Phineas Gage: His Accident and Impact on Psychology

Olivia Guy-Evans, MSc

Associate Editor for Simply Psychology

BSc (Hons) Psychology, MSc Psychology of Education

Olivia Guy-Evans is a writer and associate editor for Simply Psychology. She has previously worked in healthcare and educational sectors.

Learn about our Editorial Process

Saul Mcleod, PhD

Editor-in-Chief for Simply Psychology

BSc (Hons) Psychology, MRes, PhD, University of Manchester

Saul Mcleod, PhD., is a qualified psychology teacher with over 18 years of experience in further and higher education. He has been published in peer-reviewed journals, including the Journal of Clinical Psychology.

On This Page:

Key Takeaways

  • In 1848, 25-year-old Phineas Gage survived an accident where an iron rod was propelled through his left cheek and skull. He made an improbable recovery and lived for 12 more years.

Examination of Gage’s exhumed skull in 1867 revealed the probable trajectory of the tamping iron through left frontal lobe structures, offering insight into his improbable survival and selective changes in behavior following this massive traumatic brain injury.

  • Gage’s case is famous in psychology as it shows the resilience of the human brain and profoundly influenced early understanding of cerebral localization.

What happened to Phineas Gage?

Phineas Gage was an American railroad construction foreman born in 1823 near Lebanon, New Hampshire.

On September 13, 1848, when Gage was 25 years old, he was working in Cavendish, Vermont, leading a crew preparing a railroad bed for the Rutland and Burlington Railroad by blasting away rock using explosives.

Around 4:30 pm, as Gage was using a 43-inch-long, 13-pound iron tamping rod to pack the explosive powder into a hole in the rock, the powder detonated unexpectedly.

The tamping iron launched from the hole and entered the left side of Gage’s face from the bottom up.

The iron rod entered Gage’s left cheek near the lower jaw hinge, passing behind his left eye socket, penetrating the base of his skull, traversing the left frontal lobe upwards at an angle, and exiting through the top frontal portion of his skull before landing about 25-30 yards behind him.

After the incident, Gage was thrown onto his back from the force of the iron rod and had some brief convulsions of the arms and legs.

Within minutes, however, assisted by his crew, Gage could stand, speak, and walk to an oxcart to be transported nearly a mile to the inn where he resided in Cavendish village.

Dr. Edward H. Williams arrived about an hour later to examine Gage. In his 1848 report, Williams noted visible pulsations of Gage’s exposed brain through an inverted funnel-shaped opening at the top of his skull from which brain tissue protruded.

Williams claimed that Gage was recounting his injuries to bystanders, and he did not initially believe the story, thinking that Gage was ‘deceived.’

Apparently, Gage had greeted Williams by angling his head at him and saying, ‘Here’s business enough for you.’

During repeated episodic vomiting, Williams observed additional small amounts of Gage’s brain matter expelled onto the floor through the frontal exit wound, as the cerebral tissue had likely detached from the skull during the passage of the tamping iron.

From Harlow’s written account, Gage was considered to be fully recovered and felt fit enough to reapply for his previous role as a foreman.

After an arduous early recovery, Gage eventually regained physical health, though his personality was markedly altered. He lived another 11 years before dying from severe epilepsy in 1860 at age 36.

How Did Phineas Gage’s Personality Change?

The descriptions of Gage’s personality and behavior before the accident are limited.

Before his accident, 25-year-old Gage was described by his railroad employers as a capable and efficient foreman, displaying a strong work ethic, drive, and dependability in overseeing his crews.

However, after surviving passage of the tamping iron through his frontal lobe in 1848, significant changes in Gage’s personality emerged during his physical recovery.

The contractors, who had regarded Gage as ‘efficient and capable’ before the accident, could no longer offer him work due to considerable changes in Gage’s personality.

In medical reports by Dr. John Martyn Harlow in 1848 and 1868, Gage is depicted as struggling with volatility, profanity, little deference for others, impatience, obstinance, unpredictability, and devising plans hastily abandoned.

Harlow wrote that Gage’s equilibrium between intellectual faculties and animal propensities was destroyed, reverting to childlike mental capacity regarding self-restraint and social appropriateness.

Though the specific neuroanatomical links were unclear at the time, Friends and colleagues felt Gage was “no longer Gage” after the traumatic brain injury, unable to process emotions or control impulsive behavior like his pre-accident self.

The shocking changes aligned with emerging localization theories that the frontal lobes regulate personality.

Marlow (1868) described Gage as follows:

“The equilibrium or balance, so to speak, between his intellectual faculties and animal propensities, seems to have been destroyed. He is fitful, irreverent, indulging at times in the grossest profanity (which was not previously his custom), manifesting but little deference for his fellows, impatient of restraint or advice when it conflicts with his desires, at times pertinaciously obstinate, yet capricious and vacillating, devising many plans of future operations, which are no sooner arranged than they are abandoned in turn for others appearing more feasible. A child in his intellectual capacity and manifestations, he has the animal passions of a strong man.”
“Previous to his injury, though untrained in the schools, he possessed a well-balanced mind, and was looked upon by those who knew him as a shrewd, smart business man, very energetic and persistent in executing all his plans of operation. In this regard his mind was radically changed, so decidedly that his friends and acquaintances said he was ‘no longer Gage.”

Through Harlow’s reports, it can be suggested that Gage’s personality changed due to the accident he endured.

The accounts imply that the injury led to a loss of social inhibition, meaning that Gage would behave in ways that were considered inappropriate.

Accuracy of Sources

In his 1848 and 1868 reports, Dr. Harlow provides a limited description of Gage’s pre-accident, stating he was “temperate inhabit, of great energy of character, possessed of considerable stamina of both brain and body” and was “a great favorite” with his men (Harlow, 1848, 1868).

However, later accounts add exaggerated positive traits not found in Harlow’s description. For example, Suinn (1970) describes Gage as enjoying “the respect as well as the favor of his men,” while Myers (1998) calls him “soft-spoken,” and Lahey (1992) says he was “polite and reasonable.”

Other sources paint him as friendly, affable, dependable, conscientious, and happy (Macmillan, 2000).

Similarly, post-accident descriptions often emphasize Gage’s negative qualities while ignoring any positive traits he retained.

Harlow documents personality changes but notes Gage remained employable for a period as a long-distance stagecoach driver in Chile (Harlow, 1868).

However, many accounts focus solely on traits like aggression, unreliability, or aimlessness (Macmillan, 2000). Damasio goes so far as to describe him as behaving violently with no self-control (Blakeslee, 1994).

In this way, later accounts tend to polish Gage’s pre-accident image as an upstanding citizen while presenting an almost cartoonishly perturbed version post-injury – neither in keeping with Harlow’s more nuanced clinical descriptions.

This likely reflects enthusiasm for fitting Gage’s case to localization theories. Macmillan (2000) argues that we must cautiously analyze such embellished personality descriptions when assessing Phineas Gage’s legacy.

Severity of Gage’s Brain Damage

When Gage died in 1861, no autopsies were performed until his skull was later recovered by Harlow years later. The brain damage that caused the significant personality changes was presumed to have involved the left frontal region of the brain.

It was not until 1994 that complex computer-based methods to examine brain damage could be used to investigate whether other areas of the brain were affected.

Phineas Gage brain image from Damasio et al. (1994)

Damasio et al. (1994) used measurements from Gage’s skull and neuroimaging techniques to determine the exact placement of the entry and exit point of the iron rod on a replica model (see Fig. 1).

They found that the damage caused by the rod involved both the left and right prefrontal cortices.

The left and right cortices are responsible for emotional processing and rational decision-making; therefore, it can be assumed that Gage had deficits in these areas.

Phineas Gage brain image from Ratiu et al., (2004)

A later study by Ratiu et al. (2004) also investigated Gage’s injury and the location of where the iron rod entered and exited the head. They used Gage’s actual skull rather than a model of it, as Damasio et al. (1994) had used.

Ratiu et al. (2004) generated three-dimensional reconstructions of the skull using computed tomography scans (CAT) and found that the extent of the brain injury was limited to the left frontal lobe only and did not extend to the right lobe (see Fig. 2).

Phineas Gage MRI brain image from Van Horn et al., (2012)

More recently, Van Horn et al. (2012) used a CAT scan of Gage’s skull as well as magnetic resonance imaging (MRI) data obtained from male participants of a similar age to Gage at the time (aged 25-36).

Their results supported Ratiu et al. (2004) in that they always concluded that the rod only damaged the left lobe and not the right.

Van Horn, however, went a step further in their research and investigated the potential levels of white and grey matter damaged due to Gage’s injury. White matter is deep in the brain and provides vital connections around the brain, essential to normal motor and sensory function.

Grey matter in the brain is essential to many areas of higher learning, including attention, memory, and thought.

The research by Van Horn proposed that Gage lost about 11% of his white matter and about 4% of his grey matter. White matter has the ability to regenerate, so this could explain why Gage recovered as well as he did.

Van Horn et al. (2012) compared Gage’s white matter damage to the damage that is caused by neurogenerative diseases such as Alzheimer’s.

This is supported by other studies that have found that changes in white matter is significantly associated with Alzheimer’s disease (Nasrabady, Rizvi, Goldman & Brickman, 2018; Kao, Chou, Chen & Yang, 2019).

It could be suggested that Gage’s apparent change in personality could have been the result of an early onset of Alzheimer’s.

However, as Dr. Harlow, who examined Gage, only reported on Gage’s behaviors shortly after his accident, rather than months or years later when Alzheimer’s symptoms may have emerged, we cannot be certain whether Gage actually had this condition.

All studies investigating the brain damage suffered by Gage is essentially all speculation as we cannot know for certain the extent of the accident’s effects.

We know that some brain tissue got destroyed, but any infections Gage may have suffered after the accident may have further destroyed more brain tissue.

We also cannot determine the exact location where the iron rod entered Gage’s skull to the millimeter. As brain structure varies from person to person, researchers cannot ever know for certain what areas of Gage’s brain were destroyed.

What Happened to Phineas Gage After the Brain Damage?

Dr. John Martyn Harlow took over Gage’s case soon after. Harlow (1848) reported that Gage was fully conscious and recognized Harlow immediately but was tired from the bleeding.

In the next couple of days, Harlow observed that Gage spoke with some difficulty but could name his friends, and the bleeding ceased. Gage then spent September 23rd to October 3rd in a semi-comatose state but was able to take steps out of bed by October 7th.

By October 11th, Harlow claimed Gage’s intellectual functioning began to improve. He recognized how much time had passed since the accident and could describe the accident clearly.

Four years after his injury, Gage moved to Chile and worked taking care of horses and being a stagecoach driver.

Harlow noted emerging personality changes in this period, with Gage becoming more erratic in behavior and responsibility.

In 1860, Gage moved to San Francisco to live near family but began suffering epileptic seizures – likely related to scar tissue and injury sequelae.

The convulsions worsened over months, and on May 21, 1861, almost 13 years after his shocking accident, Gage died at age 38 from complications of severe epilepsy.

How did Phineas Gage die?

On May 21st, 1861, twelve years after his accident, Gage died after having a series of repeated epileptic convulsions.

In 1867, Harlow arranged an exhumation of Gage’s body, claiming his skull and tamping iron for medical study.

These historic artifacts remain on display at the Harvard School of Medicine.

Though Gage initially survived, it was the secondary long-term effects of this massive brain injury that ultimately led to his premature death over a decade later.

Why Is Phineas Gage Important to Psychology?

Gage’s case is important in the field of neuroscience . The reported changes in his behavior post-accident are strong evidence for the localization of brain function , meaning that specific brain areas are associated with certain functions.

Neuroscientists have a better understanding of the function of the frontal cortex today. They understand that the frontal cortex is associated with language, decision-making, intelligence, and reasoning functions. Gage’s case became one of the first pieces of evidence suggesting that the frontal lobe was directly involved in personality.

It was believed that brain lesions caused permanent deficits in a person. However, Gage was proven to have recovered remarkably and lived a mostly normal life despite his injury. It was even suggested by a psychologist called Malcolm Macmillan that Gage may have relearned lost skills.

People with damage to their frontal lobes tend to have trouble completing tasks, get easily distracted, and have trouble planning.

Despite this damage to his frontal lobe, Gage was reported to have worked as a coach driver which would have involved Gage being focused and having a routine, as well as knowing his routes and multitasking.

Macmillan (2002), therefore, suggests that Gage’s damage to the frontal lobe could have somewhat repaired itself and recovered lost functions. The ability of the brain to change in this way is called brain plasticity .

Over time, Gage’s story has been retold, and this has sometimes led to a lot of exaggeration as to the personality changes of Gage.

Some popular reports described him as a hard-working, kind man prior to the accident and then described him as an aggressive, dishonest, and drunk man who could not hold down a job and died pennilessly.

Gage’s story seemed to take on a life of its own, and some even went as far as to say that Gage became a psychopath after his accident, without any facts behind this.

From the actual reports from the people in contact with Gage at the time, it appears that his personality change was nowhere near as extreme and that Gage was far more functional than some reports would have us believe (Macmillan, 2002).

Blakeslee, S. (1994, July 6). A miraculous recovery that went wrong . New York Times.

Damasio, H., Grabowski, T., Frank, R., Galaburda, A. M., & Damasio, A. R. (1994). The return of Phineas Gage: clues about the brain from the skull of a famous patient . Science, 264 (5162), 1102-1105.Harlow J. M. (1848). Passage of an iron rod through the head. Boston Medical and Surgical Journal, 39 , 389–393.

Harlow, J. M. (1868). Recovery from the Passage of an Iron Bar through the Head . Publications of the Massachusetts Medical Society. 2 (3), 327-347.

Kao, Y. H., Chou, M. C., Chen, C. H., & Yang, Y. H. (2019). White matter changes in patients with Alzheimer’s disease and associated factors . Journal of Clinical Medicine, 8 (2), 167.

Lahey, B. B. (1992). Psychology: An introduction . Wm. C. Brown Publishers.

Macmillan, M. (2000). Restoring Phineas Gage: A 150th retrospective. Journal of the History of the Neurosciences, 9 (1), 46-66.

Macmillan, M. (2002). An odd kind of fame: Stories of Phineas Gage. MIT Press.

Myers, D. G. (1998). Psychology (5th ed.). Worth Publishers.

Nasrabady, S. E., Rizvi, B., Goldman, J. E., & Brickman, A. M. (2018). White matter changes in Alzheimer’s disease: a focus on myelin and oligodendrocytes. Acta neuropathologica communications, 6 (1), 1-10.

Ratiu, P., Talos, I. F., Haker, S., Lieberman, D., & Everett, P. (2004). The tale of Phineas Gage, digitally remastered . Journal of neurotrauma, 21 (5), 637-643.

Suinn, R. M. (1970). Fundamentals of behavior pathology. Wiley.

Van Horn, J. D., Irimia, A., Torgerson, C. M., Chambers, M. C., Kikinis, R., & Toga, A. W. (2012). Mapping connectivity damage in the case of Phineas Gage . PloS one, 7(5) , e37454.

Further Reading

  • Griggs, R. A. (2015). Coverage of the Phineas Gage Story in Introductory Psychology Textbooks: Was Gage No Longer Gage?. Teaching of Psychology, 42(3), 195-202.
  • Wilgus, J., & Wilgus, B. (2009). Face to face with Phineas Gage. Journal of the History of the Neurosciences, 18(3), 340-345.
  • Macmillan, M., & Lena, M. L. (2010). Rehabilitating Phineas Gage. Neuropsychological Rehabilitation, 20, 641–658.
  • Macmillan, M. (2000). Restoring phineas gage: a 150th retrospective. Journal of the History of the Neurosciences, 9(1), 46-66.
  • Kotowicz, Z. (2007). The strange case of Phineas Gage. History of the Human Sciences, 20(1), 115-131.
  • O”driscoll K, Leach JP. “No longer Gage”: an iron bar through the head. Early observations of personality change after injury to the prefrontal cortex. BMJ. 1998;317(7174):1673-4. doi:10.1136/bmj.317.7174.1673a

If a person suffers from a traumatic brain injury in the prefrontal cortex, similar to that of Phineas Gage, what changes might occur?

A traumatic brain injury to the prefrontal cortex could result in significant changes in personality, emotional regulation, and executive function. This region is vital for impulse control, decision-making, and moderating social behavior.

A person may exhibit increased impulsivity, poor judgment, and reduced ability to plan or organize. Emotional volatility and difficulty in interpersonal relationships may also occur.

Just like the case of Phineas Gage, who became more impulsive and less dependable, the injury could dramatically alter one’s character and abilities.

Print Friendly, PDF & Email

Featured Topics

Featured series.

A series of random questions answered by Harvard experts.

Explore the Gazette

Read the latest.

Computer using a search bar in multiple languages to search the term "Buddhism."

The answer to your search may depend on where you live

why is phineas gage a case study

Putting human past on the MAPS

why is phineas gage a case study

Does AI help humans make better decisions?

Video: Editor Kai-Jae Wang; videographers Joe Sherman and Kai-Jae Wang; interviews by Ned Brown

Lessons of the brain: The Phineas Gage story

Harvard Correspondent

In 1848, an iron bar pierced his brain, his case providing new insights on both trauma and recovery

Imagine the modern-day reaction to a news story about a man surviving a three-foot, 7-inch, 13½-pound iron bar being blown through his skull — taking a chunk of his brain with it.

Then imagine that this happened in 1848, long before modern medicine and neuroscience. That was the case of Phineas Gage.

Whether the Vermont construction foreman, who was laying railroad track and using explosives at the time of the industrial accident, was lucky or unlucky is a judgment that Warren Anatomical Museum curator Dominic Hall puzzles over to this day.

“It is an impossible question, because he was extraordinarily unlucky to have an iron bar borne through his skull, but equally lucky to have survived, on such a low level of care,” said Hall. “We are lucky, to have him.”

Gage’s skull, along with the tamping iron that bore through it, are two of the approximately 15,000 artifacts and case objects conserved at the Warren, which is a part of the Center for the History of Medicine in Harvard’s Francis A. Countway Library of Medicine .

The resultant change in Gage’s personality — when he went from being well-liked and professionally successful to being “fitful, irreverent, and grossly profane, showing little deference for his fellows” and unable to keep his job — is widely cited in modern psychology as the textbook case for post-traumatic social disinhibition.

But as the years have gone by and we’ve learned more about his life, argued Hall, the teachings have changed.

“In 1848, he was seen as a triumph of human survival. Then, he becomes the textbook case for post-traumatic personality change. Recently, people interpret him as having found a form of independence and social recovery, which he didn’t get credit for 15 years ago.”

When Gage died 12 years after the accident, following epileptic seizures, his body was exhumed, while his skull and tamping iron were sent to the physician who had cared for him since the accident, John Harlow. Harlow later donated the items to the Warren, where they have remained for 160 years.

“In many ways, I see Gage similarly to how you would see a portrait of one of the famous professors hanging on the wall — he’s an important part of Harvard Medical School’s identity,” said Hall. “By continually reflecting on his case, it allows us to change how we reflect on the human brain and how we interact with our historical understanding of neuroscience.”

Share this article

You might like.

Researchers find ‘language bias’ in various site algorithms, raising concerns about fallout for social divisions among nations

why is phineas gage a case study

Harvard digital atlas plots patterns from history ancient and modern

why is phineas gage a case study

One judge’s track record — with and without algorithm — surprises researchers

When should Harvard speak out?

Institutional Voice Working Group provides a roadmap in new report

Had a bad experience meditating? You're not alone.

Altered states of consciousness through yoga, mindfulness more common than thought and mostly beneficial, study finds — though clinicians ill-equipped to help those who struggle

College sees strong yield for students accepted to Class of 2028  

Financial aid was a critical factor, dean says

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • Dement Neuropsychol
  • v.14(4); 2020 Dec

Logo of dementneuro

Language: English | Portuguese

Phineas Gage's great legacy

O grande legado de phineas gage, ricardo vieira teles, filho.

1 Faculty of Medicine, Universidade Federal de Goiás – Goiânia, GO, Brazil.

The case of Phineas Gage is an integral part of medical folklore. His accident still causes astonishment and curiosity and can be considered as the case that most influenced and contributed to the nineteenth century's neuropsychiatric discussion on the mind-brain relationship and brain topography. It was perhaps the first case to suggest the role of brain areas in determining personality and which specific parts of the brain, when affected, can induce specific mental changes. In addition, his case contributed to the emergence of the scientific approaches that would later culminate in psychosurgery. Gage is a fixed element in the studies of neurology, psychology, and neuroscience, having been solidified as one of the greatest medical curiosities of all time, deserving its prominence.

O caso de Phineas Gage é parte integrante do folclore médico. Seu acidente ainda causa espanto e curiosidade, e pode ser considerado como o caso que mais influenciou e contribuiu para a discussão neuropsiquiátrica do século XIX sobre a relação mente-cérebro e topografia cerebral. Foi talvez o primeiro caso a sugerir o papel de áreas cerebrais na determinação da personalidade e que partes específicas do cérebro, quando afetadas, podem induzir mudanças mentais específicas. Além disso, seu caso contribuiu para o surgimento de abordagens cientificas que culminariam posteriormente na psicocirurgia. Gage é um elemento fixo nos estudos de neurologia, psicologia e neurociências, tendo sido solidificado como uma das grandes curiosidades médicas de todos os tempos que merece seu destaque.

THE ACCIDENT

Gage, a 25-year-old male, 1.70 m in height and weighing approximately 70 kg, was employed in railroad construction at the time of the accident. As the company's most capable employee, with a well-balanced mind and a sense of leadership, he was directing a rock-splitting workgroup while preparing the bed of the Rutland & Burlington Railroad south of Cavendish, Vermont, USA. At 4:30 PM on September 13, 1848, he and his group were blasting a rock, and Gage was assigned to put gunpowder in a deep hole inside it. 1

The moment he pressed the gunpowder into the hole with a bar, the friction caused sparks, and the powder exploded. The resulting blast projected the meter-long bar, which was 3.2 cm in diameter and weighed about 6 kg, through his skull at high speed. The bar entered his left cheek, destroyed his eye, passed through the left front of the brain, and finally completely left his head at the top of the skull on the right side. Gage was thrown on his back and had some brief convulsions, but he woke up and spoke in a few minutes, walked with a little help, and sat in an ox cart for the 1.2-km trip to his quarters. 1

In the city about 30 minutes after the accident, Doctor Edward H. Williams arrived to provide medical care. Gage had lost a lot of blood, and his following days were quite difficult. 1 The wound became infected, and Phineas was anemic and remained semicomatose for more than two weeks. He also developed a fungal infection in the exposed brain that needed to be surgically removed. His condition slowly improved after doses of calomel and beaver oil. By mid-November he was already walking around the city. 2

THE CONSEQUENCES

For three weeks after the accident, the wound was treated by doctors. During this time, he was assisted by Dr. John Harlow, who covered the head wound and then reported the case in the Boston Medical Surgery Journal. In November 1849, invited by the professor of surgery at Harvard Medical School, Henry Jacob Bigelow, Harlow took Gage to Boston and introduced him to a meeting of the Boston Society for Medical Improvement ( Figure 1 ). 3

An external file that holds a picture, illustration, etc.
Object name is 1980-5764-dn-14-04-0419-gf01.jpg

In his reports, Harlow described that the physical injury profoundly altered Gage's personality. Although his memory, cognition and strength had not been altered, his once gentle personality slowly degraded. He became a man of bad and rude ways, disrespectful to colleagues, and unable to accept advice. His plans for the future were abandoned, and he proceeded without thinking about the consequences. 4 And here was the main point of this curious story: Gage became irritable, irreverent, rude and profane, aspects that were not part of his way of being. His mind had changed radically. His transformation was so great that everyone said that “Gage is no longer himself.” 5

As a result of this personality change, he was fired for indiscipline and could no longer hold a steady job. He became a circus attraction and even tried life in Chile, later returning to the United States. However, there is something still little known about Gage: his personality changes lasted for about four years, slowly reverting later. As a proof of this, he worked as a long-haul driver in Chile, a job that required considerable planning and focus skills. He died on May 21, 1861, 12 years after the accident, from an epileptic seizure that was almost certainly related to his brain injury. He was not submitted to an autopsy, but his mother, after exhumation of the body, donated his skull and iron rod at the request of Dr. Harlow, which, in turn, sometime later donated them to Harvard University ( Figure 2 ). 1

An external file that holds a picture, illustration, etc.
Object name is 1980-5764-dn-14-04-0419-gf02.jpg

Gage's case is considered to be one of the first examples of scientific evidence indicating that damage to the frontal lobes may alter personality, emotions and social interaction. 6 Prior to this case, the frontal lobes were considered silent structures, without function and unrelated to human behavior. Scottish neurologist, David Ferrier, was motivated by this fact to investigate the role of frontal lobes in brain function. Ferrier removed the frontal lobes in monkeys and noted that there were no major physiological changes, but the character and behavior of the animals were altered. 7

Knowledge that the frontal lobe was involved with emotions continued to be studied. The surgeon Burkhardt in 1894 performed a series of surgeries in which he selectively destroyed the frontal lobes of several patients in whom he thought might control psychotic symptoms, being the modern prototype of what was later known through Egas Moniz as psychosurgery. 7 Today, it is well understood that the prefrontal cortex of the brain controls the organization of behavior, including emotions and inhibitions.

Folkloric as it may be, but nonetheless remarkable, the contribution of Phineas Gage's case should not be overlooked, as it provided scientists the baseline for the promotion of studies in neuropsychiatry, and a source of inspiration for world medicine. 8 In 2012, a team of neuroscientists used computed tomography of Gage's skull with typical brain MRI scans to show how the Gage brain connection could have been affected. 9 And it is not just the researchers who keep coming back to Gage. Medical and psychology students still learn about Gage from their history lessons. Neurosurgeons and neurologists still sometimes use Gage as a reference when evaluating certain cases. 10 The final chapter of his life also offers us a thought-provoking learning about cases of massive brain damage, showing us that rehabilitation may be possible. 11

Therefore, Gage — inadvertently — made a huge contribution to neurology in several areas, including the study of brain topography in behavioral disorders, the development of psychosurgery, and finally the study of brain rehabilitation. Also, Gage's case had a tremendous influence on early neuropsychiatry. The specific changes observed in his behavior pointed to theories about the localization of brain function and correlated with cognitive and behavioral sequelae, thereby acquainting us with the role of the frontal cortex in higher-order actions such as reasoning, behavior and social cognition. In those years, while neuropsychiatry was in its infancy, Gage's extraordinary story served as one of the first pillars of evidence that the frontal lobe is involved in personality, which helped solidify his remarkable legacy in world medical history.

This study was conducted at the Universidade Federal de Goiás, Goiânia, GO, Brazil.

Funding: none.

  • Bipolar Disorder
  • Therapy Center
  • When To See a Therapist
  • Types of Therapy
  • Best Online Therapy
  • Best Couples Therapy
  • Best Family Therapy
  • Managing Stress
  • Sleep and Dreaming
  • Understanding Emotions
  • Self-Improvement
  • Healthy Relationships
  • Student Resources
  • Personality Types
  • Guided Meditations
  • Verywell Mind Insights
  • 2024 Verywell Mind 25
  • Mental Health in the Classroom
  • Editorial Process
  • Meet Our Review Board
  • Crisis Support

Phineas Gage: His Accident and Impact on Psychology

Author unknown / Wikimedia Commons

  • Phineas Gage's Accident
  • Change in Personality
  • Severity of Brain Damage
  • Impact on Psychology

What Happened to Phineas Gage After the Brain Damage?

Phineas Gage is often referred to as the "man who began neuroscience." He experienced a traumatic brain injury when an iron rod was driven through his skull, destroying much of his frontal lobe .

Gage miraculously survived the accident. However, his personality and behavior were so changed as a result of the frontal lobe damage that many of his friends described him as an almost different person entirely. The impact that the accident had has helped us better understand what the frontal lobe does, especially in relation to personality .

At a Glance

In 1848, Phineas Gage had a workplace accident in which an iron tamping rod entered and exited his skull. He survived but it is said that his personality changed as a result, leading to a greater understanding of the brain regions involved in personality, namely the frontal lobe.

Phineas Gage's Accident

On September 13, 1848, 25-year-old Gage was working as the foreman of a crew preparing a railroad bed near Cavendish, Vermont. He was using an iron tamping rod to pack explosive powder into a hole.

Unfortunately, the powder detonated, sending the 43-inch-long, 1.25-inch-diameter rod hurling upward. The rod penetrated Gage's left cheek, tore through his brain , and exited his skull before landing 80 feet away.

Gage not only survived the initial injury but was able to speak and walk to a nearby cart so he could be taken into town to be seen by a doctor. He was still conscious later that evening and able to recount the names of his co-workers. Gage even suggested that he didn't wish to see his friends since he would be back to work in "a day or two" anyway.

The Recovery Process

After developing an infection, Gage spent September 23 to October 3 in a semi-comatose state. On October 7, he took his first steps out of bed, and, by October 11, his intellectual functioning began to improve.

Descriptions of Gage's injury and mental changes were made by Dr. John Martyn Harlow. Much of what researchers know about the case is based on Harlow's observations.

Harlow noted that Gage knew how much time had passed since the accident and remembered clearly how the accident occurred, but had difficulty estimating the size and amounts of money. Within a month, Gage was well enough to leave the house.

In the months that followed, Gage returned to his parent's home in New Hampshire to recuperate. When Harlow saw Gage again the following year, the doctor noted that while Gage had lost vision in his eye and was left with obvious scars from the accident, he was in good physical health and appeared recovered.

Theories About Gage's Survival and Recovery

The type of injury sustained by Phineas Gage could have easily been fatal. While it cannot be said with certainty why Gage was able to survive the accident, let alone recover from the injury and still function, several theories exist. They include:

  • The rod's path . Some researchers suggest that the rod's path likely played a role in Gage's survival in that if it had penetrated other areas of the head—such as the pterygoid plexuses or cavernous sinus—Gage may have bled to death.
  • The brain's selective recruitment . In a 2022 study of another individual who also had an iron rod go through his skull—whom the researchers referred to as a "modern-day Phineas Gage"—it was found that the brain is able to selectively recruit non-injured areas to help perform functions previously assigned to the injured portion.
  • Work structure . Others theorize that Gage's work provided him structure, positively contributing to his recovery and aiding in his rehabilitation.

How Did Phineas Gage's Personality Change?

Popular reports of Gage often depict him as a hardworking, pleasant man before the accident. Post-accident, these reports describe him as a changed man, suggesting that the injury had transformed him into a surly, aggressive heavy drinker who was unable to hold down a job.

Harlow presented the first account of the changes in Gage's behavior following the accident. Where Gage had been described as energetic, motivated, and shrewd prior to the accident, many of his acquaintances explained that after the injury, he was "no longer Gage."

Severity of Gage's Brain Damage

Since there is little direct evidence of the exact extent of Gage's injuries aside from Harlow's report, it is difficult to know exactly how severely his brain was damaged. Harlow's accounts suggest that the injury did lead to a loss of social inhibition, leading Gage to behave in ways that were seen as inappropriate.

In a 1994 study, researchers utilized neuroimaging techniques to reconstruct Phineas Gage's skull and determine the exact placement of the injury. Their findings indicate that he suffered injuries to both the left and right prefrontal cortices, which would result in problems with emotional processing and rational decision-making .

Another study conducted in 2004 used three-dimensional, computer-aided reconstruction to analyze the extent of Gage's injury. It found that the effects were limited to the left frontal lobe.

In 2012, new research estimated that the iron rod destroyed approximately 11% of the white matter in Gage's frontal lobe and 4% of his cerebral cortex.

Some evidence suggests that many of the supposed effects of the accident may have been exaggerated and that Gage was actually far more functional than previously reported.

Why Is Phineas Gage Important to Psychology?

Gage's case had a tremendous influence on early neurology. The specific changes observed in his behavior pointed to emerging theories about the localization of brain function, or the idea that certain functions are associated with specific areas of the brain.

In those years, neurology was in its infancy. Gage's extraordinary story served as one of the first sources of evidence that the frontal lobe was involved in personality.

Today, scientists better understand the role that the frontal cortex has to play in important higher-order functions such as reasoning , language, and social cognition .

After the accident, Gage was unable to continue his previous job. According to Harlow, Gage spent some time traveling through New England and Europe with his tamping iron to earn money, supposedly even appearing in the Barnum American Museum in New York.

He also worked briefly at a livery stable in New Hampshire and then spent seven years as a stagecoach driver in Chile. He eventually moved to San Francisco to live with his mother as his health deteriorated.

After a series of epileptic seizures, Gage died on May 21, 1860, almost 12 years after his accident. Seven years after his death, Gage's body was exhumed. His brother gave his skull and the tamping rod to Dr. Harlow, who subsequently donated them to the Harvard University School of Medicine. They are still exhibited in its museum today.

Bottom Line

Gage's accident and subsequent experiences serve as a historical example of how case studies can be used to look at unique situations that could not be replicated in a lab. What researchers learned from Phineas Gage's skull and brain injury played an important role in the early days of neurology and helped scientists gain a better understanding of the human brain and the impact that damage could have on both functioning and behavior.

Sevmez F, Adanir S, Ince R. Legendary name of neuroscience: Phineas Gage (1823-1860) . Child's Nervous System . 2020. doi:10.1007/s00381-020-04595-6

Twomey S. Phineas Gage: Neuroscience's most famous patient .  Smithsonian Magazine.

Harlow JM. Recovery after severe injury to the head . Bull Massachus Med Soc . 1848. Reprinted in  Hist Psychiat. 1993;4(14):274-281. doi:10.1177/0957154X9300401407

Harlow JM. Passage of an iron rod through the head . 1848. J Neuropsychiatry Clin Neurosci . 1999;11(2):281-3. doi:10.1176/jnp.11.2.281

Itkin A, Sehgal T. Review of Phineas Gage's oral and maxillofacial injuries . J Oral Biol . 2017;4(1):3.

de Freitas P, Monteiro R, Bertani R, et al. E.L., a modern-day Phineas Gage: Revisiting frontal lobe injury . The Lancet Regional Health - Americas . 2022;14:100340. doi:10.1016/j.lana.2022.100340

Macmillan M, Lena ML. Rehabilitating Phineas Gage . Neuropsycholog Rehab . 2010;20(5):641-658. doi:10.1080/09602011003760527

O'Driscoll K, Leach JP. "No longer Gage": An iron bar through the head. Early observations of personality change after injury to the prefrontal cortex . BMJ . 1998;317(7174):1673-4. doi:10.1136/bmj.317.7174.1673a

Damasio H, Grabowski T, Frank R, Galaburda AM, Damasio AR. The return of Phineas Gage: Clues about the brain from the skull of a famous patient . Science . 1994;264(5162):1102-5. doi:10.1126/science.8178168

Ratiu P, Talos IF. Images in clinical medicine. The tale of Phineas Gage, digitally remastered . N Engl J Med . 2004;351(23):e21. doi:10.1056/NEJMicm031024

Van Horn JD, Irimia A, Torgerson CM, Chambers MC, Kikinis R, Toga AW. Mapping connectivity damage in the case of Phineas Gage . PLoS One . 2012;7(5):e37454. doi: 10.1371/journal.pone.0037454

Macmillan M. An Odd Kind of Fame: Stories of Phineas Gage . MIT Press.

Shelley B. Footprints of Phineas Gage: Historical beginnings on the origins of brain and behavior and the birth of cerebral localizationism . Archives Med Health Sci . 2016;4(2):280-6. doi:10.4103/2321-4848.196182

By Kendra Cherry, MSEd Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

Phineas Gage: The man with a hole in his head

  • Published 6 March 2011

Drawing of Phineas Gage showing path of iron rod through his brain

A metre-long iron rod travelled through Phineas Gage's head, emerging out of the top of his skull

"Phineas Gage had a hole in his head, and ev'ryone knew that he oughta be dead. Was it fate or blind luck, though it never came clear, kept keepin' on year after year…"

That song by banjo man Dan Lindner probably sounds like an outlandish myth, an old wives' tale passed around a small town.

But incredibly, his jaunty tune about Phineas Gage is true.

He did have a hole in his head, and against all the conceivable odds, he should have been dead. But instead, his remarkable story changed the study of neuroscience forever.

A railway worker in Vermont, US, Phineas was responsible for clearing away rocks in order for railway tracks to be laid down.

For the biggest rocks, he would drill a hole and use an iron rod to tamp down explosives into the middle before lighting the fuse.

But on 13 September 1848, this relatively simple procedure took a vicious twist. Phineas' iron rod apparently scraped the side of the rock, creating a spark which set off the gunpowder early.

It sent the iron - about 1m long and 3cm in diameter - straight up into his skull, driving through just under his left eye, and out of the top of his head, landing some 30m away.

Phineas was unconscious for a few moments before getting up and riding an oxcart into town with, the old banjo song continues, "a big bleedin' hole in his head".

Changed man

Under the expert care of local doctor John Harlow, Phineas kept on living for 12 years.

Little did he know that his momentary lapse of concentration would lead to him becoming one of the most famous case studies in brain science to this day.

Because although Phineas survived, he was a changed man. Now he was reportedly unreliable, partial to swearing and often making inappropriate remarks.

"It's reported that he became what now would be classically described as 'disinhibited' - this is a classic term for what happens to some people after damage to their frontal lobes," says John Aggleton, professor of neuroscience at Cardiff University.

"So, he loses his inhibitions, both in a social and emotional context. He would be rather high.

"Difficult company, to put it mildly."

For specialists, this was a staggering revelation. For the first time, this was evidence that damage to the brain could affect our behaviour and personality.

"When Phineas' accident occurred, there was no accepted doctrine of the brain having functions," says Malcolm Macmillan, professor of psychology at Melbourne University, and author of An Odd Kind of Fame: Stories of Phineas Gage.

"The only point of view that was opposed to that was that of the phrenologists, the people who thought that bumps on the outside of the skull indicated the organs within the brain - therefore the parts of the brain that had particular functions."

Soon after the accident, different brain specialists used evidence from Phineas' case as evidence of their own theories about the way the brain worked.

Those in favour of localisation - the idea that different parts of the brain had different tasks - said his changes in personality vindicated their position.

While others believed the fact that Phineas had survived at all showed that all parts of the brain could do everything and that one part could take over when another had failed.

Rehabilitation

Modern neuroscience would tell us that to an extent they were both right.

"It alerted people to the fact that a part of the brain - the frontal lobes - that we associate with sort of planning and intellectual strategies also had this important role in emotion," says Professor Aggleton.

"That raised the question how on earth are emotion and intellect linked together?"

Phineas' survival and rehabilitation demonstrated a theory of recovery which has influenced the treatment of frontal lobe damage today.

"There are something like 15 or 20 cases of people who've recovered from very serious frontal brain injury, of the kind that Phineas suffered from, without any professional assistance.

"In every case, what's common in the reports is that someone, or something, has taken over the lives of these people and given them structure."

In modern treatment, adding structure to tasks by, for example, mentally visualising a written list, is considered a key method in coping with frontal lobe damage.

"Phineas worked as a stage-coach driver," continues Professor MacMillan.

"The job is one that has got an external structure. You've got to be here for this part, then there's that part, then there's something else. Just as with these cases who have recovered."

In 1859, Phineas was in very poor health. He moved to San Francisco to live with his mother, brother-in-law and sister.

Phineas had epilepsy and died in 1860.

Professor MacMillan says that although we cannot be certain, it is likely that Phineas' epilepsy and subsequent death were related to his injury.

"Some of the late-term effects of that sort of traumatic brain injury is the formation of scar tissue. Scar tissue frequently becomes the point from which epilepsy develops."

Phineas was buried, the story goes, with his tamping iron.

Seven years later, he was exhumed at Dr Harlow's request - and now both his skull and the tamping iron are on display at the Harvard Medical School.

Around the BBC

Health Check

More from BBC World Service

why is phineas gage a case study

Phineas Gage: Neuroscience’s Most Famous Patient

An accident with a tamping iron made Phineas Gage history’s most famous brain-injury survivor

Steve Twomey

Phineas Gage

Jack and Beverly Wilgus, collectors of vintage photographs, no longer recall how they came by the 19th-century daguerreotype of a disfigured yet still-handsome man. It was at least 30 years ago. The photograph offered no clues as to where or precisely when it had been taken, who the man was or why he was holding a tapered rod. But the Wilguses speculated that the rod might be a harpoon, and the man’s closed eye and scarred brow the result of an encounter with a whale.

So over the years, as the picture rested in a display case in the couple’s Baltimore home, they thought of the man in the daguerreotype as the battered whaler.

In December 2007, Beverly posted a scan of the image on Flickr, the photo-sharing Web site, and titled it “One-Eyed Man with Harpoon.” Soon, a whaling enthusiast e-mailed her a dissent: that is no harpoon, which suggested that the man was no whaler. Months later, another correspondent told her that the man might be Phineas Gage and, if so, this would be the first known image of him.

Beverly, who had never heard of Gage, went online and found an astonishing tale.

In 1848, Gage, 25, was the foreman of a crew cutting a railroad bed in Cavendish, Vermont. On September 13, as he was using a tamping iron to pack explosive powder into a hole, the powder detonated. The tamping iron—43 inches long, 1.25 inches in diameter and weighing 13.25 pounds—shot skyward, penetrated Gage’s left cheek, ripped into his brain and exited through his skull, landing several dozen feet away. Though blinded in his left eye, he might not even have lost consciousness, and he remained savvy enough to tell a doctor that day, “Here is business enough for you.”

Gage’s initial survival would have ensured him a measure of celebrity, but his name was etched into history by observations made by John Martyn Harlow, the doctor who treated him for a few months afterward. Gage’s friends found him“no longer Gage,” Harlow wrote. The balance between his “intellectual faculties and animal propensities” seemed gone. He could not stick to plans, uttered “the grossest profanity” and showed “little deference for his fellows.” The railroad-construction company that employed him, which had thought him a model foreman, refused to take him back. So Gage went to work at a stable in New Hampshire, drove coaches in Chile and eventually joined relatives in San Francisco, where he died in May 1860, at age 36, after a series of seizures.

In time, Gage became the most famous patient in the annals of neuroscience, because his case was the first to suggest a link between brain trauma and personality change. In his book An Odd Kind of Fame: Stories of Phineas Gage , the University of Melbourne’s Malcolm Macmillan writes that two-thirds of introductory psychology textbooks mention Gage. Even today, his skull, the tamping iron and a mask of his face made while he was alive are the most sought-out items at the Warren Anatomical Museum on the Harvard Medical School campus.

Michael Spurlock, a database administrator in Missoula, Montana, happened upon the Wilgus daguerreotype on Flickr in December 2008. As soon as he saw the object the one-eyed man held, Spurlock knew it was not a harpoon. Too short. No wooden shaft. It looked more like a tamping iron, he thought. Instantly, a name popped into his head: Phineas Gage. Spurlock knew the Gage story well enough to know that any photograph of him would be the first to come to light. He knew enough, too, to be intrigued by Gage’s appearance, if it was Gage. Over the years, accounts of his changed character had gone far beyond Harlow’s observations, Macmillan says, turning him into an ill-tempered, shiftless drunk. But the man in the Flickr photogragh seemed well-dressed and confident.

It was Spurlock who told the Wilguses that the man in their daguerreotype might be Gage. After Beverly finished her online research, she and Jack concluded that the man probably was. She e-mailed a scan of the photograph to the Warren museum. Eventually it reached Jack Eckert, the public-services librarian at Harvard’s Center for the History of Medicine. “Such a ‘wow’ moment,” Eckert recalls. It had to be Gage, he determined. How many mid-19th-century men with a mangled eye and scarred forehead had their portrait taken holding a metal tool? A tool with an inscription on it?

The Wilguses had never noticed the inscription; after all, the daguerreotype measures only 2.75 inches by 3.25 inches. But a few days after receiving Spurlock’s tip, Jack, a retired photography professor, was focusing a camera to take a picture of his photograph. “There’s writing on that rod!” Jack said. He couldn’t read it all, but part of it seemed to say, “through the head of Mr. Phi...”

In March 2009, Jack and Beverly went to Harvard to compare their picture with Gage’s mask and the tamping iron, which had been inscribed in Gage’s lifetime: “This is the bar that was shot through the head of Mr. Phinehas P. Gage,” it reads, misspelling the name.

Harvard has not officially declared that the daguerreotype is of Gage, but Macmillan, whom the Wilguses contacted next, is quite certain. He has also learned of another photograph, he says, kept by a descendant of Gage’s.

As for Spurlock, when he got word that his hunch was apparently correct, “I threw open the hallway door and told my wife, ‘I played a part in a historical discovery!’ ”

Steve Twomey is based in New Jersey. He wrote about map and document thieves for the April 2008 issue of Smithsonian .

why is phineas gage a case study

Get the latest History stories in your inbox?

Click to visit our Privacy Statement .

  • Skip to main content
  • Keyboard shortcuts for audio player

Shots - Health News

Your Health

  • Treatments & Tests
  • Health Inc.
  • Public Health

Why Brain Scientists Are Still Obsessed With The Curious Case Of Phineas Gage

Jon Hamilton 2010

Jon Hamilton

why is phineas gage a case study

Cabinet-card portrait of brain-injury survivor Phineas Gage (1823–1860), shown holding the tamping iron that injured him. Wikimedia hide caption

Cabinet-card portrait of brain-injury survivor Phineas Gage (1823–1860), shown holding the tamping iron that injured him.

It took an explosion and 13 pounds of iron to usher in the modern era of neuroscience.

In 1848, a 25-year-old railroad worker named Phineas Gage was blowing up rocks to clear the way for a new rail line in Cavendish, Vt. He would drill a hole, place an explosive charge, then pack in sand using a 13-pound metal bar known as a tamping iron.

But in this instance, the metal bar created a spark that touched off the charge. That, in turn, "drove this tamping iron up and out of the hole, through his left cheek, behind his eye socket, and out of the top of his head," says Jack Van Horn , an associate professor of neurology at the Keck School of Medicine at the University of Southern California.

Gage didn't die. But the tamping iron destroyed much of his brain's left frontal lobe, and Gage's once even-tempered personality changed dramatically.

"He is fitful, irreverent, indulging at times in the grossest profanity, which was not previously his custom," wrote John Martyn Harlow, the physician who treated Gage after the accident.

This sudden personality transformation is why Gage shows up in so many medical textbooks, says Malcolm Macmillan, an honorary professor at the Melbourne School of Psychological Sciences and the author of An Odd Kind of Fame: Stories of Phineas Gage.

"He was the first case where you could say fairly definitely that injury to the brain produced some kind of change in personality," Macmillan says.

And that was a big deal in the mid-1800s, when the brain's purpose and inner workings were largely a mystery. At the time, phrenologists were still assessing people's personalities by measuring bumps on their skull.

Gage's famous case would help establish brain science as a field, says Allan Ropper , a neurologist at Harvard Medical School and Brigham and Women's Hospital.

One Account Of Gage's Personality Shift

Dr. John Harlow, who treated Gage following the accident, noted his personality change in an 1851 edition of the American Phrenological Journal and Repository of Science.

One doctor's account of the personality shift in Phineas Gage following the accident.

"If you talk about hard core neurology and the relationship between structural damage to the brain and particular changes in behavior, this is ground zero," Ropper says. It was an ideal case because "it's one region [of the brain], it's really obvious, and the changes in personality were stunning."

So, perhaps it's not surprising that every generation of brain scientists seems compelled to revisit Gage's case.

For example:

  • In the 1940s, a famous neurologist named Stanley Cobb diagrammed the skull in an effort to determine the exact path of the tamping iron.
  • In the 1980s, scientists repeated the exercise using CT scans.
  • In the 1990s, researchers applied 3-D computer modeling to the problem.

And, in 2012, Van Horn led a team that combined CT scans of Gage's skull with MRI scans of typical brains to show how the wiring of Gage's brain could have been affected .

"Neuroscientists like to always go back and say, 'we're relating our work in the present day to these older famous cases which really defined the field,' " Van Horn says.

And it's not just researchers who keep coming back to Gage. Medical and psychology students still learn his story. And neurosurgeons and neurologists still sometimes reference Gage when assessing certain patients, Van Horn says.

"Every six months or so you'll see something like that, where somebody has been shot in the head with an arrow, or falls off a ladder and lands on a piece of rebar," Van Horn says. "So you do have these modern kind of Phineas Gage-like cases."

why is phineas gage a case study

Two renderings of Gage's skull show the likely path of the iron rod and the nerve fibers that were probably damaged as it passed through. Van Horn JD, Irimia A, Torgerson CM, Chambers MC, Kikinis R, et al./Wikimedia hide caption

Two renderings of Gage's skull show the likely path of the iron rod and the nerve fibers that were probably damaged as it passed through.

There is something about Gage that most people don't know, Macmillan says. "That personality change, which undoubtedly occurred, did not last much longer than about two to three years."

Gage went on to work as a long-distance stagecoach driver in Chile, a job that required considerable planning skills and focus, Macmillan says.

This chapter of Gage's life offers a powerful message for present day patients, he says. "Even in cases of massive brain damage and massive incapacity, rehabilitation is always possible."

Gage lived for a dozen years after his accident. But ultimately, the brain damage he'd sustained probably led to his death.

He died on May 21, 1860, of an epileptic seizure that was almost certainly related to his brain injury.

Gage's skull, and the tamping iron that passed through it, are on display at the Warren Anatomical Museum in Boston, Mass.

  • Brain research
  • neuroscience
  • Brain injuries

How Phineas Gage’s Freak Accident Changed Brain Science

Vermont Historian Explains How A Railway Accident Paved The Way for Neurosurgery And More

Phineas Gage

Cavendish might look like any other small Vermont town. Nestled between rolling hills and the Black River, with one main street running through town, it’s a launching point for trout anglers, snowmobilers and skiers. But this rural town of just over a thousand people can claim a remarkable historical figure: Phineas Gage .

Phineas Gage's skull

Gage was a young construction foreman who suffered a gruesome accident that changed the history of brain science.

Stay informed on the latest news

Sign up for WPR’s email newsletter.

In 1848, while blasting through rock to build the new railroad, an explosion sent a 3-foot, 13-pound iron rod up through his cheekbone and out the top of his skull. The tamping rod landed 80 feet away, “ smeared with blood and brain .”

Remarkably, Gage lived for another 11 years. He lost one eye and had a permanent hole in his skull, covered by a thin layer of skin.

Gage was a medical marvel.

There had been a long-running debate in the 19th century on whether different regions in the brain govern different behaviors. Here was a case of severe damage to the left frontal lobe, followed by a dramatic personality shift. It seemed to prove the point once and for all.

“It laid the path for the first real brain surgery in 1885 ,” said Margo Caulfield, director of the Cavendish Historical Society, told “ To the Best of Our Knowledge .” “It opened up a whole new horizon. You can survive a brain injury, you can touch the brain, which means you can do surgery. It’s really, really huge.”

Gage himself was never the same after the accident.

He’d been well-liked by his co-workers and his employer, but later, his doctor reported that he became “ fitful, irreverent, indulging at times in the grossest profanity .”

A friend said, “ Gage is no longer Gage .”

[[{“fid”:”1360831″,”view_mode”:”embed_portrait”,”fields”:{“alt”:”Steve Paulson in Cavendish, Vermont, near a marker remembering Phineas Gage.”,”title”:”Steve Paulson in Cavendish, Vermont, near a marker remembering Phineas Gage.”,”class”:”media-element file-embed-landscape media-wysiwyg-align-right”,”data-delta”:”2″,”format”:”embed_portrait”,”alignment”:”right”,”field_image_caption[und][0][value]”:”%3Cp%3E%3Cspan%20style%3D%22font-family%3Aarial%3B%22%3ESteve%20Paulson%20of%20%22To%20the%20Best%20of%20Our%20Knowledge%22%20in%20Cavendish%2C%20Vermont%2C%20near%20a%20marker%20remembering%20Phineas%20Gage.%20%3Cem%3EAnne%20Strainchamps%2FTTBOOK%3C%2Fem%3E%3C%2Fspan%3E%3C%2Fp%3E%0A”,”field_image_caption[und][0][format]”:”full_html”,”field_file_image_alt_text[und][0][value]”:”Steve Paulson in Cavendish, Vermont, near a marker remembering Phineas Gage.”,”field_file_image_title_text[und][0][value]”:”Steve Paulson in Cavendish, Vermont, near a marker remembering Phineas Gage.”},”type”:”media”,”field_deltas”:{“2”:{“alt”:”Steve Paulson in Cavendish, Vermont, near a marker remembering Phineas Gage.”,”title”:”Steve Paulson in Cavendish, Vermont, near a marker remembering Phineas Gage.”,”class”:”media-element file-embed-landscape media-wysiwyg-align-right”,”data-delta”:”2″,”format”:”embed_portrait”,”alignment”:”right”,”field_image_caption[und][0][value]”:”%3Cp%3E%3Cspan%20style%3D%22font-family%3Aarial%3B%22%3ESteve%20Paulson%20of%20%22To%20the%20Best%20of%20Our%20Knowledge%22%20in%20Cavendish%2C%20Vermont%2C%20near%20a%20marker%20remembering%20Phineas%20Gage.%20%3Cem%3EAnne%20Strainchamps%2FTTBOOK%3C%2Fem%3E%3C%2Fspan%3E%3C%2Fp%3E%0A”,”field_image_caption[und][0][format]”:”full_html”,”field_file_image_alt_text[und][0][value]”:”Steve Paulson in Cavendish, Vermont, near a marker remembering Phineas Gage.”,”field_file_image_title_text[und][0][value]”:”Steve Paulson in Cavendish, Vermont, near a marker remembering Phineas Gage.”}},”link_text”:false,”attributes”:{“alt”:”Steve Paulson in Cavendish, Vermont, near a marker remembering Phineas Gage.”,”title”:”Steve Paulson in Cavendish, Vermont, near a marker remembering Phineas Gage.”,”class”:”media-element file-embed-portrait media-wysiwyg-align-right”,”data-delta”:”2″}}]]”Based on my experience with people who’ve had similar types of injury, you can talk to them, and they sound completely cogent. And then you talk to them another time and it’s like, what planet are they on?” Caulfield said. “This is the horror of traumatic brain injury. Some families just cannot handle a patient like that.”

Gage was unable to work on the railroad, but he still needed a job.

For a while, he made money by exhibiting himself around New England as a curiosity, showing off the holes in his head and his famous tamping iron.

Then, he was offered a job as a long-distance stagecoach driver on the Val Paraiso-Santiago route in Chile. It was a 100-mile route, and 13 hours of handling a coach and six horses, plus passengers, over rough terrain.

Gage lived in Chile for seven years and then started having epileptic seizures.

He died in 1860 at the age of 36.

Margo Caulfield

Over the years, scientists have interpreted Gage’s story in different ways.

At first, he was seen as a triumph of human survival. Then for decades he became a textbook case for post-traumatic personality change. More recently, Gage’s case has been interpreted as a story of resilience. For a man who was supposedly anti-social and volatile, Gage’s ability to hold onto a challenging job in Chile suggests he’d regained his independence and social adaptability.

Perhaps Gage’s story is a textbook case of another sort, showing the brain’s capacity for rewiring after trauma. This gift of neuroplasticity is why we’re able to handle so much that life throws at us.

“I am fascinated by what he overcame to survive for as long as he did,” Caulfield said. “The resiliency piece of his story fascinates me … I think resiliency is just hard-wired into our DNA.”

Related Stories

How do we know when to call it quits.

How do we know when to call it quits?

Wisconsin scientists studying gene-editing tech to cure blindness

Wisconsin scientists studying gene-editing tech to cure blindness

Construction set to begin in 2024 on effort to keep invasive carp out of the Great Lakes

Construction set to begin in 2024 on effort to keep invasive carp out of the Great Lakes

Magic mushrooms and the ‘entropic brain’

Magic mushrooms and the ‘entropic brain’

Nearly half the nation’s tap water may contain PFAS. Here’s how some filters rank at removing them.

Nearly half the nation’s tap water may contain PFAS. Here’s how some filters rank at removing them.

Library homepage

  • school Campus Bookshelves
  • menu_book Bookshelves
  • perm_media Learning Objects
  • login Login
  • how_to_reg Request Instructor Account
  • hub Instructor Commons

Margin Size

  • Download Page (PDF)
  • Download Full Book (PDF)
  • Periodic Table
  • Physics Constants
  • Scientific Calculator
  • Reference & Cite
  • Tools expand_more
  • Readability

selected template will load here

This action is not available.

Social Sci LibreTexts

1.3: The Case of Phineas Gage- Connecting Brain to Behavior

  • Last updated
  • Save as PDF
  • Page ID 173107

  • Multiple Authors
  • ASCCC Open Educational Resources Initiative (OERI)

\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

\( \newcommand{\Span}{\mathrm{span}}\)

\( \newcommand{\id}{\mathrm{id}}\)

\( \newcommand{\kernel}{\mathrm{null}\,}\)

\( \newcommand{\range}{\mathrm{range}\,}\)

\( \newcommand{\RealPart}{\mathrm{Re}}\)

\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

\( \newcommand{\Argument}{\mathrm{Arg}}\)

\( \newcommand{\norm}[1]{\| #1 \|}\)

\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

\( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

\( \newcommand{\vectorC}[1]{\textbf{#1}} \)

\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

Learning Objectives

  • Discuss the Case of Phineas Gage and its contribution to biological psychology.

While experiments are necessary to establish cause and effect relationships, in-depth studies of unique individuals or groups of people who share an experience can be used to inform our understanding of things that we can not study experimentally. Surgical errors, extreme mistreatment, and tragic accidents are impactful events that can alter individuals significantly, providing unique opportunities to study the effects of experiences which can not be ethically studied experimentally. There have been a number of these case studies which have revealed the role of different parts of the brain on our thinking and behavior. One such case is Phineas Gage. Gage lived 12 years after a rod pierced his skull, damaging his left frontal lobe. Researchers were able to gather information about his functioning before and observe his cognitive ability and personality after the accident. His case enabled the field to understand the role of frontal lobe in personality and mental processes.

The Tale of Phineas Gage

Phinease Cage after his accident, holding the rod that damaged his brain

The case of Phineas Gage is worthy of expanded coverage as his tragic accident establishes a clear connection between the brain and who we are. Gage, a 25-year-old man, was employed in railroad construction at the time of the accident. As the company's most capable employee, with a well-balanced mind and a sense of leadership, he was directing a rock-splitting workgroup while preparing the bed of the Rutland and Burlington Railroad south of Cavendish, Vermont, USA. At 4:30 PM on September 13, 1848, he and his group were blasting a rock, and Gage was assigned to put gunpowder in a deep hole inside it.

The moment he pressed the gunpowder into the hole with a bar, the friction caused sparks, and the powder exploded. The resulting blast projected the meter-long bar, which was 1.25 inches in diameter and weighed about 13.2 pounds, through his skull at high speed. The bar entered his left cheek, destroyed his eye, passed through the left front of his brain, and left his head at the top of the skull on the right side. Gage was thrown on his back and had some brief convulsions, but he woke up and spoke in a few minutes, walked with a little help, and sat in an ox cart for the 0.7-mile trip to where he was living.

About 30 minutes after the accident, a doctor arrived to provide medical care. Gage had lost a lot of blood, and the next days that followed were quite difficult. The wound became infected, and Phineas was anemic and remained semi-comatose for more than two weeks. He also developed a fungal infection in the exposed brain that needed to be surgically removed. His condition slowly improved after doses of calomel and beaver oil. By mid-November he was already walking around the city.

The Consequences

For three weeks after the accident, the wound was treated by doctors. During this time, he was assisted by Dr. John Harlow, who covered the head wound and then reported the case in the Boston Medical Surgery Journal. In November 1849, invited by the professor of surgery at Harvard Medical School, Henry Jacob Bigelow, Harlow took Gage to Boston and introduced him to a meeting of the Boston Society for Medical Improvement .

In his reports, Harlow described that the physical injury profoundly altered Gage's personality. Although his memory, cognition, and strength had not been altered, his once gentle personality slowly degraded. He became a man of bad and rude ways, disrespectful to colleagues, and unable to accept advice. His plans for the future were abandoned, and he acted without thinking about the consequences. And here was the main point of this curious story: Gage became irritable, irreverent, rude and profane, aspects that were not part of his way of being. His mind had changed radically. His transformation was so great that everyone said that “Gage is no longer himself.”

As a result of this personality change, he was fired and could no longer hold a steady job. He became a circus attraction and even tried life in Chile, later returning to the United States. However, there is something still little known about Gage: his personality changes lasted for about four years, slowly reverting later. As a proof of this, he worked as a long-haul driver in Chile, a job that required considerable planning and focus skills. He died on May 21, 1861, 12 years after the accident, from an epileptic seizure that was almost certainly related to his brain injury.

Phineas Gage's skull and tamping iron

After his body was removed from its grave, Gage's mother donated his skull to Dr. Harlow who in turn donated it to Harvard University.

Gage's case is considered to be one of the first examples of scientific evidence indicating that damage to the frontal lobes may alter personality, emotions, and social interaction. Prior to this case, the frontal lobes were considered silent structures, without function and unrelated to human behavior. Scottish neurologist, David Ferrier, was motivated by this fact to investigate the role of frontal lobes in brain function. Ferrier removed the frontal lobes in monkeys and noted that there were no major physiological changes, but the character and behavior of the animals were altered. In other words, he confirmed the role of the frontal lobes that was suggested by Gage's accident in an experiment with a non-human animal.

Knowledge that the frontal lobe was involved with emotions continued to be studied. The surgeon Burkhardt in 1894 performed a series of surgeries in which he selectively destroyed the frontal lobes of several patients in whom he sought to control psychotic symptoms, being the modern prototype of what was later known through Antonio Egas Moniz as psychosurgery. Today, it is well understood that the prefrontal cortex of the brain controls the organization of behavior, including emotions and inhibitions.

Folkloric as it may be, but nonetheless remarkable, the contribution of Phineas Gage's case should not be overlooked, as it provided scientists the baseline for the promotion of studies in neuropsychiatry, and a source of inspiration for world medicine. In 2012, a team of neuroscientists used computer tomography of Gage's skull with typical brain MRI scans to simulate how extensive Gage's brain damage was. They confirmed that most of the damaged area was the left frontal lobe. However, surrounding areas and their neural network were also extensively severed. And it is not just the researchers who keep coming back to Gage. Medical and psychology students still learn about Gage from their history lessons. Neurosurgeons and neurologists still sometimes use Gage as a reference when evaluating certain cases. The final chapter of his life also offers us a thought-provoking discovery about cases of massive brain damage, indicating that rehabilitation may be possible.

Phineas Gage made a huge contribution to our understanding of the frontal lobe damage and its subsequent change in personality. Furthermore, his case expanded knowledge in neurology in several areas, including the study of brain topography in behavioral disorders, the development of psychosurgery, and finally the study of brain rehabilitation. Also, Gage's case had a tremendous influence on early neuropsychiatry. The specific changes observed in his behavior pointed to theories about the localization of brain function and correlated with cognitive and behavioral sequelae, thereby acquainting us with the role of the frontal cortex in higher-order actions such as reasoning, behavior and social cognition. In those years, while neuropsychiatry was in its infancy, Gage's extraordinary story served as one of the first pillars of evidence that the frontal lobe is involved in personality, which helped solidify his remarkable legacy in world medical history.

Attributions

Adapted from Phineas Gage’s Great Legacy by Vieira Teles Filho, Ricardo. Licensed CC BY 4.0 .

IMAGES

  1. Phineas Gage và vụ tai nạn đã khai sinh ra khoa học thần kinh hiện đại

    why is phineas gage a case study

  2. The Curious Case of Phineas Gage (Ep71)

    why is phineas gage a case study

  3. Phineas-Gage.png (900×558) (survived 12 years after tamping iron through brain)

    why is phineas gage a case study

  4. A Father Learning to Love: January 2015

    why is phineas gage a case study

  5. The Gruesome Story of Phineas Gage: How a Severe Work-Place Accident Influenced Neuroscience and

    why is phineas gage a case study

  6. Bengal Tiger v Kelenken guillermoi

    why is phineas gage a case study

VIDEO

  1. Why Phineas and ferb never caught? #cartoon

  2. Phineas Gage

  3. The Extraordinary Case of Phineas

  4. Phineas Gage: The Man Who Survived The Impossible #shorts #history #science

  5. Highlights: Neuroscience Experiments for Everyone

  6. Phineas Gage, The Astonishing Case That

COMMENTS

  1. What Happened to Phineas Gage? - Simply Psychology

    Why Is Phineas Gage Important to Psychology? Gage’s case is important in the field of neuroscience . The reported changes in his behavior post-accident are strong evidence for the localization of brain function , meaning that specific brain areas are associated with certain functions.

  2. Lessons of the brain: The Phineas Gage story - Harvard Gazette

    In 1848, an iron bar pierced his brain, his case providing new insights on both trauma and recovery. Imagine the modern-day reaction to a news story about a man surviving a three-foot, 7-inch, 13½-pound iron bar being blown through his skull — taking a chunk of his brain with it.

  3. Phineas Gage's great legacy - PMC - National Center for ...

    The case of Phineas Gage is an integral part of medical folklore. His accident still causes astonishment and curiosity and can be considered as the case that most influenced and contributed to the nineteenth century's neuropsychiatric discussion on the mind-brain relationship and brain topography.

  4. Phineas Gage: Biography, Brain Injury, and Influence

    Phineas Gage suffered a terrible accident that made him one of the most famous cases of traumatic brain injury. Learn Gage's story and its impact on psychology.

  5. Phineas Gage - Wikipedia

    Phineas P. Gage (1823–1860) was an American railroad construction foreman remembered for his improbable: 19 survival of an accident in which a large iron rod was driven completely through his head, destroying much of his brain's left frontal lobe, and for that injury's reported effects on his personality and behavior over the remaining 12 ...

  6. Phineas Gage: The man with a hole in his head - BBC News

    A railway worker in Vermont, US, Phineas was responsible for clearing away rocks in order for railway tracks to be laid down. For the biggest rocks, he would drill a hole and use an iron rod to...

  7. Phineas Gage: Neuroscience’s Most Famous Patient

    In time, Gage became the most famous patient in the annals of neuroscience, because his case was the first to suggest a link between brain trauma and personality change.

  8. The Curious Case of Phineas Gage's Brain : Shots - Health ...

    In 1848, a railroad worker survived an accident that drove a 13-pound iron bar through his head. The injury changed his personality, and our understanding of the brain.

  9. How Phineas Gage's Freak Accident Changed Brain Science

    Over the years, scientists have interpreted Gage’s story in different ways. At first, he was seen as a triumph of human survival. Then for decades he became a textbook case for post-traumatic personality change. More recently, Gage’s case has been interpreted as a story of resilience.

  10. 1.3: The Case of Phineas Gage- Connecting Brain to Behavior

    The case of Phineas Gage is worthy of expanded coverage as his tragic accident establishes a clear connection between the brain and who we are. Gage, a 25-year-old man, was employed in railroad construction at the time of the accident.