulties regarding CT, neuroscience research has been criticized because of distortions introduced through sensationalist popularization. We adopt a neutral stance towards results published under the label of neuroscience or presented as “brain research.” Education must navigate between naïve adhesion to anything published under the label of neuroscience or popularized as “brain research” and rejection of all neuroscience research because of these sensationalist flaws in its popularization. This study is an attempt to address this challenge and propose a new perspective for helping students develop some difficult aspects of CT that might enhance many classical learning designs. Self-centered or group-centered emotions often hinder CT (Ennis 1987 ; Facione 1990 ). Sadler and Zeidler ( 2005 ) also show that emotive informal reasoning is directed towards real people or fictitious characters. Imagining people’s emotional and moral reactions in these different situations without being overwhelmed by one’s own empathetic emotional reactions is a major difficulty in CT education. While the most basic form of empathy focuses on the emotional aspects of a situation, it blinds us to others (Bloom 2017a ) and hinders decentering. The more advanced cognitive form of empathy (Klimecki and Singer 2013 ) enables decentering and reasonable assessment of moral dilemmas. This article proposes an approach for developing CT that draws not only on rational reasoning but also on understanding others’ emotional reactions (cognitive empathy) to develop the perspective that is needed: thinking independently, challenging one’s own personal or collective interest, and overcoming egocentric values (Jiménez-Aleixandre and Puig 2012 ). Consequently, developing this decentering aspect of CT in students is a central aim of this contribution. In addition, we argue that a proper understanding of methods is also necessary to discuss the potential and limits of research findings, especially in popularized neuroscience. Thus, methodological knowledge is a preliminary and necessary step towards understanding the social and human implications of such scientific results. Therefore, developing scientific methods literacy is a foundational goal of this contribution.

We will develop this new contribution to CT teaching in five steps:

In Section 2 , we will discuss theories that can guide the crafting of learning designs for developing selected CT skills and lead to an original conceptualization focused on decentering when discussing popularized neuroscience. We start by reviewing CT in education and its various definitions and discuss the challenges of its implementation and several approaches. We show through recent literature that attempting to ignore emotions while debating opinions does not reduce their effects on CT. Starting from this, we will discuss the importance of decentering from one’s own values and social belonging in CT and the essential role of empathy in this process. We develop the idea that helping students to discover and understand the scientific methods used in neuroscience research is foundational to imagining its limits and potential as well as others’ moral and emotional reactions. We will argue that focusing the discussion of the SSIs raised on empathetic discussion of these different reactions can enhance decentering skills. We finish by summarizing the design approach.

In Section 3 , we map the theory developed in Section 2 onto educational design principles. We first explain the conjecture mapping technique that we used (exemplified in Section 4 ). We then define learning goals, i.e., the expected effects (EEs), and finish by elaborating design principles in the form of educational design conjectures for decentering CT skills.

In Section 4 , we present, analyze and discuss an example learning design. Learning design as an activity can be defined as design for learning, i.e., “the act of devising new practices, plans of activity, resources and tools aimed at achieving particular educational aims in a given situation” (Mor and Craft 2012 , p. 86). In this study, the learning design is part of the outcome, i.e., a reproducible design. We start by presenting an abstract model based on Sandoval and Bell’s ( 2004 ) conjecture map , a design method developed for design-based research that allows the identification of key elements of a learning design in a way suitable for research and practice. The presented design was developed in 10 iterations over 15 years in higher secondary biology classes (equivalent to high school) in Geneva, Switzerland. We then present the design of the 2018/2019 implementation.

In Section 5 , we present some empirical results based on quali-quantitative data from student-produced artifacts from the 2018/2019 cohort. We also present findings from an end-of-semester survey.

Section 6 summarizes and discusses the main findings, discusses their implications and limitations, and outlines further perspectives.

We formulate two research questions at the end of the theory sections that we summarize as follows: (1) How can a conceptualization that focuses on decentering and methods literacy be implemented through an operational learning design and what are its main design elements? (2) Does an implementation of this learning design help students improve the selected CT skills?

2 Theoretical Framework

2.1 critical thinking in education.

In education, calls to develop critical thinking (CT) in students are frequent. This crucial skill, necessary for citizens to participate in a plural and democratic society, is often lacking among students according to PISA results (Schleicher 2019 ). Science education curricula usually include CT as a learning goal. The official curriculum for Swiss-French secondary schools (CIIP 2011 ) states that “In a society deeply modified by scientific and technological progress, it is important that every citizen masters basic skills in order to understand the consequences of choices made by the community, to take part in social debate on such subjects and to grasp the main issues. In the ever-faster evolution of the world, it is necessary to develop in students a conceptual, coherent, logical and structured thinking, with a flexible mind and a capacity to deliver adequate productions and act according to reasoned choices” (our translation) but then focuses on rational thinking: “The purpose of science is to establish a principle of rationality for the confrontation of ideas and theories with the facts observed in the learner’s world” (CIIP 2011 , our translation). Official educational guidelines often focus on the reason-based aspect of CT, but the emotional aspects of CT are also recognized in some official educational programs. For example, the CIIP ( 2011 ) mentions the learning goal “reflexive approach and critical thinking,” which consists in the “ability to develop a reflexive approach and critical stance to put into perspective facts and information, as well as one’s own actions…” The descriptors include “evaluating the shares of reason and affectivity in one’s approach; verifying the accuracy of the facts and putting them into perspective” (our translation).

One of the most widely cited definitions of CT, by Robert Ennis, introduces the concept as “reasonable reflective thinking, that is focused on deciding what to believe or do” (1987, p. 6). Ennis proposes a list of twelve dispositions and sixteen abilities that characterize the ideal critical thinker. This list and its items “can be considered as guidelines or goals for curriculum planning, as ‘necessary conditions’ for the exercise of critical thinking, or as a checklist for empirical research” (Jiménez-Aleixandre and Puig 2012 , p. 1002). Facione ( 1990 ), in a statement of expert consensus, states, “We understand critical thinking to be purposeful, self-regulatory judgment which results in interpretation, analysis, evaluation, and inference, as well as explanation of the evidential, conceptual, methodological, criteriological, or contextual considerations upon which that judgment is based. […] The ideal critical thinker is habitually inquisitive, well-informed, trustful of reason, open-minded, flexible, fair-minded in evaluation, honest in facing personal biases, prudent in making judgments, willing to reconsider, […] It combines developing CT skills with nurturing those dispositions which consistently yield useful insights and which are the basis of a rational and democratic society” (p. 3).

In both texts, the focus is on reasonable thinking, and emotions are only referenced implicitly. For example, Facione’s definition mentions “personal biases,” and the only mention of emotion in the main text is negative: “to judge the extent to which one’s thinking is influenced by deficiencies in one’s knowledge, or by stereotypes, prejudices, emotions or any other factors which constrain one’s objectivity or rationality” (Facione 1990 , p. 10). CT seems to shun emotions. As in philosophy and argumentation, emotions are considered out of place in good reasoning (Bowell 2018 ), and no form of empathy is explicitly taken into account, except within “personal biases.”

A set of Ennis’s CT abilities are related to scientific information literacy: the ability to discuss the limits and potential of scientific information based on a good understanding of the methods and foundations of its elaboration. From a science education point of view, Hounsell and McCune ( 2002 ) propose the ability “to access and evaluate bioscience information from a variety of sources and to communicate the principles both orally and in writing [...] in a way that is well organized, topical and recognizes the limits of current hypotheses” (Hounsell and McCune 2002 , p. 7, quoting QAA 2002 ). We draw from this definition that science does not produce truths but tentative, empirically based knowledge that must be understood within the limits of the conceptual framework and hypotheses that determine the methods that produced this knowledge.

It is also important to define what CT does not mean in this context: it does not imply negative thinking or an obsessive search for faults and flaws in scientific results. CT should not be conflated with a systematic criticism of science, which in some cases has become so strong as to create defiance towards science and scientific methods. CT does not mean discussing only bad examples and exaggerated claims or inferences. Angermuller ( 2018 ) warns, “research critically interrogating truth and reality may serve propagandists of post-truth and their ideological agenda” (p. 2). Furthermore, CT should not mean observance of a teacher’s personal critical views. CT must focus on skills that allow students to reasonably evaluate knowledge on the basis of available evidence and requires recognizing but decentering from personal biases and understanding scientific methods well enough to evaluate the potential and limits of research.

One classical approach in classrooms is argumentation and debating beliefs and opinions (Bowell 2018 ; Dawson and Venville 2010 ; Dawson and Carson 2018 ; Duschl and Osborne 2002 ; Jiménez-Aleixandre et al. 2000 ; Jonassen and Kim 2010 ; Legg 2018 ). Additionally, learning progressions organizing skills into different stages have been well discussed (Berland and McNeill 2010 ; Plummer and Krajcik 2010 ). Osborne ( 2010 ) writes that much is understood about how to organize groups for learning and how the norms of social interaction can be supported and taught. For example, Buchs et al. ( 2004 ) show that debate is most efficient as a learning activity when it is very specifically organized to favor epistemic rather than relational elaboration of conflict. This requires ignoring emotions (and implicitly any form of empathy) to focus on rational discussion. Constructive controversy has been demonstrated to be very efficient at identifying the best group answer on a specific question (Johnson and Johnson 2009 ), but focuses—remarkably well—on keeping the debate rational and does encourage decentering through role exchange; however, in our view, it is not specifically focused on handling the emotions and empathetic reactions that some very sensitive issues can raise, as Bowell ( 2018 ) shows.

Teachers who attempt to organize classroom debates or argumentation often encounter great difficulty in doing so (Osborne 2010 ; Simonneaux 2003 ). They often feel ill-trained and worried about handling the emotional reactions and value conflicts that arise during discussions and arguments about SSIs. Ultimately, they frequently refrain from debates (Osborne et al. 2013 ) or confine themselves to the apparently safe boundaries of rationality. How student groups can be supported to produce elaborated, critical discourse is unclear according to Osborne ( 2010 ). An unusual approach was proposed by Cook et al. ( 2017 ). They describe it well in their title: “Neutralizing misinformation through inoculation: Exposing misleading argumentation techniques reduces their influence.” This immunological metaphor of exposing students to possible biases and manipulations in advance as a strategy for developing CT skills contrasts with approaches where students are protected from and cautioned against such information, which is in turn dismissed. We consider here how to face the educational challenge and address the difficult new SSIs raised by scientific advances—notably in neuroscience.

While this article is not about conceptual change, which is the subject of abundant research, including Clark and Linn ( 2013 ); diSessa ( 2002 ); Duit et al. ( 2008 ); Ohlsson ( 2013 ); Posner et al. ( 1982 ); Potvin ( 2013 ); Strike and Posner ( 1982 ); and Vosniadou ( 1994 ), it is worth noting that conceptual change also cannot be fully understood without considering the effects of beliefs—especially on some subjects such as evolution (Clément and Quessada 2013 ; Sinatra et al. 2003 ; Potvin 2013 ). Tracy Bowell ( 2018 ) insists that against deeply held beliefs, rational argument cannot suffice: “Although critical thinking pedagogy does often emphasize the need for a properly critical thinker to be willing (and able) to hold up their own beliefs to critical analysis and scrutiny, and be prepared to modify or relinquish them in the face of appropriate evidence, it has been recognized that the type of critical thinking instruction usually offered at the first-year level in universities frequently does not lead to these outcomes for learners” (p. 172).

Discussing SSIs engages opinions. Roget’s Thesaurus defines opinions as views or judgments formed about something, not necessarily based on fact or knowledge. For Astolfi ( 2008 ), opinion “is not of the same nature as knowledge. The essential question is then no longer to decide between the points of view expressed as to who is right and who is wrong. It is to access the underlying reasons that justify the points of view involved” (p. 153, our translation). Among others, Legg ( 2018 ) discusses how difficult—even for professional thinkers—forming a well-built opinion is. We will not address this thorny philosophical question here but discuss how to develop decentering skills with 18- to 19-year-old high school biology students discovering recent popularized research. The central point in this article is not about deciding which opinion is correct or socially acceptable in the specific social and cultural environment of students or even which opinion the current state of scientific knowledge supports. Jiménez-Aleixandre and Puig ( 2012 ) highlight the importance of thinking not only reasonably but also independently . This text discusses putting into perspective the rational reasons with emotional and empathetic reactions that justify one’s own opinions through understanding that others might have other underlying reasons and emotional and empathetic reactions leading to different opinions, calling for decentering skills.

It would seem natural to discuss opinions. However, discussing students’ opinions in the multicultural classrooms of today could hurt personal, cultural, or religious sensitivities and can be counterproductive (Bowell 2018 ). Research has shown that many forms of debate, e.g., debate-to-win (Fisher et al. 2018 ), can unintentionally modify participants’ opinions (Simonneaux and Simonneaux 2005 ). Abundant social psychology research has shown, for example, that holding one point of view in a debate modifies the arguer’s opinion (Festinger 1957 ; Aronson et al. 2013 ). Cognitive dissonance reduction has long been identified as an obstacle to accepting new ideas (Festinger 1957 ). Indeed, debating well-established opinions with students or even inexperienced scholars can easily lead to the entrenchment of personal opinions (Bavel and Pereira 2018 ; Legg 2018 ). This raises serious ethical questions: some learning designs might influence the opinions of students or might even become manipulative, unconsciously leading students to observance of the teacher’s personal outrage or opinion. Creating fair, respectful, and productive opinion debates in the classroom setting is difficult. The emotional reactions of teachers and students can get out of hand. Biology teachers are sometimes afraid of students’ reactions when discussing socially loaded topics such as the mechanisms of evolution (Clément and Quessada 2013 ), possibly confusing the well-established explanatory power of evolutionary scientific models with beliefs and opinions students might have. In Switzerland, biology curricula require students to be able to use these scientific models to explain observed phenomena and predict, for example, the consequences for a species of variations in the environment but not to adhere to any specific belief.

For many, a focus on rational and independent thinking should restrict the role emotions play in the opinion building process. Jiménez-Aleixandre and Puig ( 2012 ) mention, “Although we think that it is desirable for students (and people) to integrate care and empathy in their reasoning, we would contemplate purely or mainly emotive reasoning as less strong than rational reasoning” (p. 1011). This concern about the threat of emotion-only reasoning could be understood by some readers to imply that rational thinking processes alone should guide independent opinion building to allow decentered thinking and that empathy should not be encouraged. It does not appear realistic to expect this of 19-year-old students, and we will discuss below how ignoring emotions in opinion building processes might in fact increase their influence.

Rider and Peters ( 2018 ) discuss free thinking, and Legg ( 2018 ) stresses how social media could lead users to avoid encountering any viewpoints or arguments that contradict their own, discussing how professional thinkers and writers seek better opinions by confronting others’ opinions. In her final line, she encourages readers to “[listen] well to those with contrary opinions—even those who promote them most aggressively—since, in the epistemic as opposed to the political space, as ever, ‘the [only] solution to poor opinions is more opinions’” (p. 56). She suggests seeking further information before behaving as if one has certainty as a way to overcome the arrogant assumed certainty that is a dismaying feature of our current regime. We fully agree with the need to take into account differing and contrary opinions: a good capacity for decentering is indeed central to CT, but how this can be achieved is a challenge that cannot be tackled without taking into account emotions and dealing with different forms of empathy.

With young students in particular, social belonging and emotions cannot be ignored. Bowell ( 2018 ) shows in an example that “students’ deeply held beliefs […] had been formed in the environments of their families and their communities. […] By recognizing and acknowledging the emotional weight of the students’ deeply held beliefs about climate change and their suspicion toward scientists and the evidence they produce, the teacher found a way to disrupt those beliefs” (p. 183). For 19-year-old students, asking for rational debate while ignoring emotions might be quite problematic for some SSIs. Since CT can be challenged by emotionally overwhelming reactions, without developing skills to decenter students from their own emotional and empathetic responses, many educational designs based on debate might not develop their full potential.

In summary, educational strategies for rational debate have substantial potential to promote science and CT and are often used in schools where CT is pursued; however, it appears, as PISA results show (Schleicher 2019 ), that there is still room for improvement. New learning designs specifically aimed at balancing reason and emotional reactions may contribute to increasing CT skills. Such designs should probably include learning to deal with the different forms of empathy that will be discussed below and could be implemented before setting up debates or possibly even before students develop their own opinions about the new SSIs raised by the abundance of neuroscience research.

2.2 Emotions and Decentering in Critical Thinking

Recent research adds evidence to what psychologists and some philosophers have long argued, namely, that opinion building and moral decisions cannot be understood solely as cold, objective, and logical (Young and Koenigs 2007 ; Decety and Cowell 2014 ; Narvaez and Vaydich 2008 ; Goldstein 2018 ) and that rational-only approaches cannot suffice to guide educational interventions on SSIs (Bowell, 2018 ). According to Sander and Scherer ( 2009 , pp. 189–195), emotion is a process that is fast, focused on a specific event, and triggers an emotional response . It involves 5 components: expression (facial, vocal or postural), motivation (orientation and tendency for action), bodily reaction (physical manifestations that accompany or precede the emotion), feeling (how the emotion is consciously experienced), and cognitive evaluation (interpretations that make sense of emotions and induce them). These interpretations differ across people, moments, individual memories, values, and social belongings, implying complex relationships among emotions, values, and “reason” and indicating how much emotional responses to the same situations can vary according to personal, cultural, and social characteristics. Emotions affect attention to and the salience of specific aspects of a situation (Sander and Scherer 2009 ) and can lead to focusing only on some aspects of the triggering situation and ignoring others. For example, negative emotions narrow the attentional focus and one’s ability to take others’ emotions, such as pain, into account (Qiao-Tasserit et al. 2018 ). Positive emotions (Fredrickson 2004 ; Rowe et al. 2007 ) can broaden people’s attention and thinking, but negative emotions tend to reduce judgment errors and result in more effective interpersonal strategies (Forgas 2013 ; Gruber et al. 2011 ).

The role played by emotions in opinion building has often been considered detrimental (Facione 1990 ; Ennis 1987 ). However, Tracy Bowell ( 2018 ) argues for “ways in which emotion and reason work together to form, scrutinise and revise deeply held beliefs” (p.170). Sadler and Zeidler ( 2005 ) insist on “the pervasive influence emotions have on how students frame and respond to ethical issues” (p. 115), and it appears there is an agreement that opinion building cannot be understood as only objective and logical. Adding empirical evidence to Sadler and Zeidler ( 2005 ) in a way, Young and Koenigs ( 2007 ) use fMRI data to show that emotions not only are engaged during moral cognition but are in fact critical for human morality and opinion building. Confirming in-group biases identified by social psychologists, neuroscience research suggests that thinking about the mind of another person is done with reference to one’s own mental characteristics (Jenkins et al. 2008 ) and can therefore interfere with and thwart decentering attempts. Vollberg and Cikara ( 2018 ) showed that in-group bias can unknowingly influence emotions and opinions in favor of the priorities and interests of the group. We see this new evidence as convergent with the discussion by Sadler and Zeidler ( 2005 ) of the interactions between informal (rationalistic, emotive, and intuitive) reasoning patterns that occur when students think about SSIs.

We have seen that both Ennis ( 1987 ) and Facione ( 1990 ) support the importance of decentering from one’s own point of view, emotions, and values in order to be able to take into account other, potentially conflicting perspectives. De Vecchi ( 2006 ) also differentiates levels of CT, with the highest level being “Debating one’s own work as well as that of others in a cooperative manner. Positively discussing objections from others and taking them into account” (p. 180, our translation). Jiménez-Aleixandre and Puig ( 2012 ) emphasize thinking independently, challenging one’s own personal or collective interests and overcoming egocentric values. Piaget ( 1950 ) used the term décentration (often translated as decentering ) to describe the progressive ability of a child to move from his or her “necessarily deforming and egocentric viewpoint” to a more objective elaboration of “the real connections” between things (p. 107–108, our translation). This move implies disengaging the object from one’s immediate action to locate it in a system of relations between things corresponding to a system of operations that the subject could apply to them from all possible viewpoints. The capacity for “putting oneself in another’s shoes” and envisioning the complex potential intentions and mental states of others, also referred to as the theory of mind or cognitive empathy, begins developing in young children around the age of 2 and appears to be unique to humans and a few other animals (Call and Tomasello 2008 ; Seyfarth and Cheney 2013 ).

This particularly highlights the relevance of decentering to independent opinion building processes in our multicultural, connected world, where sensationalism, speed, and immediacy challenge one’s capacity to put into perspective one’s own opinion or emotional reactions. The SSIs raised by neuroscience research include sensitive issues such as claims in popularized media about deciphering various human mental processes (e.g., the placebo effect (Wager et al. 2004 ), face identification from neuron activity measurements (Chang and Tsao 2017 ), and vengeance control (Klimecki et al. 2018 ) and possibly modifying them (e.g., activating brain areas to control pain (deCharms et al. 2005 )) that could elicit strongly differing moral views across the diversity of social and religious belongings or personal values and monistic or dualistic views about the mind. Helping students to think independently from their moral perspective about such issues calls for teaching designs specially geared towards developing decentering skills, not just requiring them.

The process of forming an independent opinion about a given SSI should therefore include two dimensions: (1) awareness that one’s point of view and emotional reaction towards a situation are not necessarily the only ones; (2) the capacity to understand and take into account other possible emotional reactions than one’s own without necessarily adhering to them.

Jiménez-Aleixandre and Puig ( 2012 ), as they highlight the importance of thinking not only reasonably but also independently , point out that CT should include the challenge of argument from authority (traditional authority of position (Peters 2015 )) and the capacity to criticize discourses that contribute to the reproduction of asymmetrical relations of power. They distinguish four main components of CT:

The ability “to evaluate knowledge on the basis of available evidence [...]”

The display of critical “dispositions, such as seeking reasons for one’s own or others’ claims [...]”

The “capacity of a person to develop independent opinions [...] as opposed to relying on the views of others (e.g., family, peers, teachers, media)”

“the capacity to analyze and criticize discourse that justifies inequalities and asymmetrical relations of power.” (p. 1002)

For these authors, while the first two components belong to argumentation, the other two have to do with social emancipation and citizenship. This socially decentered dimension of CT highlights the importance of the skills this project focuses on: “the competence to develop both independent opinions and the ability to reflect about the world around oneself and participate in it. It is related to the evaluation of scientific evidence [...], to the analysis of the reliability of experts, to identifying prejudices [...] and to distinguishing reports from advertising or propaganda. Thinking critically [...] could involve challenging one’s own personal or collective interest and overcoming egocentric values” (p. 1012).

We will refer to decentering as the ability to put one’s first emotional reactions in perspective and take into account different, contradictory values and emotional reactions other people (with different values, social contexts, and beliefs) might have in a given situation—real or imagined.

2.3 Empathy as a Skill for Decentering in Critical Thinking?

Singer and Klimecki ( 2014 ) write that perspective-taking ability is the foundation for understanding that people may have views that differ from our own and that moral decisions strongly imply empathic response systems. Empathy is “a psychological construct regulated by both cognitive and affective components, producing emotional understanding” (Shamay-Tsoory et al. 2009 , p. 617). Empathy is often considered a positive, benevolent emotional reaction, but some forms of empathy can hinder decentering. Bloom 2017a , b ) highlights the ambiguous role of emotional empathy in moral reasoning: he argues that empathy is fraught with biases, including biases towards attractive people and for those who look like us or share our ethnic or national background. Additionally, it connects us to particular individuals, real or imagined, but is insensitive to others, however numerous they may be (Bloom 2017a ). He compares empathy to a searchlight: it focuses on one aspect of the situation and the emotions it causes but leaves in darkness the other emotional reactions that people with different values or in different situations might have; therefore, some forms of empathy do not facilitate perspective-taking. Klimecki and Singer ( 2013 ) distinguish two empathetic response systems. The first response type, emotional empathy, focuses the attention of subjects through the emotions the situation evokes but blinds them to other people’s reactions and leads to self-oriented behavior. A second type of response, cognitive empathy (which we consider to be similar to Sadler and Zeidler’s emotive reasoning), helps one understand the emotional reactions and perspectives of those with different values or from different cultures and is a critical decentering skill. For Shamay-Tsoory et al. ( 2009 ), emotional empathy is developed early in infants and acts as a simulation system ( I feel what you feel ) involving mainly emotion recognition and emotional contagion. Cognitive empathy develops later and relies on “more complex cognitive functions,” such as the “mentalizing” or “perspective-taking” system: the ability to understand another person’s perspective and to feel concerned for what the other feels without necessarily sharing the same feelings. The first form of empathy is problematic (Bloom 2017a ), because sharing the negative emotions of others can paradoxically lead to withdrawal from the negative experience and self-oriented behavior. Cognitive empathy allows for a more distant and balanced appraisal of a situation: it results in positive feelings of care and concern and promotes prosocial motivation. It also helps one understand the emotional reactions of others who have different values and social belongings, which is necessary for decentering in CT.

We have seen that opinion building cannot be considered a cold and rational process and that many biases prevent individuals from understanding others’ emotional reactions, which hinders independent thinking in CT. Some forms of empathy, also called perspective-taking, theory of mind, empathy, or sympathy, might mitigate this problem; therefore, we will discuss their implications for thinking about SSIs. Sadler and Zeidler ( 2005 ) show that empathy “has allowed the students to identify with the characters in the SSI scenarios and allow for multiple perspective-taking” (p. 115). Furthermore, they describe how emotive reactions can help students imagine others’ reactions and describe informal reasoning as involving empathy, a moral emotion characterized by “a sense of care toward the individuals who might be affected by the decisions made” (p. 121). This informal emotive reasoning is rational and rooted in emotion and differs from rationalistic reasoning. The authors insist that emotive patterns can be directed towards real people or fictitious characters. We assume that empathy (emotive reactions) directed at real or imagined people could be used in education to help students develop a decentered perspective. Complex decisions involving contradictory moral principles strongly imply empathy (Sadler and Zeidler 2005 ). While Sadler and Zeidler ( 2005 ) mention the importance of emotive informal thinking, this skill is not generally addressed when designing education about SSIs.

Shamay-Tsoory et al. ( 2009 ) suggest that emotional and cognitive empathy rely on “distinct neuronal substrates.” Singer and Klimecki ( 2014 ) also show that the plasticity of these systems allows cognitive empathy to be trained to some degree in a few sessions. Overall, these neuroscientific results suggest that cognitive and emotional systems are complex and concurrent and might well be separate within the brain. While measures of activity , from which empathy is inferred in ways the scientific community recognizes, cannot be considered from a philosophical point of view as proof, it is scientific evidence that is worth considering for learning design. This could imply that cognitive empathy can be activated and trained without necessarily activating emotional empathy. Educational designs that develop cognitive empathy and decentering might help students to “think independently, challenging [their] own personal or collective interest and overcoming egocentric values” while reducing the pitfalls of “emotions […] which constrain one’s objectivity or rationality” (Facione 1990 , p. 12). This is the challenge this research focuses on. Cognitive empathy, so crucial for decentering, is not generally developed in schools. Debate-based learning designs that do not distinguish between emotional and cognitive empathy might not realize their full potential because of previous emotionally biased opinions. This could explain some of the difficulties felt by many about purely or mainly emotive reasoning and the limits of intuitive reasoning (Jiménez-Aleixandre and Puig 2012 ). The conceptualization we develop here suggests pursuing a new approach for developing decentering competency: developing cognitive empathy for the emotional reactions of others while refraining from emotional empathy in the process of building independent opinions.

2.4 Understanding Science Methods to Develop CT

Methods are at the core of research paradigms (Kuhn 1962 ) and determine a good part of the potential and limits of scientific research (Lilensten 2018 ). Therefore, some understanding of research techniques and methods is required to assess the scope (including the limits, implications, and potential uses) of research results (Hoskins et al. 2007 ). Facione ( 1990 ) also insists on the necessity of a proper domain-specific understanding of methods. One implication the experts draw from their analysis of CT skills is this: “While CT skills themselves transcend specific subjects or disciplines, exercising them successfully in certain contexts demands domain-specific knowledge, some of which may concern specific methods and techniques used to make reasonable judgments in those specific contexts” (p. 7).

Methods and their limits are often ignored by teachers (e.g., Waight and Abd-El-Khalick 2011 ; Kampourakis et al. 2014 ). Didactic transposition (DT) theory (Chevallard 1991 ) investigates how knowledge that teachers are required to teach is transformed during the process of selection into curricula and adaptation to teacher values and classroom requirements. The methods that produce research results are generally not thoroughly discussed with students. The large body of research on DT shows that to be easily teachable, exercisable, and assessable, classroom knowledge generally becomes definitive and is often reduced to assertive conclusions (Lombard & Weiss 2018 ).

Understanding the limits of neuroscience research results, especially neuroimaging results, is a particular challenge. A proper understanding of the methods used is needed to understand the limits of such research and develop a critical perspective to overcome neuroenchantment (Ali et al. 2014 ). There is a risk that activities might be understood as objects and essential concepts and that inferences of the engagement of a specific cognitive process from brain activation observed during a task might be overinterpreted (Nenciovici et al. 2019 . While research articles are required to discuss the limits of their claims, proper interpretation of the neuroimaging data commonly found in popularized science is a critical challenge (Illes and Racine 2005 ), and students are not often presented primary literature. Rather, they encounter transposed versions where claims and simplified interpretations are typically presented as definitive without discussion of the limits that the methods imply. Indeed, there are many issues with the emotive power of brain scans; for example, Check ( 2005 ) and McCabe and Castel ( 2008 ) show that neuroimages can have much more convincing power than the methods and the scientific data they produce warrant, leaving future citizens unprepared to face new issues as they arise. We will refer to this solid understanding of the methods required to assess the limits and potential uses of research as scientific method literacy .

Since methods are generally absent or insufficiently represented in the popularized science that students are confronted with (Hoskins et al. 2007 ), this has an important implication: in order to discuss SSIs, it is necessary to refer to the original article to obtain a proper understanding of the potential uses and limits of the research. Having secondary or high school students use primary literature with some help has been shown to be possible and, in fact, beneficial for a good understanding of science (Yarden et al. 2009 ; Falk et al. 2008 ; Hoskins et al. 2007 ; Lombard 2011 ).

From this literature, we draw the need for what we call scientific methods literacy, in this context defined as the ability to understand scientific techniques and methods sufficiently to imagine potential uses and limits. This will generally imply some access to primary literature.

2.5 Educational Design for Decentering CT Skills

Let us recall that we aim to propose and discuss a new learning design to develop a selection of students’ skills for CT about SSIs in neuroscience. More precisely, we aim to foster an independent opinion building. The aims of this article are (1) to translate the new conceptualization emerging from the theoretical framework into an instructional design that develops the selected CT skills in higher secondary biology classes, (2) to describe this design, and (3) to analyze and discuss the results produced by this design in its final iterative refinement. Our literature review identified two crucial skills that learners should develop to improve their CT: (i) decentering skills: the ability to decenter from one’s first emotional reactions and take into account different, contradictory values, and emotional reactions; (ii) certain scientific methods literacy skills: specifically defined here as the ability to understand scientific techniques and methods sufficiently to imagine potential uses and limits. Not discussed in this article but also relevant are other scientific information literacy skills, i.e., the ability to select and understand scientific articles and to produce text according to typical scientific practice. Below, we shall briefly outline the overall design approach, the learning goals, and the main guiding principles that can be used to generate specific learning designs such as the one presented in Section 4 .

Learning is a process that can be guided and encouraged but not imposed. “One of the ways that teaching can take place is through shaping the landscape across which students walk. It involves the setting in place of epistemic, material and social structures that guide, but do not determine, what students do” (Goodyear 2015 , p. 34). In that view, the materials and resources presented do not automatically map to learning gains; rather, the cognitive activities learners effectively practice determine the learning. Accordingly, the epistemic, material, and social structures (practical activities and productions) must be designed to encourage these cognitive activities. Goodyear ( 2015 , p. 33) explains that “The essence of this view of teaching portrays design as having an indirect effect on student learning activity, working through the specification of worthwhile tasks (epistemic structures), the recommendation of appropriate tools, artefacts and other physical resources (structures of place), and recommendation of divisions of labor, etc. (social structures).”

Thinking of teachers as designers offers methods for dealing with complex issues, reframing problems, and working with students “to test and expand the understanding of the problem. Reframing the problem, for example by seeing the problem as a symptom of some larger problem, is a classic design move” (Goodyear 2015 , p. 35). Successive iterations of the design in this project led to the new conceptualization of CT about popularized neuroscience presented here. “Typically, design-based research imports researchers’ ideas into a specific educational setting and researchers then work in partnership with teachers (the local inhabitants) to develop, test and refine successive iterations of an intervention” (Goodyear 2015 , p. 41). Design is not a one-way process by which theory is applied to practice; Schön ( 1983 ) has shown that in the development of expertise, theory is informed by practice as much as practice is informed by theory, in a continuous process. This study is design-based research (DBR), a research paradigm that was developed as a way to carry out formative research for testing and refining educational designs based on theoretical principles derived from prior research (Barab 2006 ; Brown 1992 ; Collins et al. 2004 ; Sandoval and Bell 2004 ). In DBR, iterations of the design produce conclusions—including an enrichment of the theoretical framework and derived design rules—that lead to the optimization of the design and are fed into the next iteration. “Design-based research progresses through cycles of theoretical analysis, conjectures, design, implementation, analysis and evaluation which feed into adjusting the theory and deriving practical artefacts” (Mor and Mogilevsky 2013 , p. 3). Analyzing the data from each design cycle led to reframing the problem and clarifying and focusing the education goals, which raised new research questions that in turn led to obtaining data more relevant to these renewed questions in the next iteration.

According to Collins et al. ( 2004 ), DBR is focused on the design and assessment of critical design elements. It is particularly well suited for exploratory research on learning environments with many variables that cannot be controlled individually—which rules out experimental or pseudoexperimental paradigms. Instead, design researchers try to optimize as much of the design as possible and to observe carefully how the different design elements are operating. As a qualitative approach, DBR is well suited to the creation of new theories (Miles et al. 2014 ). This choice is also ethically justified, since this is not a short experimental intervention but a semester-long course in which tightly controlled conditions might not offer the best learning conditions: in DBR, the design is iteratively adapted and offers to students the benefit of the best available design the research can provide at any time (Brown 1992 ). Better, more relevant data from each iteration were used to extract design principles and optimize the design offered to students the following year. DBR is similar to action research (Greenwood and Levin 1998 ) in the tightly interwoven student, teacher, and researcher implication and the feeding of information back to the community. In DBR, however, the design itself is the object of research and provides valuable insight into learning processes. Compared with other research paradigms, DBR is less about comparison with other published designs than about producing better questions, developing workable designs, and proposing design rules.

From this multiyear DBR approach emerged (i) the new conceptualization on which this article is based, (ii) the identification of educational goals focused on decentering skills and scientific methods literacy, (iii) the design principles presented in Section 3 , and (iv) the methods for obtaining and discussing data relevant to these goals presented in Section 4 .

3 From Theory to Design Conjectures

The method we used to guide the design of this educational module is strongly inspired by Sandoval and Bell 2004 ’s conjecture maps . We explained this method elsewhere and how we used it to help teachers in training to create, implement, and reflect on their educational designs (Lombard, Schneider & Weiss 2018 ). Central in this approach is the role of embodied conjectures . These are “design conjectures about how to support learning in a specific context, that are themselves based on theoretical conjectures of how learning occurs in particular domains” (Sandoval and Bell 2004 , p. 215). In our model, conjectures (CJs) are implemented as design elements (DEs), which are specific items (generally activities that can be enacted) introduced into the design to produce educational effects, called expected effects (EEs), such as understanding and perspective-taking. These outcomes, being abilities or competencies (EEs here), are not directly measurable (Miles et al. 2014 ), and we therefore look for performed, observable activities that reflect them. EEs are therefore assessed through observable effects (OEs), such as student productions, observations, or other traces in which relevant indicators can be measured. The codebook used for the research is available in Appendix Table 1 . In the proof-of-concept design, a simplified version was used by the teacher for assessment; the OEs used to measure the EEs are described in Section 4.2 . The DEs describe and assess the effects of the critical design elements specifically introduced to implement the CJs. They imply that a basic workable learning design is available, e.g., analyzing articles in the category information processing models described by Joyce et al. ( 2000 ) and that teachers have the skills to implement this classical design. To summarize, conjecture maps explicitly state how conjectures (CJs), i.e., contextualized theoretical constructs, will be implemented with d esign e lements (DEs), what the e xpected educational e ffects (EEs) are, and how these can be measured with o bservable e ffects (OEs) by teachers and researchers. Researchers and teachers use the same data but analyze them differently for different purposes. Teachers use OEs to measure student progression for formative assessment (Brookhart et al. 2008 ), for diagnostic assessment (Mottier Lopez 2015 ), to inform student guidance, or for student certification. Researchers in this project used these data to assess the efficiency of the design, i.e., to discuss the relevance of the OEs as measures of the EEs and the efficiency of the DEs in producing the EEs and to possibly question the CJs.

Educational strategies aiming to develop perspective-taking should be specifically designed to help students imagine and understand emotional and moral reactions to new research that are different from their own. Based on our theoretical discussion, the precise learning goals we aim to develop are scientific methods literacy and decentering competency. To compose the conjecture map (Sandoval and Bell 2004 ), we decompose these into four operationalized key skills, the expected effects (EEs):

Scientific information literacy : the ability to find, select, and use scientific text .

EE1 : identify the typical, structural elements of a scientific article (the ones often missing in a popularized article), such as the methods and references section and communicate these elements, accurately and concisely, orally, and in writing.

EE1 is part of the design but is not analyzed in this article.

Scientific method literacy : The ability to understand how the research was carried out.

EE2 : understand the techniques and methods presented in the scientific articles in order to assess the limits of scientific claims and identify several plausible possible uses of the techniques and methods introduced in the article.

Decentering competency : The ability to take some distance from one’s own emotional reactions to moral issues and to imagine and/or take into account other possible moral principles.

EE3 : imagine different moral reactions to the possible uses of the techniques and methods presented in the article under study.

EE4 : realize that one’s own reactions are not unique and consider other moral principles to assess each potential use without expressing one’s opinion.

The main point here is helping students realize that their own opinions are influenced by an ensemble of personal values and social belongings that are not absolute and can be put into perspective in order to develop decentering skills for CT. Values can be loosely defined here as what grounds a person’s judgments about what is good or bad and desirable or undesirable.

To inform the design of a learning environment to develop these educational goals, we summarize the theory discussed into a set of CJs. In other words, the educational design process is to be guided by several design hypotheses that we call CJs (Sandoval and Bell 2004 ). Each is explained below:

CJ1: Reading and analyzing scientific articles helps students improve the structure and content of their own scientific texts. Learners have to search the primary literature for specific knowledge, such as methods, and are guided to recognize and become familiar with the structure of scientific articles (Falk et al. 2008 ; Hoskins et al. 2007 ) and to elaborate their analysis in an imposed structure. Practiced repeatedly with constructive feedback, this is expected to improve their scientific literacy (Hand and Prain 2001 ).

CJ2: Sufficient understanding of the techniques and methods is needed to imagine the potential uses and limits of the student-studied research. We have seen that methods are often ignored in science teaching. Let us consider a recent paper presenting a method for producing images of the faces seen by a subject based on measurements of the neuronal activity of 200 brain neurons (in macaques) during facial visualization (Chang and Tsao 2017 ). Potentially, images of what a macaque—and probably a person—is seeing, remembering, and imagining could be produced on a computer screen with this neuroscience technique. Potential uses of this technology that raises important SSIs could include eventually being able to identify a criminal suspect’s face by recreating an accurate image of the face through neuronal analysis of the victim’s brain (a sort of direct, brain-to-paper police sketch). A good understanding of the research methods used and their limits is needed to assess the plausibility of this potential use.

CJ3: An array of potential uses of the scientific techniques studied can set the stage for cognitive empathy. Let us recall that emotional-only empathy and biases might narrow the attentional focus and prevent students from taking into account other possible emotional reactions by people with different values, from different social groups, etc. Additionally, debating opinions can unwittingly modify students’ opinions and could trigger personal, cultural, or religious sensitivities in the multicultural classrooms of today. This leads us to restrain students from stating their opinion. To encourage decentering and cognitive empathy, the theoretical discussion presented leads us to propose discussing potential new situations in which students can imagine what different people—with different values, from different cultures, etc.—could potentially use this new technique to do. In an abstract discussion of SSIs, it might be difficult to evoke others’ emotional reactions, since cognitive empathy is a process that requires imagining people’s reactions. It follows that SSIs should be contextualized in situations that the students can relate to and in which they can imagine others and their reactions.

CJ4: Framing SSIs as evoking different emotional reactions and expressing them in terms of conflicting values without mentioning one’s own opinion can develop decentering skills. Students should be encouraged to imagine possible uses, even some that might seem unacceptable to them, in order to explore possible reactions from people with different values and from different cultures and to use cognitive empathy in order to learn how to decenter when encountering a thorny and difficult SSI. Learners are encouraged to restrain their emotional empathy but to foster cognitive empathy, which is central to decentering. As an example, neuroimagery can be used to measure pain experience (Wager et al. 2004 ). The technique (the specific use of fMRI found in the methods) has many potential uses: to compare the effectiveness of and improve pain treatment, to detect fraudulent or simulated illness for insurance purposes, even to compare the pain induced by different torture treatments, etc. These situations can help students imagine the emotional reactions of other people. Refraining from expressing personal opinions could ultimately help to put them into perspective and discover the moral reasons that might cause rejection or adoption of this particular use. These can be expressed as dilemmas.

From the operational formulation of scientific literacy and decentering competency learning goals as four key skills, expressed here as EEs, and the theoretical design constructs, expressed as CJs (CJ1–4), we formulate the following research subquestions:

RQ1: How can this conceptualization (the CJs and EEs) be implemented into an operational learning design, and what would be the main DEs? More precisely,

How can activities that develop scientific methods literacy skills (learning goal EE2) be designed?

How can activities that develop decentering abilities (learning goals EE3 and EE4) be designed?

RQ2: Does the learning design help students improve the selected CT skills? This RQ2 is also divided into two subquestions:

What evidence can be found that the design improves scientific methods literacy skills in students?

What evidence can be found that the design improves decentering abilities in students?

4 From Design to a Proof-of-Principle Implementation

Our global research approach—DBR—has already been described in Section 2.5 . Here, we describe the context and the method used to collect and analyze qualitative student data from a proof-of-principle semester course. The module was designed and implemented in a higher secondary biology class in Geneva, Switzerland, by one of the authors Footnote 1 beginning in 2003. It was conducted over a period of 15 years with a total of ten different cohorts of students and refined after each implementation. The module we discuss was first implemented in autumn 2002–2003 and improved through 10 iterations until 2018–2019. In this contribution, we present and discuss the latest version of the design.

Over the course of this study, deep societal transformations, including the emergence of social media and the political turmoil caused by fake news or “alternative facts,” resulted in a shift in the goals of the design and implementation. Additionally, theoretical input from research on science epistemology and CT led to a clearer conceptualization and a better focus of the design, which is intrinsic to the DBR paradigm. Over a decade and a half, this project moved from an initial focus on discovering recent bioscience research that would be relevant for future citizens to a second, that is, discussing the nature of science. This led us to consider scientific methods literacy, which is needed to properly understand and put into perspective research findings. Furthermore, an explicit focus on developing and strengthening CT skills emerged—at a time when awareness of CT was gaining in importance. The classes also focused more specifically on neuroscience research, as it was gaining media coverage. Students’ difficulty in formulating independent opinions about complex and new SSIs that raised emotional reactions became more apparent. This eventually led us to explore various designs that encourage learners to put into perspective their own opinions when discussing SSIs and that develop decentering skills. The theoretical input from empathy research (Singer and Klimecki 2014 ) led to a focus on cognitive empathy. Taking into account Shamay-Tsoory et al. ( 2009 ) led to the exploration of possible design elements specifically geared towards practicing cognitive empathy to take emotions into account without reinforcing emotional biases and emotional empathy. Attempts to manage this while avoiding the pitfalls of opinion debate led to the focus on identifying dilemmas in the learning design principles and the proof-of-principle design (2018/2019 implementation) presented here.

4.1 Population, Data Collection, and Analysis

The data sources are student-produced artifacts—written papers from 2 to 3 home assignments and a written exam—and responses from an individual online anonymous survey administered at the end of the semester to assess students’ perceptions of their CT skills, specifically, decentering and scientific methods literacy.

In the Geneva higher secondary curriculum, students choose at the age of 16 one optional class (OC) composed of 4 semester-long modules (2 periods weekly). Students cannot choose their OC within their major, so students in this study neither have a strong background in biology nor in science generally. This study took place in the third module (ages 18–19). Classes included 13 to 24 students. Other modules with other teachers treated human’s influence on the environment and climate change, neurobiology, and microbiology. Data on student progression were collected from the cohort (13 students) of the autumn 2018–2019 semester. Four papers were analyzed: two to three written assignments handed in during the semester (3–8 pages, graded) and the final exam, each analyzing a different recent article about neuroscience. One student did not hand in all the assignments, so her data were omitted, leaving a cohort of 12 students whose data are presented in Fig.  3 . All 13 completed the survey.

The third assignment was not mandatory for students who obtained full marks on assignments 1 and 2, so only 7 students handed in the third assignment. We analyzed the results of assignments 1 and 2 and the final exam. All 13 students gave permission for their anonymized papers to be analyzed for research purposes.

Data analysis was performed using mixed quali-quantitative methods (Miles et al. 2014 .

To answer the second research subquestion, we present and compare the students’ first paper (completed at the very beginning of the semester) with their second paper. We then compare, by the same method, paper 2 with paper 3, when available, or the final exam. The EEs were observed, coded on a 3-point scale and analyzed using five indicators of decentering and perspective-taking skills: the identification of scientific methods and techniques (EE2), the quantity of moral dilemmas presented, the diversity of values presented, the quality of moral dilemmas presented (EE3), and the student’s decentered communication (EE4). The codebook is available in Appendix Table 1 . Double coding of the first and last papers was applied until a 78% intercoder agreement was reached, and simple coding was then applied for the other papers. Size effects (Cohen’s d ) were computed between the first and last papers.

The end-of-semester survey included open questions about students’ perception of their progression (comparing their first and last assignment); their approach towards scientific articles and popularized science; what they learned about the relations of science and society, about opinion building, and about refraining from giving their opinion; what they learned as they built moral dilemmas; what they learned about using cognitive empathy to approach SSIs and about distinguishing emotional and cognitive empathy; the design itself, its structure, the resources, and what they considered efficient; and if the learning was worth the effort. Many of the questions were used to improve the design over the years (DBR); however, a selection of responses relevant to this research will be presented and discussed. Footnote 2

We shall now present and discuss the proof-of-principle learning design that was then implemented in a class.

4.2 The Proof-of-Principle Learning Design

The first research question, RQ1, is a design question. It asks how a learning design that favors the development of scientific literacy and decentering competency can be implemented. The criteria for success are whether a reusable design can be defined, implemented, and evaluated. Below, we will present the key DEs implementing our theoretical CJs that could be used to attain the learning goals (EEs). The second research question (see Section 5 ) regards evaluating the effects in an implementation.

Using the CJ mapping design method described in Section 3 , we will now present the sample learning design as a detailed conjecture map connecting the theory to DEs, learning goals, and effects (Fig.  1 ). Each CJ is connected to one or more DE that in turn leads to EEs. EEs (learning outcomes) can be shared and observed through OEs, e.g., student-produced artifacts such as texts or papers produced during assignments. The latter two can be used by teachers to support the teaching process and by researchers to evaluate the design.

figure 1

Implementing the goals in a learning design. From CJs to DEs, EEs, and OEs: CJ map of the proof-of-principle design

CJ1 on scientific literacy was implemented as DE1.

DE1: Students write an individual paper according to a specific structure: an introduction; the techniques and methods used in the student-studied research; a list of their potential uses; and a table listing, for each use, the reasons why oneself or others might favor it in the form of opposing values (moral dilemmas). This DE is necessary to achieve EE1 (students identify the typical, structural elements of a scientific article, and communicate these elements). Three OEs (OE1, OE2, OE3) can be used to assess students’ scientific method literacy. In this study, OE2 and OE3 were scored between 1 (lowest) and 3 (highest) using the codebook in Appendix Table 1 . OE1 (text structure) was not evaluated.

CJ2 ( Sufficient understanding of the techniques and methods is needed to imagine the potential uses and limits of the student-studied research ) is implemented with DE2 and DE3 . First, students must learn about the method and then imagine possible uses of the research as well as different people’s emotional and moral reactions:

DE2 : Students read a popularized article, try to identify the methods, write a section in an individual paper, and refer to the original article if the information in the popularized article is not sufficient. The EEs are EE1, as above, and EE2 ( Students understand the techniques and methods presented in the scientific articles in order to imagine the potential uses and limits of scientific claims ). Students must grasp the essence of the methods to produce an explanation of the methods that can be used to imagine possible uses. Learners realize that scientific claims are limited by methods and that popularized articles generally do not clearly explain the methods or discuss their limits. OE1 (text structure and elements) and OE2 (summary of methods) are used as observables.

DE3 : Find or imagine a list of potential uses of the new methods and techniques—even some that might be offensive to oneself or to other people—and write a section in an individual paper. DE3 supports EE2 and EE3 ( Students imagine different moral reactions towards the possible uses of the techniques and methods presented in the article under study ). OE4 ( table of dilemmas ) includes several potential uses realistically linked to the methods and was scored between 1 (lowest) and 3 (highest) using the codebook in Appendix Table 1 .

Decentering competency is the perspective-taking ability to take some distance from one’s own emotional reactions to moral issues and to imagine and/or take into account other possible moral positions. It relies on two CJs: CJ3 and CJ4 . CJ3 ( an array of potential uses of the scientific techniques studied can set the scene for cognitive empathy ) is also implemented as DE3 ( imagine uses of techniques and methods ) and leads to the following expected and observable effects: EE3 (same as above), OE4 ( table of dilemmas includes a diversity of moral values ), and OE5 ( moral dilemmas involve truly opposing contradictory values ). The OEs are scored from 1 (lowest) to 3 (highest) using the codebook in Appendix Table 1 ). CJ4 focuses on decentering ( framing SSIs as evoking different emotional reactions and expressing them in terms of conflicting values without mentioning one’s own opinion can develop decentering skills ).

DE4 : Students must create a table with at least two opposing values or moral principles on each line, e.g., “improvement of well-being” vs. “natural course of illness” or “knowledge progress” vs. “religious values considering early embryos as human life.” Alternatively, students could be asked to present the conflicting emotional reactions that other people might have according to their different values and social contexts. DE4 supports EE4: students realize that their own reactions are not unique and are capable of considering other values to assess each potential use without expressing their own opinion (decentering). The related OEs are OE5 ( moral dilemmas involve truly opposing contradictory values ) and OE6 ( text uses decentered expression, no personal opinion, and balanced mention of other values) , which are scored between 1 (lowest) and 3 (highest) using the codebook in Appendix Table 1 .

4.3 Implementation of a Proof-of-Principle Learning Design

This abstract learning design was implemented in a classical information processing learning model (Joyce et al. 2000 ). The resulting learning design for the 2018/2019 class can be summarized in three phases, through which students produce (i) a description of methods (OE2), (ii) a list of potential uses (OE3), and (iii) a list of dilemmas (OE3, OE4) with opposing values (OE5) that uses decentered expression (OE6). A summary of the learning design that was implemented and studied is illustrated in Fig.  2 .

figure 2

Diagram of the main learning design elements (DEs), their expected effects (EEs), and observable effects (OEs)

For each of the three assignments, students were first given a popularized article on recent neuroscience research to read and were helped in class to understand the methods by identifying them in the original article from the primary literature (the student-studied research) in journals such as Nature , Science , and PNAS (DE1, DE2). Then, they were asked to use this understanding of the methods to elaborate a list of potential uses of these methods/techniques and discuss their plausibility, afterward creating a table relating each potential use to at least one moral dilemma between opposing moral principles. They had to produce (at home) a written text guided by a teacher-imposed structure:


Methods and techniques: identify and describe the scientific methods and techniques used to obtain the results presented.

Potential uses: identify or imagine potential uses of these techniques and methods and evaluate their plausibility.

Moral dilemma: identify the moral dilemmas resulting from each of the potential uses and formulate them in terms of dilemmas (tensions between moral principles).

Students analyzed in detail three scientific articles for the written assignments. These artifacts were assessed and marked. The articles were as follows: (1) Tourbe ( 2004 ); original article: Wager et al. ( 2004 ). (2) Servan-Schreiber ( 2007 ); original article: Singer et al. ( 2004 ). (3) Peyrières ( 2008 ); original article: McClure et al. ( 2004 ). Another five articles were discussed only in the classroom, and the final exam was the fourth artifact. The exam was based on (4) Campus ( 2018 ); original article: Klimecki et al. ( 2018 ). For this class, the moral principles included benevolence, autonomy, equality, respect for life, pursuit of knowledge, and freedom of trade. They were empirically selected for their heuristic value, as the secondary students in this biology course did not have a strong background in philosophy, and the decentering goal required awareness of moral differences but not a very fine classification. Of course, other learning designs could use a different list tailored to the background of the students and goals of the curriculum. Students were required to produce a table that linked each potential use to a pair (or more) of conflicting reactions and moral values (a moral dilemma).

Over the course of the semester, feedback and assessment—at first focused mainly on scientific methods literacy—were progressively widened in scope to include potential uses and finally perspective-taking ability. In this proof-of-principle design, these assignments were graded using the OEs described above using what amounted to a simplified version of the rubric used for this research (see Appendix Table 1 ) and returned with written formative feedback highlighting specifically which items needed to be improved. Marks were improvement-weighted: progress was encouraged by a bonus on the next assignment when the items marked as wanting were improved on. This was inspired by knowledge improvement research (Scardamalia and Bereiter 2006 ) and was introduced as a strong incentive for students to improve . Through this iterative process, students were expected to gradually improve the selected skills and the texts produced. A final exam assessed the students’ skills acquired over the whole semester.

The methods, potential uses, and opposing moral principles in the form of dilemmas were first discussed in class. The focus was on instilling a sufficient understanding of the methods to allow students to find or imagine the potential uses—what different people might want to do using the techniques and methods of the student-studied research. This was done using a structured teacher-driven interactive discussion that guided students to find the methods in the primary article (OE2) and to understand them, with assistance for translation into French when needed. A few examples will illustrate how a proper understanding of the methods and their potential uses is required to imagine other people’s reactions. Understanding the methods is also necessary to see the limits of the research under study. Students had to discuss how realistic each potential use was, either based on the final section of the original article (the perspectives) or imagined by the students. This discussion of methods and possible uses naturally brought up the issue of the limits of fMRI imaging and the risks of neuroenchantment (Ali et al. 2014 ). Since the popularized article generally ignored the methods or simplified them to the point of omitting all reference to the degree of uncertainty and the limits of the claims that define scientific knowledge, students initially believed that the research under study produced claims that were definitive and “scientifically proven.” The comparison of popularized and original research very clearly highlighted some of the popularization issues Illes and Racine ( 2005 ) raised. For example, where Wager et al. ( 2004 ) cautiously conclude, “Although the results do not provide definitive evidence for a causal role of PFC in placebo, they were predicted by and are consistent with the hypothesis that PFC activation reflects a form of externally elicited top-down control that modulates the experience of pain” (p. 1167), the popularized neuroscience article that the students started with (Tourbe 2004 ) claimed that this research “proves that placebo reduces pain” (p. 26, our translation). This definitive claim is far from the prudently worded conclusion of the original article. Only a good understanding of the methods in the original article could lead to an understanding of the specific characteristics of how science validates knowledge. Reading of methods involving many control conditions and randomization brought up discussions in which students could discover essential concepts such as ceteris paribus, dependent and independent variables, and ruling out alternative explanations. While this was not the main educational goal of this proof-of-principle design, it might have helped develop students’ perspective on the nature of scientific knowledge (NOS). In fact, the claim by the popularizing journalist that this research “proves that placebo reduces pain” is not at all related to the research question of Wager et al. ( 2004 ), who attempted to explore which of three hypothesized neural mechanisms causes the placebo effect. The difference was used in the proof-of-principle design to bring up a fundamental issue, as the journalist concludes that placebo is “not only a simple psychological effect,” implying a dualistic view, while Wager et al. clearly adopt a monistic experimental paradigm (and probably view of the mind). This brought up a discussion about both possible views—quite in line with the decentering goal of this design—and students were encouraged to understand each statement in the context of the different implicit paradigms within which scientific authors and popularizing journalist work—whatever view they personally might have.

Additionally, students’ attention was drawn to the conflict of interest statement in the article by de Charms et al. ( 2005 ), which mentions that C. de Charms “has an ownership interest in Omneuron Inc. with pending patents on rtfMRI-based training methods.” This was not apparent until students read the original article. Then, students were encouraged to draft a list of potential uses (OE3) for further discussion in the form of moral dilemmas (OE4, OE5). For example, students imagined that the methods used by Wager et al. ( 2004 ) could be used to measure pain experience, to evaluate the efficiency of different pain-reducing therapies, to track down people cheating the healthcare system by pretending to have pain, or to assess the efficiency of torture methods by the military or terrorists.

Students were encouraged to plainly state the potential uses of new bioscientific methods and refrain from personal judgment. They were reminded that this course was not about deciding which opinion is best but about being able to listen to others and take other values, beliefs, and social contexts into account when formulating one’s own independent opinion. Some of these potential uses could cause strong emotional reactions, challenging the students’ own personal or collective interests. This highlights the educational goal for overcoming egocentric values: thinking independently (Jiménez-Aleixandre and Puig 2012 ). Emotional reactions were expressed by students but put into perspective as possible reactions stemming from their values, beliefs, and social and cultural belongings, thus emphasizing that others might see things otherwise. For example, when formulating dilemmas and discussing how a medical doctor might have to apply advance directives regarding end-of-life issues, one student insisted on strongly expressing her opinion that doctors must do all that they can to save the lives of patients—referring to the Hippocratic Oath. This opinion was received, and the emotional load it might carry was warmly acknowledged by the teacher. Then, in the class discussion, the fact that this was one possible reaction and that others might feel otherwise was accepted and examples were sought. The Children Act (McEwan 2014 ) was mentioned as an interesting avenue for exploring this dilemma.

The definition of opinion given by Astolfi ( 2008 ) was featured in the course description and referred to in classroom discussions. The moral dilemmas students produced while studying the Wager et al. ( 2004 ) example mentioned above—in line with the potential use “evaluate the efficiency of different pain-reducing therapies”—could involve benevolence (probable pain reduction) vs. respect for beliefs (not interfering with natural processes of health or divine intervention). Most student-studied research could lead to dilemmas such as pursuit of knowledge (better understanding of brain activities and processes) vs. loss of benevolence (money used in this research is not available elsewhere for other possible benevolent uses). The rather extreme example of assessing torture methods could lead to a dilemma of benevolence (freeing prisoners from terrorists) vs. malevolence (inflicting pain on humans).

It is worth noting in this case that though scientific literature arguing for the inefficiency of torture to obtain useful confessions (Starr 2019 ) was mentioned in this class, the teacher did not prevent such a dilemma from being posed, since some people might weigh more heavily the first arm of the dilemma than the second. This highlights how the decentering goal of this design is not an ethical discussion or rational debate to determine the best opinion but could well be used before various other CT learning activities. Having answered RQ1 by describing how we successfully implemented the general design CJs (Section 3 ) using a conjecture mapping technique (Section 4.2 ), let us now examine the empirical results to answer RQ2.

5 Results from the Proof-of-Principle Learning Design

5.1 results from student artifacts.

Does the learning design help students improve their scientific methods literacy and decentering abilities (RQ2)? As explained in Section 4.1 , we examined changes in artifacts produced by students (also called student productions or learner outputs in the literature), i.e., papers and written exams. Improvement in scientific methods literacy (EE2) was measured with OE2, i.e., identification of scientific methods and techniques in student artifacts. Decentering competency (EE3/EE4) was measured with four indicators: quantity of moral dilemmas (OE3), diversity of values (OE4), quality of moral dilemmas (OE5), and decentered communication (OE6).

The results for all the items indicate progress across the semester (Fig. 2 ). With N  = only 12, we computed the effect size (Cohen’s d between the first assignment paper and the text produced for the written exam), which measures the strength of a statistical claim, taking into account the progression (difference) as well as the uncertainty (standard deviation) in the data. For most scores, the effect size can be considered large (from d  = 1.29 to d  = 2.76), while the effect sizes for diversity of values ( d  = .38) and decentered communication ( d  = .86) qualify as good.

The scores for the identification of techniques and methods, used to measure scientific methods literacy (OE2), had improved by (+ 0.6 points) by the last iteration. Concerning the second part of RQ2—measures of decentering skills—the strongest progression (+ 1.25) was found for the quantity of moral dilemmas (OE3) proposed by the students. In most papers from the second assignment, several dilemmas in the form of “value vs. other value” were found, and the score remained generally stable in the final stage. The diversity of values proposed (OE4) moderately increased (+ 0.23), but the scores for the first paper had already achieved a high mean value (2.33); thus, there was little margin for improvement. The second-highest progression (+ 0.91) was found for the quality of moral dilemmas, which measures the ability to present dilemmas as contradicting values in a symmetrical way (OE5). Decentered communication abilities (OE6) showed little progression (+ 0.33) but the highest initial value ( M  = 2.50).

In addition, the final examination (the fourth student artifact produced) was aligned with the official curriculum.

5.2 Student Perceptions: Results from an End-of-Semester Survey

Additional insights for answering RQ2 can be drawn from a selection of responses to the end-of-semester questionnaire (2019 cohort, N  = 13, responses translated from French) concerning the students’ perceptions of their CT skills (decentering and scientific methods literacy) and, to some extent, their CT attitudes.

Overall, decentering skills (EE4) were the skills most frequently mentioned by students as acquired (21 mentions), Footnote 3 expressed in statements such as (our translation)

I am more objective
I take a step away from my own opinion
I am more open-minded towards different possible points of view, be it my opinion or not

Concerning EE3 and EE4, asking students about their perceptions of moral dilemmas elicited responses that included 7 mentions related to learning to step back and take a different look at one’s own opinion and to take more into account the point of view of others or different points of view, expressed as follows (our translation):

The discussion of the use of research through moral dilemmas helped me a lot to realize that several opinions could be considered. It is not just if an opinion can be accepted, but it all depends on the point of view
I think I have learned to explain points of view that are contrary to mine rather than "feeling" them more intuitively
…to better see the vision of others even if I do not necessarily share it, and therefore to take a step back .…

Most students (10 fully and 3 partly, N  = 13) considered that they had attained the learning objective “Being able to distinguish the issues of a scientific question in the form of moral dilemmas.”

More than half (8) of the students mentioned that emotions and empathy played a role in imagining or assessing potential situations, expressed as follows (our translation):

For me, cognitive empathy played a major role in the choice of dilemmas, because, I tried my best to put myself on each side of opinions in order to be as objective as possible, without feeling emotional empathy
My empathy probably biased my judgment of potential uses, but I don't think I let it show in my work
I think I can tell them apart. My emotional empathy is the first that arrives, and my cognitive empathy comes to take a step back before making a judgment

Concerning EE2 (scientific methods literacy), a large majority of students considered they had changed the way they formed opinions about progress in science during this module (11, N  = 13). The skills most often mentioned included learning to be wary of popularized articles (16 mentions), thinking more critically about scientific information (8), and developing the habit of referring to original scientific articles (8). Many mentioned being better able to understand and/or explain the methods and results of scientific research (7).

6 Discussion

This exploratory study develops a new conceptualization and a learning design method for developing a few specific CT skills useful for discussing SSIs raised by popularized (neuro)science. The goal of this educational research was to extract theoretical conjectures from recent research on CT education and the effects of emotions, decentering, and empathy and test their generativity in producing workable designs in which the acquisition of desired CT skills (decentering, methods literacy) can be observed through traces. In short, we presented guidelines for creating learning designs, and we tested a proof-of-principle design implemented in a class.

The results from this 2018/2019 implementation show that students were able to propose a diversity of moral principles (mostly found in the resources proposed for the course) in the first assignment—early in the semester—and their texts also show signs of moderately good decentering skills. However, the most progress seems to occur in the structuration of these values into full-fledged moral dilemmas: moral principle A vs. moral principle B. In the first paper, moral principles were often written in a disorganized way, while in paper 2, they were more frequently proposed in the form of dilemmas. We propose that this improved structuration reflects an improved ability to conceptually organize conflicting values without judgment into symmetrical pairs of opposites, which requires restraining one’s opinions and is indicative of a good decentering ability.

These results also tentatively confirm the value of iterating essentially the same activity in this design. Contrary to the advice frequently given to teachers to use varying types of tasks, repeated assignments involving the same task but different topics, guided by precise feedback as well as incentive-based grading, helped learners significantly improve the targeted high-level skills, i.e., scientific methods literacy and decentering abilities, as measured by increased OE scores on the texts produced by students (Section 5.1 ). A design based on a single assignment would probably not give students sufficient time and opportunity to learn these specific difficult skills.

The central choice to not debate opinions, with students expressly instructed to refrain from expressing their personal opinions on the SSIs under study, appears to have been perceived as effective (13 mentions in the end-of-semester survey) but was also a challenge for some of the students:

I found [not giving my opinion] difficult, as our opinion is the best, we tend to want to express it and share it. However, staying neutral and discussing all imaginable opinions of a situation is a task I [ultimately] enjoyed doing (our translation).

It would be methodologically problematic to fuse data obtained from previous cohorts in an evolving design, but we would like to mention that previous questionnaires Footnote 4 yielded similar results on these points.

Taken together, the results from the students’ artifacts and the survey tentatively suggest that engaging learners in the described learning activities produced a shift in students’ epistemology, from a naïve epistemology that knowledge is either true or false and that truths come from recognized authority (Bromme et al. 2010 ) towards a more sophisticated one. Learners developed independent opinions and moved from mostly emotionally empathetic reactions to a more decentered (cognitive) empathy when forming opinions about neuroscience SSIs. The increase in scientific methods literacy (see Fig. 3 ) and the final questionnaire responses mentioning the importance of reading original articles or understanding the methods, taken together, suggest a more critical appraisal of popularized scientific information.

figure 3

Average scores ( M ) in the proof-of-principle learning design for scientific methods literacy and methods (OE2) and decentering (OE3–6). Also shown: the standard deviation and the effect size (Cohen’s d between first and last), in white on the bars

Let us recall our theoretical tenants: emotions play an important role in opinion building, particularly when contradicting moral principles are involved. We also distinguish between emotional empathy and cognitive empathy. The latter allows for a more distant and balanced appraisal of situations and can result in positive feelings of care and prosocial motivation. Overall, research shows that cognitive and emotional systems are complex and concurrent, and the possibility that emotional and cognitive empathy could be separate processes opens the important possibility that they can be trained separately.

This new conceptualization based on developing cognitive empathy and balancing emotion with reason to enhance decentering in opinion building regarding new SSIs—described in Section 2 —is the main theoretical outcome of this research. We propose that it offers a new perspective that could be used as a preliminary step to enhance many CT learning designs. The second outcome (answering RQ1) is the development of a design and analysis method based on conjecture mapping (Section 3 ) that guides the translation of theory into practical learning designs. This design method showed its effectiveness by producing, according to design-based research principles, successive workable learning designs that could be improved to develop scientific literacy and decentering competency in a typical classroom. The related empirical outcome associated with RQ2 is a proof-of-principle design in which students’ written artifacts could be analyzed. It is described in Section 4 and discussed in Section 5 . It has been iteratively implemented, analyzed, and optimized over many years.

Cognitive empathy, though crucial for decentering, is not generally developed in schools, but our results suggest it can be taught. Having to identify conflicting moral principles seems to have helped the learners realize that contradictory positions about neuroscience SSIs do exist, could be valid, and should be taken into account in their opinion building process. Traces in the assignments and exams suggest that this important step towards balancing emotion and reason in discussing neuroscience SSIs was achieved. Our results do not prove the development of important intermediates such as cognitive empathy or the control of emotional empathy, but taken together, they do suggest that the design method can produce designs that contribute to this educational goal of independent opinion building. The results tentatively confirm that addressing the emotions evoked by SSIs can be an early step towards CT, not just the ultimate level of CT (De Vecchi 2006 ) requiring a degree of emotional control rarely achieved except by expert debaters (Legg 2018 ). They offer reasonable evidence that this new conceptualization of CT—based on recent research that cognitive empathy can be trained separately—can be used to inform workable designs that produce interesting results related to the decentering and scientific literacy skills identified and selected in this study.

7 Conclusions and Discussion

Within the large array of CT designs, this new conceptualization offers a novel perspective on addressing the numerous biases and difficulties that emotions can induce. The outcomes we present could be of use (i) for researchers (new conceptualization), (ii) for educational designers (CJ mapping), and (iii) to inspire teachers and educational designers (proof-of-principle design).

Giving students a good understanding of methods (scientific methods literacy) can empower them to see through much of the hype and overinterpretation of popularized science, as exemplified in neuroenchantment. This focus on scientific methods is rare (Kampourakis et al. 2014 ) and aims to help students assess the limits and potential uses of scientific claims before addressing SSIs. It can also help students understand how knowledge is validated in scientific articles. On this solid rational basis, the approach presented here takes the unusual route of developing decentering skills for discussing SSIs by letting students imagine people and their emotional reactions in the new situations that could result from neuroscience research. By refraining from debating formed opinions , which has been shown to limit the full potential of many designs for CT education, and instead discussing diverse possible emotional reactions in the form of moral dilemmas, this design attempts to circumvent many of the problems of classroom debates and could prepare students for the reasonable reflective thinking that defines CT (Ennis 1987 ). This approach is founded on the idea that cognitive empathy can be developed without reinforcing emotional empathy. It is an attempt to help students take their own and others’ emotions into account in a reasonable way (decentering in the sense of Klimecki and Singer ( 2013 )) and reconcile emotions and reason. It could be seen as an approach for fostering emotive reasoning (Sadler and Zeidler 2005 ).

We have argued that learning to take into account different, contradictory reactions to SSIs by other people (with different values, social contexts, and beliefs) and developing cognitive empathy for the emotional reactions of other while refraining from emotional empathy can be foundational in the process of building independent opinions (Jiménez-Aleixandre and Puig 2012 ) by helping students take into account and learn to manage others’ and their own emotional reactions (decentering skills). The proposed design method translates this theory into educational guidelines in the form of conjectures, design elements, expected effects, and observable effects that have been implemented and analyzed. The analysis of student artifacts about recent popularized and original neuroscience research suggests that this conceptualization focused on scientific methods literacy and cognitive empathy can be used to effectively develop decentering skills as measured by the observed effects. It does not prove that these students are better in all dimensions of CT but confirms the validity of exploring this approach.

From a research perspective, the proof-of-principle design could not be compared with designs considered standards or references, since this conceptualization breaks new research ground. We have discussed how the DBR research paradigm (e.g., Collins et al. 2004 ) differs from the experimental paradigm and argued that it is particularly relevant for exploring innovative designs addressing new educational challenges. The first student paper analyzed—at the very beginning of the semester—delivers much of the information expected from a pretest, as it tests students’ skills before the semester-long intervention. The final exam—while designed from a certificative assessment perspective—can be considered delivering some of the information of a posttest. Setting up a quasi-experimental control group design would be too difficult, since there are too many design variables to manipulate and the number of students available is insufficient. However, our results are evidence that this design is worth investigating in larger educational setups. Additionally, some results, such as the marked progression in the quantity and quality of moral dilemmas, might be explained by the fact that students did not fully understand the instructions at the beginning or took time to adjust to new expectations and therefore adjusted the content and structure of their second paper. While the analysis of student artifacts during this semester-long design indicates progress, suggesting that students developed CT skills EE1–4 with respect to recent neuroscience SSIs, we have no data about the long-term effects on independent opinion building and CT (no follow-up survey) or about the possible influence these effects might have on their future decisions. We fully agree with the need for developing dispositions towards CT (Ennis 1987 ; Facione 1990 ; Jiménez-Aleixandre and Puig 2012 ). We did collect some evidence that students demonstrate selected CT skills in their papers and exams, but without data about the actual behavior of students outside of and after this course, caution is required in drawing conclusions about possible changes in terms of CT dispositions .

Another limitation that requires discussion is the fact that the teacher is also one of the researchers, a classical validity-related concern. We would like to stress that widely recognized authors such as Schön ( 1983 ) have demonstrated the richness and relevance of the “reflective practitioner” approach, particularly for education research seen as design-based (Goodyear 2015 ). DBR and action research (Greenwood and Levin 1998 ) often rely on this implication to increase the relevance of the outcomes. It is possible that this reflective subjectivity is more relevant to this type of exploratory research than attempted objectivity. It is worth noting that the data coding and analysis were based on written artifacts rather than teacher reporting and that the data were (double-) coded by other researchers not involved in the teaching process.

For educational designers and teachers, the limited set of skills selected does not imply that this design develops the full set of CT skills mentioned by Ennis and Facione; rather, we propose that some design elements could be integrated into and contribute to many existing and well-tested designs that aim for CT. The limited number of participants requires caution as to the generalizability of the proof-of-principle design (RQ1). Indeed, the results for RQ2 are based on only 13 students and should be seen mainly as reasonable evidence that this conceptualization can produce effective designs and that the design method can produce workable designs that can be implemented, analyzed, discussed, and optimized.

DBR addresses new educational challenges by refining and testing models that can be deployed in other contexts, and each new iteration is an extension of the theory (Barab 2006 ). Thus, rather than a specific design that teachers might adopt or reject, this design approach and the proposed conjectures in Section 3 can be used to create many learning designs for different curricular and cultural contexts or educational levels. The proposed principles-based design method can guide the design or adaptation of many learning environments for teaching delicate subjects. While this approach has been developed and tested in the context of SSIs raised by popularized neuroscience, the generativity of the design method is not restricted to this subject area and could be applied in many existing or future areas of bioscience in which progress is raising new SSIs and possibly to the more classic SSIs raised by GMOs or climate change. Introductory learning activities based on our design conjectures or inspired by the sample design could be used to develop decentering skills before engaging students in more challenging learning tasks, such as argumentation about SSIs. We propose that this design could contribute foundationally to enhance many of the excellent designs for teaching the CT skills needed by future citizens. For example, a classical problem with debating is that the debate revolves not around the value of the arguments but the personal sympathy or dislike felt towards those presenting their points (i.e., relational rather than epistemic resolution of conflict (Buchs et al. 2004 ). A preliminary intervention developing decentering skills might help students learn to take into account other points of view. It might be worth exploring whether this enhances the notable designs for argumentation in the classroom using strategies such as listening triads, argument lines, and jigsaw groups, which produced very disappointing results in Osborne et al.’s study (2013).

Taking into account the different forms that empathy can take and their influences on learning processes opens new avenues for research, not only about SSIs but possibly also in other areas where emotional reactions interfere with learning processes. For example, designs could be studied that introduce the immunological mechanisms of vaccination via an adapted form of this decentering approach, e.g., discussing—without personal opinions—various possible emotional reactions stemming from values, social belongings, and beliefs as respectable but as separate from the instructional goals. After such an introduction, instruction focused on using scientific models to explain or predict situations that are meaningful to the students might be more acceptable to many of them. This decentering educational approach could also support conceptual change. For example, Coley and Tanner ( 2015 ) show how anthropocentric thinking (among others) causes the persistence of many scientifically inaccurate ideas, often termed misconceptions. It might well be that the empathy elicited towards some scientific concepts interferes with student understanding. For example, discussing invasive species in the context of ecology in multicultural classes could elicit opposing emotional empathy responses from students of migrant origin and others with strong political views, which might hinder scientific understanding. It would be worth testing if such a problem could be headed off by a short sequence developing cognitive empathy through this decentering approach.

We have shown how this approach—firmly based on scientific methods literacy—brings up NOS questions such as how the claims have been established, why this question is addressed, and who is involved in the research, questions that are too often ignored in science education focused on definitive knowledge. Didactic transposition theory (Chevallard 1991 ) shows how difficult it is to escape this transformation of classroom knowledge. However, our results are in line with Hoskins et al. ( 2007 ), suggesting that it is possible to guide students to the primary literature and to discuss how scientific knowledge is validated, as many have called for, e.g., Abd-El-Khalick ( 2013 ). More research is needed to assess whether the decentering approach we propose might help classes discuss the NOS without the debate becoming biased or shaped by dogmatic positions such as pro-science or anti-science (as discussed in Section 4.2 with the article by deCharms et al. ( 2005 )).

The generalizability of this approach could be limited by the social acceptability of some of the CT dimensions it develops. For example, challenging collective interests and values (Jiménez-Aleixandre and Puig 2012 ) could be problematic in some schools. Since this design encourages students to imagine various people’s reactions based on their values and beliefs, schools and teachers must be able to accept students mentioning potential uses that could strongly conflict with their own personal or collective interests and values. This approach also requires teachers to have good decentering skills. Furthermore, frequent reference to primary literature and recent research techniques is a stimulating but challenging perspective that many teachers nevertheless learn to appreciate (as scientific literature is now easily accessible through the internet) (Lombard, Schneider & Weiss 2020 ).

Globally, this research suggests that applying this learning design approach for CT, which is focused on developing cognitive empathy during the processes of opinion building, could improve rational debate and contribute to CT teaching. Since it involves addressing challenging new problems, fosters authenticity (Lombard 2011 ), and can be adapted to local constraints and opportunities, it may be of interest to many teachers who struggle with teaching SSIs.

Author 1, also a lecturer and teacher trainer at anonymized university—see Section 6 for a discussion of how this dual researcher/practitioner role was taken into account when analyzing the data.

Full responses are available (in French) at this URL: http://tecfa.unige.ch/perso/lombardf/calvin/4OC/4OC_2018_Questionnaire_dvaluation_par_les_elves_en_fin_de_module.pdf )

The numbers in parenthesis are the count of mentions of this skill across all questions in the questionnaire; this value can exceed the number of students.

Available on request

Abd-El-Khalick, F. (2013). Teaching with and about nature of science, and science teacher knowledge domains. Science & Education, 22 (9), 2087–2107. https://doi.org/10.1007/s11191-012-9520-2 .

Article   Google Scholar  

Ali, S. S., Lifshitz, M., & Raz, A. (2014). Empirical neuroenchantment: from reading minds to thinking critically. Frontiers in Human Neuroscience, 8 . https://doi.org/10.3389/fnhum.2014.00357 .

Angermuller, J. (2018). Truth after post-truth: for a strong programme in discourse studies. Palgrave Communications, 4 (1), 30. https://doi.org/10.1057/s41599-018-0080-1 .

Aronson, E., Wilson, T. D., & Akert, R. M. (2013). Social psychology (8th). Pearson.

Astolfi, J.-P. (2008). La saveur des savoirs. Disciplines et plaisir d’apprendre . Paris: Presses universitaires de France.

Google Scholar  

Barab, S. (2006). Design-based research, a methodological toolkit for the learning scientist. In R. K. Sawyer (Ed.), The Cambridge handbook of the learning sciences (pp. 153–169). New York: Cambridge University Press.

Bavel, J. J. V., & Pereira, A. (2018). The partisan brain: an identity-based model of political belief. Trends in Cognitive Sciences, 22 (3), 213–224. https://doi.org/10.1016/j.tics.2018.01.004 .

Berland, L. K., & McNeill, K. L. (2010). A learning progression for scientific argumentation: understanding student work and designing supportive instructional contexts. Science Education, 94 (5), 765–793. https://doi.org/10.1002/sce.20402 .

Bloom, P. (2017a). Against empathy: the case for rational compassion . London: Penguin Random House.

Bloom, P. (2017b). Empathy and its discontents. Trends in Cognitive Sciences, 21 (1), 24–31. https://doi.org/10.1016/j.tics.2016.11.004 .

Bowell, T. (2018). Changing the world one premise at a time: argument, imagination and post-truth. In M. A. Peters, S. Rider, M. Hyvönen, & T. Besley (Eds.), Post-Truth, Fake News (pp. 169–185). Springer Singapore. https://doi.org/10.1007/978-981-10-8013-5_15 .

Bromme, R., Pieschl, S., & Stahl, E. (2010). Epistemological beliefs are standards for adaptive learning: a functional theory about epistemological beliefs and metacognition. Metacognition and Learning, 5 (1), 7–26. https://doi.org/10.1007/s11409-009-9053-5 .

Brookhart, S., Moss, C., & Long, B. (2008). Formative assessment. Educational Leadership, 66 (3), 52–57.

Brossard, D., & Scheufele, D. A. (2013). Science, new media, and the public. Science, 339 (6115), 40–41. https://doi.org/10.1126/science.1232329 .

Brown, A. L. (1992). Design experiments: theoretical and methodological challenges in creating complex interventions in classroom settings. The Journal of the Learning Sciences, 2 (2), 141–178.

Buchs, C., Butera, F., Mugny, G., & Darnon, C. (2004). Conflict elaboration and cognitive outcomes. Theory Into Practice, 43 (1), 23–30.

Call, J., & Tomasello, M. (2008). Does the chimpanzee have a theory of mind? 30 years later. Trends in Cognitive Sciences, 12 (5), 187–192. https://doi.org/10.1016/j.tics.2008.02.010 .

Campus. (2018). Le cerveau dispose d'un mécanisme capable de couper l'envie de se venger. Campus, 134 , 9.

Chang, L., & Tsao, D. Y. (2017). The code for facial identity in the primate brain. Cell, 169 (6), 1013–1028.e14. https://doi.org/10.1016/j.cell.2017.05.011 .

Check, E. (2005). Ethicists urge caution over emotive power of brain scans [news]. Nature, 435 , 254–255. https://doi.org/10.1038/435254a .

Chevallard, Y. (1991). La transposition didactique – Du savoir savant au savoir enseigné . Grenoble: La pensée sauvage.

CIIP. (2011). Plan d’études Romand . Neuchâtel: Conférence intercantonale de l’instruction publique de la Suisse Romande et du Tessin https://www.plandetudes.ch . Accessed 25 Aug 2020.

Clark, D. B., & Linn, M. C. (2013). The knowledge integration perspective: connections across research and education. In S. Vosniadou (Ed.), International handbook of research on conceptual change (pp. 520–538). Taylor & Francis.

Clément, P., & Quessada, M.P. (2013). Les conceptions sur l’évolution biologique d’enseignants du primaire et du secondaire dans 28 pays varient selon leur pays et selon leur niveau d’étude. Actualité de la Recherche en Éducation et Formation , Aug 2013, Montpellier, France. 19 p. hal-01026095.

Coley, J. D., & Tanner, K. (2015). Relations between intuitive biological thinking and biological misconceptions in biology majors and nonmajors. CBE-Life Sciences Education, 14 (1), ar8. https://doi.org/10.1187/cbe.14-06-0094 .

Collins, A., Joseph, D., & Bielaczyc, K. (2004). Design research: Theoretical and methodological issues. Journal of the Learning Sciences, 13 (1), 15–42.

Cook, J., Lewandowsky, S., & Ecker, U. K. H. (2017). Neutralizing misinformation through inoculation: exposing misleading argumentation techniques reduces their influence. PLoS One, 12 (5), e0175799. https://doi.org/10.1371/journal.pone.0175799 .

Dawson, V., & Carson, K. (2018). Introducing argumentation about climate change socioscientific issues in a disadvantaged school. Research in Science Education , 1–21. https://doi.org/10.1007/s11165-018-9715-x .

Dawson, V. M., & Venville, G. (2010). Teaching strategies for developing students’ argumentation skills about Socioscientific issues in high school genetics. Research in Science Education, 40 (2), 133–148. https://doi.org/10.1007/s11165-008-9104-y .

De Vecchi, G. (2006). Enseigner l’expérimental en classe : pour une véritable éducation scientifique . Paris: Hachette éducation.

Decety, J., & Cowell, J. M. (2014). The complex relation between morality and empathy. Trends in Cognitive Sciences, 18 (7), 337–339. https://doi.org/10.1016/j.tics.2014.04.008 .

deCharms, R. C., Maeda, F., Glover, G. H., Ludlow, D., Pauly, J. M., Soneji, D., & Mackey, S. C. (2005). Control over brain activation and pain learned by using real-time functional MRI. Proceedings of the National Academy of Sciences of the United States of America, 102 (51), 18626–18631. https://doi.org/10.1073/pnas.0505210102 .

diSessa, A. (2002). Why “conceptual ecology” is a good idea. In M. Limón & L. Mason (Eds.), Reconsidering Conceptual Change: Issues in Theory and Practice (pp. 28–60). Springer Netherlands.

Duit, R., Treagust, D. F., & Widodo, A. (2008). Teaching science for conceptual change: theory and practice. In S. Vosniadou (Ed.), International handbook of research on conceptual change (pp. 629–646).

Duschl, R. A., & Osborne, J. (2002). Supporting and promoting argumentation discourse in science education. Studies in Science Education, 38 (1), 39–72. https://doi.org/10.1080/03057260208560187 .

Ennis, R. H. (1987). A taxonomy of critical thinking dispositions and abilities. In J. B. Baron & R. J. Sternberg (Eds.), Teaching thinking skills : Theory and practice (pp. 9–26). W H Freeman/Times Books/ Henry Holt & Co..

Facione, P. (1990). Critical thinking : A statement of expert consensus for purposes of educational assessment and instruction (the Delphi report).

Falk, H., Brill, G., & Yarden, A. (2008). Teaching a biotechnology curriculum based on adapted primary literature. International Journal of Science Education, 30 (14), 1841–1866.

Fenichel, M., & Schweingruber, H. A. (2010). Surrounded by science: learning science in informal environments . Washington: National Academy Press.

Festinger, L. (1957). A theory of cognitive dissonance . Stanford University Press.

Fisher, M., Knobe, J., Strickland, B., & Keil, F. C. (2018). Vous avez dit débat constructif ? Cerveau et Psycho , 78–82.

Forgas, J. P. (2013). Don’t worry, be sad! On the cognitive, motivational, and interpersonal benefits of negative mood. Current Directions in Psychological Science, 22 (3), 225–232. https://doi.org/10.1177/0963721412474458 .

Fredrickson, B. (2004). The broaden–and–build theory of positive emotions. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 359 (1449), 1367–1377. https://doi.org/10.1098/rstb.2004.1512 .

Goldstein, E. B. (2018). Cognitive psychology: Connecting mind, research, and everyday experience (5th). Cengage Learning. https://doi.org/10.1002/sce.21086 .

Goodyear, P. (2015). Teaching as design. HERDSA Review of Higher Education, 2 , 27–50 http://www.herdsa.org.au/herdsa-review-higher-education-vol-2/27-50 . Accessed 25 Aug 2020.

Greenwood, D. J., & Levin, M. (1998). Action research, science, and the co-optation of social research. Studies in Cultures, Organizations and Societies, 4 , 237–261.

Gruber, J., Mauss, I. B., & Tamir, M. (2011). A dark side of happiness? How, when, and why happiness is not always good. Perspectives on Psychological Science, 6 (3), 222–233. https://doi.org/10.1177/1745691611406927 .

Hand, B., & Prain, V. (2001). Teachers implementing writing-to-learn strategies in junior secondary science: a case study. Science Education, 86 (6), 737–755. https://doi.org/10.1002/sce.10016 .

Hoskins, S. G., Stevens, L. M., & Nehm, R. H. (2007). Selective use of the primary literature transforms the classroom into a virtual laboratory. Genetics, 176 (3), 1381–1389.

Hounsell, D., & McCune, V. (2002). Teaching-learning environments in undergraduate biology: initial perspectives and findings . Edinburgh: Economic & Social Research Council, Department of Higher and Community Education.

Illes, J., & Racine, E. (2005). Imaging or imagining? A neuroethics challenge informed by genetics. The American Journal of Bioethics, 5 ( 2 ), 5–18. https://doi.org/10.1080/15265160590923358 .

Jenkins, A. C., Macrae, C. N., & Mitchell, J. P. (2008). Repetition suppression of ventromedial prefrontal activity during judgments of self and others. PNAS, 105 (11), 4507–4512. https://doi.org/10.1073/pnas.0708785105 .

Jiménez-Aleixandre, M. P., & Puig, B. (2012). Argumentation, evidence evaluation and critical thinking. In B. J. Fraser, K. Tobin, & C. J. McRobbie (Eds.), Second International Handbook of Science Education (pp. 1001–1015). https://doi.org/10.1007/978-1-4020-9041-7_66 .

Chapter   Google Scholar  

Jiménez-Aleixandre, M. P., Rodríguez, A. B., & Duschl, R. A. (2000). “Doing the lesson” or “doing science”: argument in high school genetics. Science Education, 84 (6), 757–792. https://doi.org/10.1002/1098-237X(200011)84:6<757::AID-SCE5>3.0.CO;2-F .

Johnson, D. W., & Johnson, R. T. (2009). Energizing learning: the instructional power of conflict. Educational Researcher, 38 (1), 37. https://doi.org/10.3102/0013189X08330540 .

Jonassen, D. H., & Kim, B. (2010). Arguing to learn and learning to argue: design justifications and guidelines. Educational Technology Research and Development, 58 (4), 439–457. https://doi.org/10.1007/s11423-009-9143-8 .

Joyce, B. R., Weil, M., & Calhoun, E. (2000). Models of teaching (6th.) . Needham Heights: Allyn & Abacon.

Kampourakis, K., Reydon, T. A. C., Patrinos, G. P., & Strasser, B. J. (2014). Genetics and society—educating scientifically literate citizens: introduction to the thematic issue. Science & Education, 23 (2), 251–258. https://doi.org/10.1007/s11191-013-9659-5 .

Klimecki, O. M., & Singer, T. (2013). Empathy from the perspective of social neuroscience. In J. Armony & P. Vuilleumier (Eds.), The Cambridge Handbook of Human Affective Neuroscience (pp. 533–550). https://doi.org/10.1017/CBO9780511843716.029 .

Klimecki, O. M., Sander, D., & Vuilleumier, P. (2018). Distinct brain areas involved in anger versus punishment during social interactions. Scientific Reports, 8 (1), 10556. https://doi.org/10.1038/s41598-018-28863-3 .

Kuhn, T. S. (1962). The structure of scientific revolutions (1st ed.). Chicago: Chicago University Press.

Legg, C. (2018). The solution to poor opinions is more opinions: Peircean pragmatist tactics for the epistemic long game. In M. A. Peters, S. Rider, M. Hyvönen, & T. Besley (Eds.), Post-Truth, Fake News (pp. 43–58). Springer Singapore. https://doi.org/10.1007/978-981-10-8013-5_4 .

Lilensten, J. (2018). Les sens du mot science . Les Ulis: EDP sciences.

Lombard, F. (2011). New opportunities for authenticity in a world of changing biology In A. Yarden G. S. Carvalho (Eds.), Authenticity in Biology Education: Benefits and Challenges (pp. 15-26). Braga Portugal: Universidade do Minho. Centro de Investigação em Estudos da Criança (CIEC).

Lombard, F., & Weiss, L. (2018). Can Didactic Transposition and Popularization Explain Transformations of Genetic Knowledge from Research to Classroom? Science & Education . https://doi.org/10.1007/s11191-018-9977-8

Lombard, F., Merminod, M., Widmer, V., & Schneider, D. K. (2018). A method to reveal fine-grained and diverse conceptual progressions during learning. Journal of Biological Education, 52 (1), 101–112. https://doi.org/10.1080/00219266.2017.1405534

Lombard, F., Schneider, D.,K., Weiss, L., (2020) Jumping to science rather than popularizing: a reverse approach to update in-service teacher scientific knowledge, Progress in Science Education, 2020, Vol 3, https://doi.org/10.25321/prise.2020.1005

Lundegård, I., & Hamza, K. M. (2014). Putting the cart before the horse: the creation of essences out of processes in science education research. Science Education, 98 (1), 127–142.

McCabe, D. P., & Castel, A. D. (2008). Seeing is believing: the effect of brain images on judgments of scientific reasoning. Cognition, 107 ( 1 ), 343–352. https://doi.org/10.1016/j.cognition.2007.07.017 .

McClure, S. M., Li, J., Tomlin, D., Cypert, K. S., Montague, L. M., & Montague, P. R. (2004). Neural correlates of behavioral preference for culturally familiar drinks. Neuron, 44 (2), 379–387. https://doi.org/10.1016/j.neuron.2004.09.019 .

McEwan, I. (2014). The children act . Vintage Books.

Miles, M. B., Huberman, A. M., & Saldaña, J. (2014). Qualitative data analysis: a methods sourcebook . London: SAGE.

Mor, Y., & Craft, B. (2012). Learning design: reflections on a snapshot of the current landscape. Research in Learning Technology, 20 , 85–94. https://doi.org/10.3402/rlt.v20i0.19196 .

Mor, Y., & Mogilevsky, O. (2013). The learning design studio: collaborative design inquiry as teachers’ professional development. Research in Learning Technology, 21 . https://doi.org/10.3402/rlt.v21i0.22054 .

Mottier Lopez, L. (2015). Évaluations formative et certificative des apprentissages : Enjeux pour l’enseignement. De Boeck.

Narvaez, D., & Vaydich, J. L. (2008). Moral development and behaviour under the spotlight of the neurobiological sciences. Journal of Moral Education, 37 (3), 289–312. https://doi.org/10.1080/03057240802227478 .

Nenciovici, L., Allaire-Duquette, G., & Masson, S. (2019). Brain activations associated with scientific reasoning: a literature review. Cognitive Processing, 20 (2), 139–161. https://doi.org/10.1007/s10339-018-0896-z .

Ohlsson, S. (2013). Beyond evidence-based belief formation: how normative ideas have constrained conceptual change research. Frontline Learning Research, 1 ( 2 ), 70–85. https://doi.org/10.14786/flr.v1i2.58 .

Osborne, J. (2010). Arguing to learn in science: the role of collaborative, critical discourse. Science, 328 (5977), 463–466. https://doi.org/10.1126/science.1183944 .

Osborne, J., Simon, S., Christodoulou, A., Howell-Richardson, C., & Richardson, K. (2013). Learning to argue: a study of four schools and their attempt to develop the use of argumentation as a common instructional practice and its impact on students. Journal of Research in Science Teaching, 50 (3), 315–347.

Peters, R. S. (2015). Authority, responsibility and education . Routledge. 1st: 1959.

Peyrières, C. (2008). Le paradoxe Pepsi-Coca. Science et Vie Junior Décembre, 2008 , 61.

Piaget, J. (1950). Introduction à l’épistémologie génétique. (II) La pensée physique . Paris: Presses Universitaires de France.

Plummer, J. D., & Krajcik, J. (2010). Building a learning progression for celestial motion: elementary levels from an earth-based perspective. Journal of Research in Science Teaching, 47 (7), 768–787. https://doi.org/10.1002/tea.20355 .

Posner, G. J., Strike, K. A., Hewson, P. W., & Gertzog, W. A. (1982). Accommodation of a scientific conception: toward a theory of conceptual change. Science Education, 66 (2), 211–227. https://doi.org/10.1002/sce.3730660207 .

Potvin, P. (2013). Proposition for improving the classical models of conceptual change based on neuroeducational evidence: conceptual prevalence. Neuroeducation, 2 ( 1 ), 16–43. https://doi.org/10.24046/neuroed.20130201.16 .

QAA. (2002). Subject benchmark statements : Biosciences . Cheltenham: Quality Assurance Agency for Higher Education.

Qiao-Tasserit, E., Corradi-Dell’Acqua, C., & Vuilleumier, P. (2018). The good, the bad, and the suffering. Transient emotional episodes modulate the neural circuits of pain and empathy. Neuropsychologia, 116 , 99–116. https://doi.org/10.1016/j.neuropsychologia.2017.12.027 .

Rider, S., & Peters, M. A. (2018). Post-truth, fake news: viral modernity and higher education. In M. A. Peters, S. Rider, M. Hyvönen, & T. Besley (Eds.), Post-Truth, Fake News (pp. 1–12). Springer Singapore. https://doi.org/10.1007/978-981-10-8013-5_1 .

Rowe, G., Hirsh, J. B., & Anderson, A. K. (2007). Positive affect increases the breadth of attentional selection. Proceedings of the National Academy of Sciences, 104 (1), 383–388. https://doi.org/10.1073/pnas.0605198104 .

Rowe, M. P., Gillespie, B. M., Harris, K. R., Koether, S. D., Shannon, L. J. Y., & Rose, L. A. (2015). Redesigning a general education science course to promote critical thinking. Cell Biology Education, 14 (3). https://doi.org/10.1187/cbe.15-02-0032 .

Sadler, T. D., & Zeidler, D. L. (2005). Patterns of informal reasoning in the context of socioscientific decision-making. Journal of Research in Science Teaching, 42 (1), 112–138. https://doi.org/10.1002/tea.20042 .

Sander, D., & Scherer, K. (2009). Traité de psychologie des émotions . Paris: Dunod.

Sandoval, W. A., & Bell, P. (2004). Design-based research methods for studying learning in context: introduction. Educational Psychologist, 39 (4), 199–201.

Scardamalia, M., & Bereiter, C. (2006). Knowledge building: theory, pedagogy, and technology. In K. Sawyer (Ed.), The Cambridge handbook of the learning sciences (pp. 97–115). New York: Cambridge University Press.

Schleicher, A. (2019). PISA 2018 : Insights and Interpretations . OECD Publishing.

Schön, D. A. (1983). The reflective practitioner. How professionals think in action . New York: Basic Books.

Servan-Schreiber, D. (2007). La douleur de l'autre est en nous. Psychologies.com , 3 déc. 07.

Seyfarth, R. M., & Cheney, D. L. (2013). Affiliation, empathy, and the origins of theory of mind. Proceedings of the National Academy of Sciences of the United States of America, 110 (Suppl 2), 10349–10356. https://doi.org/10.1073/pnas.1301223110 .

Shamay-Tsoory, S. G., Aharon-Peretz, J., & Perry, D. (2009). Two systems for empathy: a double dissociation between emotional and cognitive empathy in inferior frontal gyrus versus ventromedial prefrontal lesions. Brain: A Journal of Neurology, 132 (Pt 3), 617–627. https://doi.org/10.1093/brain/awn279 .

Simonneaux, L. (2003). L’argumentation dans les débats en classe sur une technoscience controversée. Aster, 37 , 189–214.

Simonneaux, L., & Simonneaux, J. (2005). Argumentation sur des questions socio-scientifiques. Didaskalia, 27 , 79–108.

Sinatra, G. M., Southerland, S. A., McConaughy, F., & Demastes, J. W. (2003). Intentions and beliefs in students’ understanding and acceptance of biological evolution. Journal of Research in Science Teaching, 40 (5), 510–528. https://doi.org/10.1002/tea.10087 .

Singer, T., & Klimecki, O. M. (2014). Empathy and compassion. Current Biology, 24 (18), R875–R878. https://doi.org/10.1016/j.cub.2014.06.054 .

Singer, T., Seymour, B., O’Doherty, J., Kaube, H., Dolan, R. J., & Frith, C. D. (2004). Empathy for pain involves the affective but not sensory components of pain. Science, 303 (5661), 1157–1162.

Starr, D. (2019). The confession. Science, 364 (6445), 1022–1026. https://doi.org/10.1126/science.364.6445.1022 .

Strike, K. A., & Posner, G. J. (1982). Conceptual change and science teaching. International Journal of Science Education, 4 (3), 231–240.

Tourbe, C. (2004). L'effet placebo diminue bien la douleur. Science et Vie , 1039, April 2004, p. 26.

Vollberg, M. C., & Cikara, M. (2018). The neuroscience of intergroup emotion. Current Opinion in Psychology, 24 , 48–52. https://doi.org/10.1016/j.copsyc.2018.05.003 .

Vosniadou, S. (1994). Capturing and modeling the process of conceptual change. Learning and Instruction, 4 (1), 45–69.

Vosoughi, S., Roy, D., & Aral, S. (2018). The spread of true and false news online. Science, 359 (6380), 1146–1151. https://doi.org/10.1126/science.aap9559 .

Wager, T. D., Rilling, J. K., Smith, E. E., Sokolik, A., Casey, K. L., Davidson, R. J., et al. (2004). Placebo-induced changes in fMRI in the anticipation and experience of pain. Science, 303 (5661), 1162–1167. https://doi.org/10.1126/science.1093065 .

Waight, N., & Abd-El-Khalick, F. (2011). From scientific practice to high school science classrooms: transfer of scientific technologies and realizations of authentic inquiry. Journal of Research in Science Teaching, 48 (1), 37–70.

Willingham, D. T. (2008). Critical thinking: why is it so hard to teach? Arts Education Policy Review, 109 ( 4 ), 21–32. https://doi.org/10.3200/AEPR.109.4.21-32 .

Yarden, A., Falk, H., Federico-Agraso, M., Jiménez-Aleixandre, M., Norris, S., & Phillips, L. (2009). Supporting teaching and learning using authentic scientific texts: a rejoinder to Danielle J. Ford. Research in Science Education, 39 (3), 391–395.

Young, L., & Koenigs, M. (2007). Investigating emotion in moral cognition: a review of evidence from functional neuroimaging and neuropsychology. British Medical Bulletin, 84 (1), 69–79. https://doi.org/10.1093/bmb/ldm031 .

Download references


We would like to thank Prof Mireille Bertancourt and the TECFA lab at Geneva University for its stimulating climate, Dr. Vincent Widmer for constructive comments and designing Fig. 2 , all the students involved in the course over many years for their constructive comments that helped the design evolve, Dr. Emilie Qiao for insightful comments and suggestions about neuroscience research, and Mattia Fritz for constructive comments.

Open access funding provided by Open access funding provided by University of Geneva.

Author information

Authors and affiliations.

TECFA, IUFE, University of Geneva, Geneva, Switzerland

François Lombard

TECFA, University of Geneva, Geneva, Switzerland

Daniel K. Schneider

IUFE, University of Geneva, Geneva, Switzerland

Marie Merminod & Laura Weiss

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to François Lombard .

Ethics declarations

Conflict of interest.

The author declare no conflict of interest.

Additional information

Publisher’s note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The following codebook was used to code the progression of selected critical thinking skills (EE2 to EE4). Each OE item was coded on a 3-point scale (see the performance measures column).

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ .

Reprints and permissions

About this article

Lombard, F., Schneider, D.K., Merminod, M. et al. Balancing Emotion and Reason to Develop Critical Thinking About Popularized Neurosciences. Sci & Educ 29 , 1139–1176 (2020). https://doi.org/10.1007/s11191-020-00154-2

Download citation

Published : 07 September 2020

Issue Date : October 2020

DOI : https://doi.org/10.1007/s11191-020-00154-2

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Socio-scientific issues
  • Emotion; debate
  • Critical thinking
  • Neuroscience
  • Educational design
  • Science education
  • Find a journal
  • Publish with us
  • Track your research


  1. What Is Critical Thinking?

    Critical thinking is the ability to effectively analyze information and form a judgment. To think critically, you must be aware of your own biases and assumptions when encountering information, and apply consistent standards when evaluating sources. Critical thinking skills help you to: Identify credible sources. Evaluate and respond to arguments.

  2. Critical Thinking

    Critical Thinking. Critical thinking is a widely accepted educational goal. Its definition is contested, but the competing definitions can be understood as differing conceptions of the same basic concept: careful thinking directed to a goal. Conceptions differ with respect to the scope of such thinking, the type of goal, the criteria and norms ...

  3. What Does Critical Thinking Involve: 5 Essential Skill

    Critical thinking is the ability to analyze, evaluate, and synthesize information from various sources and perspectives. It involves applying logic, reasoning, and creativity to solve problems, make decisions, and form judgments. Critical thinking also requires being open-minded, curious, and respectful of different views and evidence.

  4. What Are Critical Thinking Skills and Why Are They Important?

    It makes you a well-rounded individual, one who has looked at all of their options and possible solutions before making a choice. According to the University of the People in California, having critical thinking skills is important because they are [ 1 ]: Universal. Crucial for the economy. Essential for improving language and presentation skills.

  5. Critical Thinking

    The Skills We Need for Critical Thinking. The skills that we need in order to be able to think critically are varied and include observation, analysis, interpretation, reflection, evaluation, inference, explanation, problem solving, and decision making. Think about a topic or issue in an objective and critical way.

  6. Critical Thinking Definition, Skills, and Examples

    Critical thinking refers to the ability to analyze information objectively and make a reasoned judgment. It involves the evaluation of sources, such as data, facts, observable phenomena, and research findings. Good critical thinkers can draw reasonable conclusions from a set of information, and discriminate between useful and less useful ...

  7. Critical thinking

    Critical thinking is the analysis of available facts, evidence, observations, and arguments in order to form a judgement by the application of rational, skeptical, and unbiased analyses and evaluation. The application of critical thinking includes self-directed, self-disciplined, self-monitored, and self-corrective habits of the mind, thus a critical thinker is a person who practices the ...

  8. Critical Thinking

    Critical thinking is the discipline of rigorously and skillfully using information, experience, observation, and reasoning to guide your decisions, actions, and beliefs. You'll need to actively question every step of your thinking process to do it well. Collecting, analyzing and evaluating information is an important skill in life, and a highly ...

  9. Critical thinking

    Theorists have noted that such skills are only valuable insofar as a person is inclined to use them. Consequently, they emphasize that certain habits of mind are necessary components of critical thinking. This disposition may include curiosity, open-mindedness, self-awareness, empathy, and persistence. Although there is a generally accepted set of qualities that are associated with critical ...

  10. Critical Thinking

    Critical Thinking. Critical Thinking is the process of using and assessing reasons to evaluate statements, assumptions, and arguments in ordinary situations. ... A popular instance of inductive generalization is the opinion poll: a sample of a population of people is polled with respect to some statement or belief. ... Arguments involve complex ...

  11. Critical Thinking and Decision-Making

    Simply put, critical thinking is the act of deliberately analyzing information so that you can make better judgements and decisions. It involves using things like logic, reasoning, and creativity, to draw conclusions and generally understand things better. This may sound like a pretty broad definition, and that's because critical thinking is a ...

  12. What is critical thinking?

    Critical thinking is a kind of thinking in which you question, analyse, interpret , evaluate and make a judgement about what you read, hear, say, or write. The term critical comes from the Greek word kritikos meaning "able to judge or discern". Good critical thinking is about making reliable judgements based on reliable information.

  13. Definition and Examples of Critical Thinking

    Critical thinking is the process of independently analyzing, synthesizing, and evaluating information as a guide to behavior and beliefs. The American Philosophical Association has defined critical thinking as "the process of purposeful, self-regulatory judgment. The process gives reasoned consideration to evidence, contexts, conceptualizations ...

  14. Critical Thinking

    Critical thinking is fundamentally a process of questioning information and data. You may question the information you read in a textbook, or you may question what a politician or a professor or a classmate says. You can also question a commonly-held belief or a new idea. With critical thinking, anything and everything is subject to question ...

  15. Integrating Critical Thinking Into the Classroom (Opinion)

    Critical thinking blasts through the surface level of a topic. It reaches beyond the who and the what and launches students on a learning journey that ultimately unlocks a deeper level of ...

  16. Critical Thinking

    However, critical thinking incorporates both analytical thinking and creative thinking. Critical thinking does involve breaking down information into parts and analyzing the parts in a logical, step-by-step manner. ... Deducing: forming a logical opinion about something based on the information or evidence that is available.

  17. Argumentation, Evidence Evaluation and Critical Thinking

    Kuhn distinguishes different skills or abilities involved in critical thinking: to differentiate opinions or claims from evidence; to support claims with evidence; to generate opinions or theories alternative to their own and full counterarguments, including the evidence that would support them, and to generate rebuttals for the alternative ...

  18. What is critical thinking?

    Critical thinking is a key skill that should be applied to all aspects of your studies. As a university student, you need to be able to think critically about the resources and information you use in your work. You need to ask the right questions when reading the work of others; your writing needs to show you have the ability to weigh up ...

  19. How to Build Your Judgment and Critical Thinking

    One step in the right direction is to increase our character strength of judgment, also called critical thinking. This strength is about the pursuit of truth. It reminds us that truth is not found ...

  20. Critical Thinking in Decision Making

    According to Helsdingen, we might improve our intuitive approach by bringing critical thinking in the decision making process. The researchers tested a method for including critical thinking in decision making. First, they explained the story model of decision making. Then, they prompted the learners to reflect on their story and thinking ...

  21. PDF Opinion Writing, a Practice of Critical Thinking

    OPINION WRITING AND CRITICAL THINKING. Writing opinions can mean critical writing because the learners have to undergo a process of thinking. For different topics, the learners have to act in different ways. Some topics demand the understanding of particular problems with their coinciding umbrella issues; for example, the illegal immigrants ...

  22. Balancing Emotion and Reason to Develop Critical Thinking About

    Bioscientific advances raise numerous new ethical dilemmas. Neuroscience research opens possibilities of tracing and even modifying human brain processes, such as decision-making, revenge, or pain control. Social media and science popularization challenge the boundaries between truth, fiction, and deliberate misinformation, calling for critical thinking (CT). Biology teachers often feel ill ...

  23. PHIL 110 Chapter 1: Don't Believe Everything You Think

    What does critical thinking involve? -considering the possible outcomes of an action -critiquing opinions, judgments, decisions, plans, conclusions, and reasoning in general Critical thinking is...