importance of descriptive case study

The Ultimate Guide to Qualitative Research - Part 1: The Basics

importance of descriptive case study

  • Introduction and overview
  • What is qualitative research?
  • What is qualitative data?
  • Examples of qualitative data
  • Qualitative vs. quantitative research
  • Mixed methods
  • Qualitative research preparation
  • Theoretical perspective
  • Theoretical framework
  • Literature reviews

Research question

  • Conceptual framework
  • Conceptual vs. theoretical framework

Data collection

  • Qualitative research methods
  • Focus groups
  • Observational research

What is a case study?

Applications for case study research, what is a good case study, process of case study design, benefits and limitations of case studies.

  • Ethnographical research
  • Ethical considerations
  • Confidentiality and privacy
  • Power dynamics
  • Reflexivity

Case studies

Case studies are essential to qualitative research , offering a lens through which researchers can investigate complex phenomena within their real-life contexts. This chapter explores the concept, purpose, applications, examples, and types of case studies and provides guidance on how to conduct case study research effectively.

importance of descriptive case study

Whereas quantitative methods look at phenomena at scale, case study research looks at a concept or phenomenon in considerable detail. While analyzing a single case can help understand one perspective regarding the object of research inquiry, analyzing multiple cases can help obtain a more holistic sense of the topic or issue. Let's provide a basic definition of a case study, then explore its characteristics and role in the qualitative research process.

Definition of a case study

A case study in qualitative research is a strategy of inquiry that involves an in-depth investigation of a phenomenon within its real-world context. It provides researchers with the opportunity to acquire an in-depth understanding of intricate details that might not be as apparent or accessible through other methods of research. The specific case or cases being studied can be a single person, group, or organization – demarcating what constitutes a relevant case worth studying depends on the researcher and their research question .

Among qualitative research methods , a case study relies on multiple sources of evidence, such as documents, artifacts, interviews , or observations , to present a complete and nuanced understanding of the phenomenon under investigation. The objective is to illuminate the readers' understanding of the phenomenon beyond its abstract statistical or theoretical explanations.

Characteristics of case studies

Case studies typically possess a number of distinct characteristics that set them apart from other research methods. These characteristics include a focus on holistic description and explanation, flexibility in the design and data collection methods, reliance on multiple sources of evidence, and emphasis on the context in which the phenomenon occurs.

Furthermore, case studies can often involve a longitudinal examination of the case, meaning they study the case over a period of time. These characteristics allow case studies to yield comprehensive, in-depth, and richly contextualized insights about the phenomenon of interest.

The role of case studies in research

Case studies hold a unique position in the broader landscape of research methods aimed at theory development. They are instrumental when the primary research interest is to gain an intensive, detailed understanding of a phenomenon in its real-life context.

In addition, case studies can serve different purposes within research - they can be used for exploratory, descriptive, or explanatory purposes, depending on the research question and objectives. This flexibility and depth make case studies a valuable tool in the toolkit of qualitative researchers.

Remember, a well-conducted case study can offer a rich, insightful contribution to both academic and practical knowledge through theory development or theory verification, thus enhancing our understanding of complex phenomena in their real-world contexts.

What is the purpose of a case study?

Case study research aims for a more comprehensive understanding of phenomena, requiring various research methods to gather information for qualitative analysis . Ultimately, a case study can allow the researcher to gain insight into a particular object of inquiry and develop a theoretical framework relevant to the research inquiry.

Why use case studies in qualitative research?

Using case studies as a research strategy depends mainly on the nature of the research question and the researcher's access to the data.

Conducting case study research provides a level of detail and contextual richness that other research methods might not offer. They are beneficial when there's a need to understand complex social phenomena within their natural contexts.

The explanatory, exploratory, and descriptive roles of case studies

Case studies can take on various roles depending on the research objectives. They can be exploratory when the research aims to discover new phenomena or define new research questions; they are descriptive when the objective is to depict a phenomenon within its context in a detailed manner; and they can be explanatory if the goal is to understand specific relationships within the studied context. Thus, the versatility of case studies allows researchers to approach their topic from different angles, offering multiple ways to uncover and interpret the data .

The impact of case studies on knowledge development

Case studies play a significant role in knowledge development across various disciplines. Analysis of cases provides an avenue for researchers to explore phenomena within their context based on the collected data.

importance of descriptive case study

This can result in the production of rich, practical insights that can be instrumental in both theory-building and practice. Case studies allow researchers to delve into the intricacies and complexities of real-life situations, uncovering insights that might otherwise remain hidden.

Types of case studies

In qualitative research , a case study is not a one-size-fits-all approach. Depending on the nature of the research question and the specific objectives of the study, researchers might choose to use different types of case studies. These types differ in their focus, methodology, and the level of detail they provide about the phenomenon under investigation.

Understanding these types is crucial for selecting the most appropriate approach for your research project and effectively achieving your research goals. Let's briefly look at the main types of case studies.

Exploratory case studies

Exploratory case studies are typically conducted to develop a theory or framework around an understudied phenomenon. They can also serve as a precursor to a larger-scale research project. Exploratory case studies are useful when a researcher wants to identify the key issues or questions which can spur more extensive study or be used to develop propositions for further research. These case studies are characterized by flexibility, allowing researchers to explore various aspects of a phenomenon as they emerge, which can also form the foundation for subsequent studies.

Descriptive case studies

Descriptive case studies aim to provide a complete and accurate representation of a phenomenon or event within its context. These case studies are often based on an established theoretical framework, which guides how data is collected and analyzed. The researcher is concerned with describing the phenomenon in detail, as it occurs naturally, without trying to influence or manipulate it.

Explanatory case studies

Explanatory case studies are focused on explanation - they seek to clarify how or why certain phenomena occur. Often used in complex, real-life situations, they can be particularly valuable in clarifying causal relationships among concepts and understanding the interplay between different factors within a specific context.

importance of descriptive case study

Intrinsic, instrumental, and collective case studies

These three categories of case studies focus on the nature and purpose of the study. An intrinsic case study is conducted when a researcher has an inherent interest in the case itself. Instrumental case studies are employed when the case is used to provide insight into a particular issue or phenomenon. A collective case study, on the other hand, involves studying multiple cases simultaneously to investigate some general phenomena.

Each type of case study serves a different purpose and has its own strengths and challenges. The selection of the type should be guided by the research question and objectives, as well as the context and constraints of the research.

The flexibility, depth, and contextual richness offered by case studies make this approach an excellent research method for various fields of study. They enable researchers to investigate real-world phenomena within their specific contexts, capturing nuances that other research methods might miss. Across numerous fields, case studies provide valuable insights into complex issues.

Critical information systems research

Case studies provide a detailed understanding of the role and impact of information systems in different contexts. They offer a platform to explore how information systems are designed, implemented, and used and how they interact with various social, economic, and political factors. Case studies in this field often focus on examining the intricate relationship between technology, organizational processes, and user behavior, helping to uncover insights that can inform better system design and implementation.

Health research

Health research is another field where case studies are highly valuable. They offer a way to explore patient experiences, healthcare delivery processes, and the impact of various interventions in a real-world context.

importance of descriptive case study

Case studies can provide a deep understanding of a patient's journey, giving insights into the intricacies of disease progression, treatment effects, and the psychosocial aspects of health and illness.

Asthma research studies

Specifically within medical research, studies on asthma often employ case studies to explore the individual and environmental factors that influence asthma development, management, and outcomes. A case study can provide rich, detailed data about individual patients' experiences, from the triggers and symptoms they experience to the effectiveness of various management strategies. This can be crucial for developing patient-centered asthma care approaches.

Other fields

Apart from the fields mentioned, case studies are also extensively used in business and management research, education research, and political sciences, among many others. They provide an opportunity to delve into the intricacies of real-world situations, allowing for a comprehensive understanding of various phenomena.

Case studies, with their depth and contextual focus, offer unique insights across these varied fields. They allow researchers to illuminate the complexities of real-life situations, contributing to both theory and practice.

importance of descriptive case study

Whatever field you're in, ATLAS.ti puts your data to work for you

Download a free trial of ATLAS.ti to turn your data into insights.

Understanding the key elements of case study design is crucial for conducting rigorous and impactful case study research. A well-structured design guides the researcher through the process, ensuring that the study is methodologically sound and its findings are reliable and valid. The main elements of case study design include the research question , propositions, units of analysis, and the logic linking the data to the propositions.

The research question is the foundation of any research study. A good research question guides the direction of the study and informs the selection of the case, the methods of collecting data, and the analysis techniques. A well-formulated research question in case study research is typically clear, focused, and complex enough to merit further detailed examination of the relevant case(s).

Propositions

Propositions, though not necessary in every case study, provide a direction by stating what we might expect to find in the data collected. They guide how data is collected and analyzed by helping researchers focus on specific aspects of the case. They are particularly important in explanatory case studies, which seek to understand the relationships among concepts within the studied phenomenon.

Units of analysis

The unit of analysis refers to the case, or the main entity or entities that are being analyzed in the study. In case study research, the unit of analysis can be an individual, a group, an organization, a decision, an event, or even a time period. It's crucial to clearly define the unit of analysis, as it shapes the qualitative data analysis process by allowing the researcher to analyze a particular case and synthesize analysis across multiple case studies to draw conclusions.

Argumentation

This refers to the inferential model that allows researchers to draw conclusions from the data. The researcher needs to ensure that there is a clear link between the data, the propositions (if any), and the conclusions drawn. This argumentation is what enables the researcher to make valid and credible inferences about the phenomenon under study.

Understanding and carefully considering these elements in the design phase of a case study can significantly enhance the quality of the research. It can help ensure that the study is methodologically sound and its findings contribute meaningful insights about the case.

Ready to jumpstart your research with ATLAS.ti?

Conceptualize your research project with our intuitive data analysis interface. Download a free trial today.

Conducting a case study involves several steps, from defining the research question and selecting the case to collecting and analyzing data . This section outlines these key stages, providing a practical guide on how to conduct case study research.

Defining the research question

The first step in case study research is defining a clear, focused research question. This question should guide the entire research process, from case selection to analysis. It's crucial to ensure that the research question is suitable for a case study approach. Typically, such questions are exploratory or descriptive in nature and focus on understanding a phenomenon within its real-life context.

Selecting and defining the case

The selection of the case should be based on the research question and the objectives of the study. It involves choosing a unique example or a set of examples that provide rich, in-depth data about the phenomenon under investigation. After selecting the case, it's crucial to define it clearly, setting the boundaries of the case, including the time period and the specific context.

Previous research can help guide the case study design. When considering a case study, an example of a case could be taken from previous case study research and used to define cases in a new research inquiry. Considering recently published examples can help understand how to select and define cases effectively.

Developing a detailed case study protocol

A case study protocol outlines the procedures and general rules to be followed during the case study. This includes the data collection methods to be used, the sources of data, and the procedures for analysis. Having a detailed case study protocol ensures consistency and reliability in the study.

The protocol should also consider how to work with the people involved in the research context to grant the research team access to collecting data. As mentioned in previous sections of this guide, establishing rapport is an essential component of qualitative research as it shapes the overall potential for collecting and analyzing data.

Collecting data

Gathering data in case study research often involves multiple sources of evidence, including documents, archival records, interviews, observations, and physical artifacts. This allows for a comprehensive understanding of the case. The process for gathering data should be systematic and carefully documented to ensure the reliability and validity of the study.

Analyzing and interpreting data

The next step is analyzing the data. This involves organizing the data , categorizing it into themes or patterns , and interpreting these patterns to answer the research question. The analysis might also involve comparing the findings with prior research or theoretical propositions.

Writing the case study report

The final step is writing the case study report . This should provide a detailed description of the case, the data, the analysis process, and the findings. The report should be clear, organized, and carefully written to ensure that the reader can understand the case and the conclusions drawn from it.

Each of these steps is crucial in ensuring that the case study research is rigorous, reliable, and provides valuable insights about the case.

The type, depth, and quality of data in your study can significantly influence the validity and utility of the study. In case study research, data is usually collected from multiple sources to provide a comprehensive and nuanced understanding of the case. This section will outline the various methods of collecting data used in case study research and discuss considerations for ensuring the quality of the data.

Interviews are a common method of gathering data in case study research. They can provide rich, in-depth data about the perspectives, experiences, and interpretations of the individuals involved in the case. Interviews can be structured , semi-structured , or unstructured , depending on the research question and the degree of flexibility needed.

Observations

Observations involve the researcher observing the case in its natural setting, providing first-hand information about the case and its context. Observations can provide data that might not be revealed in interviews or documents, such as non-verbal cues or contextual information.

Documents and artifacts

Documents and archival records provide a valuable source of data in case study research. They can include reports, letters, memos, meeting minutes, email correspondence, and various public and private documents related to the case.

importance of descriptive case study

These records can provide historical context, corroborate evidence from other sources, and offer insights into the case that might not be apparent from interviews or observations.

Physical artifacts refer to any physical evidence related to the case, such as tools, products, or physical environments. These artifacts can provide tangible insights into the case, complementing the data gathered from other sources.

Ensuring the quality of data collection

Determining the quality of data in case study research requires careful planning and execution. It's crucial to ensure that the data is reliable, accurate, and relevant to the research question. This involves selecting appropriate methods of collecting data, properly training interviewers or observers, and systematically recording and storing the data. It also includes considering ethical issues related to collecting and handling data, such as obtaining informed consent and ensuring the privacy and confidentiality of the participants.

Data analysis

Analyzing case study research involves making sense of the rich, detailed data to answer the research question. This process can be challenging due to the volume and complexity of case study data. However, a systematic and rigorous approach to analysis can ensure that the findings are credible and meaningful. This section outlines the main steps and considerations in analyzing data in case study research.

Organizing the data

The first step in the analysis is organizing the data. This involves sorting the data into manageable sections, often according to the data source or the theme. This step can also involve transcribing interviews, digitizing physical artifacts, or organizing observational data.

Categorizing and coding the data

Once the data is organized, the next step is to categorize or code the data. This involves identifying common themes, patterns, or concepts in the data and assigning codes to relevant data segments. Coding can be done manually or with the help of software tools, and in either case, qualitative analysis software can greatly facilitate the entire coding process. Coding helps to reduce the data to a set of themes or categories that can be more easily analyzed.

Identifying patterns and themes

After coding the data, the researcher looks for patterns or themes in the coded data. This involves comparing and contrasting the codes and looking for relationships or patterns among them. The identified patterns and themes should help answer the research question.

Interpreting the data

Once patterns and themes have been identified, the next step is to interpret these findings. This involves explaining what the patterns or themes mean in the context of the research question and the case. This interpretation should be grounded in the data, but it can also involve drawing on theoretical concepts or prior research.

Verification of the data

The last step in the analysis is verification. This involves checking the accuracy and consistency of the analysis process and confirming that the findings are supported by the data. This can involve re-checking the original data, checking the consistency of codes, or seeking feedback from research participants or peers.

Like any research method , case study research has its strengths and limitations. Researchers must be aware of these, as they can influence the design, conduct, and interpretation of the study.

Understanding the strengths and limitations of case study research can also guide researchers in deciding whether this approach is suitable for their research question . This section outlines some of the key strengths and limitations of case study research.

Benefits include the following:

  • Rich, detailed data: One of the main strengths of case study research is that it can generate rich, detailed data about the case. This can provide a deep understanding of the case and its context, which can be valuable in exploring complex phenomena.
  • Flexibility: Case study research is flexible in terms of design , data collection , and analysis . A sufficient degree of flexibility allows the researcher to adapt the study according to the case and the emerging findings.
  • Real-world context: Case study research involves studying the case in its real-world context, which can provide valuable insights into the interplay between the case and its context.
  • Multiple sources of evidence: Case study research often involves collecting data from multiple sources , which can enhance the robustness and validity of the findings.

On the other hand, researchers should consider the following limitations:

  • Generalizability: A common criticism of case study research is that its findings might not be generalizable to other cases due to the specificity and uniqueness of each case.
  • Time and resource intensive: Case study research can be time and resource intensive due to the depth of the investigation and the amount of collected data.
  • Complexity of analysis: The rich, detailed data generated in case study research can make analyzing the data challenging.
  • Subjectivity: Given the nature of case study research, there may be a higher degree of subjectivity in interpreting the data , so researchers need to reflect on this and transparently convey to audiences how the research was conducted.

Being aware of these strengths and limitations can help researchers design and conduct case study research effectively and interpret and report the findings appropriately.

importance of descriptive case study

Ready to analyze your data with ATLAS.ti?

See how our intuitive software can draw key insights from your data with a free trial today.

  • Privacy Policy

Research Method

Home » Descriptive Research Design – Types, Methods and Examples

Descriptive Research Design – Types, Methods and Examples

Table of Contents

Descriptive Research Design

Descriptive Research Design

Definition:

Descriptive research design is a type of research methodology that aims to describe or document the characteristics, behaviors, attitudes, opinions, or perceptions of a group or population being studied.

Descriptive research design does not attempt to establish cause-and-effect relationships between variables or make predictions about future outcomes. Instead, it focuses on providing a detailed and accurate representation of the data collected, which can be useful for generating hypotheses, exploring trends, and identifying patterns in the data.

Types of Descriptive Research Design

Types of Descriptive Research Design are as follows:

Cross-sectional Study

This involves collecting data at a single point in time from a sample or population to describe their characteristics or behaviors. For example, a researcher may conduct a cross-sectional study to investigate the prevalence of certain health conditions among a population, or to describe the attitudes and beliefs of a particular group.

Longitudinal Study

This involves collecting data over an extended period of time, often through repeated observations or surveys of the same group or population. Longitudinal studies can be used to track changes in attitudes, behaviors, or outcomes over time, or to investigate the effects of interventions or treatments.

This involves an in-depth examination of a single individual, group, or situation to gain a detailed understanding of its characteristics or dynamics. Case studies are often used in psychology, sociology, and business to explore complex phenomena or to generate hypotheses for further research.

Survey Research

This involves collecting data from a sample or population through standardized questionnaires or interviews. Surveys can be used to describe attitudes, opinions, behaviors, or demographic characteristics of a group, and can be conducted in person, by phone, or online.

Observational Research

This involves observing and documenting the behavior or interactions of individuals or groups in a natural or controlled setting. Observational studies can be used to describe social, cultural, or environmental phenomena, or to investigate the effects of interventions or treatments.

Correlational Research

This involves examining the relationships between two or more variables to describe their patterns or associations. Correlational studies can be used to identify potential causal relationships or to explore the strength and direction of relationships between variables.

Data Analysis Methods

Descriptive research design data analysis methods depend on the type of data collected and the research question being addressed. Here are some common methods of data analysis for descriptive research:

Descriptive Statistics

This method involves analyzing data to summarize and describe the key features of a sample or population. Descriptive statistics can include measures of central tendency (e.g., mean, median, mode) and measures of variability (e.g., range, standard deviation).

Cross-tabulation

This method involves analyzing data by creating a table that shows the frequency of two or more variables together. Cross-tabulation can help identify patterns or relationships between variables.

Content Analysis

This method involves analyzing qualitative data (e.g., text, images, audio) to identify themes, patterns, or trends. Content analysis can be used to describe the characteristics of a sample or population, or to identify factors that influence attitudes or behaviors.

Qualitative Coding

This method involves analyzing qualitative data by assigning codes to segments of data based on their meaning or content. Qualitative coding can be used to identify common themes, patterns, or categories within the data.

Visualization

This method involves creating graphs or charts to represent data visually. Visualization can help identify patterns or relationships between variables and make it easier to communicate findings to others.

Comparative Analysis

This method involves comparing data across different groups or time periods to identify similarities and differences. Comparative analysis can help describe changes in attitudes or behaviors over time or differences between subgroups within a population.

Applications of Descriptive Research Design

Descriptive research design has numerous applications in various fields. Some of the common applications of descriptive research design are:

  • Market research: Descriptive research design is widely used in market research to understand consumer preferences, behavior, and attitudes. This helps companies to develop new products and services, improve marketing strategies, and increase customer satisfaction.
  • Health research: Descriptive research design is used in health research to describe the prevalence and distribution of a disease or health condition in a population. This helps healthcare providers to develop prevention and treatment strategies.
  • Educational research: Descriptive research design is used in educational research to describe the performance of students, schools, or educational programs. This helps educators to improve teaching methods and develop effective educational programs.
  • Social science research: Descriptive research design is used in social science research to describe social phenomena such as cultural norms, values, and beliefs. This helps researchers to understand social behavior and develop effective policies.
  • Public opinion research: Descriptive research design is used in public opinion research to understand the opinions and attitudes of the general public on various issues. This helps policymakers to develop effective policies that are aligned with public opinion.
  • Environmental research: Descriptive research design is used in environmental research to describe the environmental conditions of a particular region or ecosystem. This helps policymakers and environmentalists to develop effective conservation and preservation strategies.

Descriptive Research Design Examples

Here are some real-time examples of descriptive research designs:

  • A restaurant chain wants to understand the demographics and attitudes of its customers. They conduct a survey asking customers about their age, gender, income, frequency of visits, favorite menu items, and overall satisfaction. The survey data is analyzed using descriptive statistics and cross-tabulation to describe the characteristics of their customer base.
  • A medical researcher wants to describe the prevalence and risk factors of a particular disease in a population. They conduct a cross-sectional study in which they collect data from a sample of individuals using a standardized questionnaire. The data is analyzed using descriptive statistics and cross-tabulation to identify patterns in the prevalence and risk factors of the disease.
  • An education researcher wants to describe the learning outcomes of students in a particular school district. They collect test scores from a representative sample of students in the district and use descriptive statistics to calculate the mean, median, and standard deviation of the scores. They also create visualizations such as histograms and box plots to show the distribution of scores.
  • A marketing team wants to understand the attitudes and behaviors of consumers towards a new product. They conduct a series of focus groups and use qualitative coding to identify common themes and patterns in the data. They also create visualizations such as word clouds to show the most frequently mentioned topics.
  • An environmental scientist wants to describe the biodiversity of a particular ecosystem. They conduct an observational study in which they collect data on the species and abundance of plants and animals in the ecosystem. The data is analyzed using descriptive statistics to describe the diversity and richness of the ecosystem.

How to Conduct Descriptive Research Design

To conduct a descriptive research design, you can follow these general steps:

  • Define your research question: Clearly define the research question or problem that you want to address. Your research question should be specific and focused to guide your data collection and analysis.
  • Choose your research method: Select the most appropriate research method for your research question. As discussed earlier, common research methods for descriptive research include surveys, case studies, observational studies, cross-sectional studies, and longitudinal studies.
  • Design your study: Plan the details of your study, including the sampling strategy, data collection methods, and data analysis plan. Determine the sample size and sampling method, decide on the data collection tools (such as questionnaires, interviews, or observations), and outline your data analysis plan.
  • Collect data: Collect data from your sample or population using the data collection tools you have chosen. Ensure that you follow ethical guidelines for research and obtain informed consent from participants.
  • Analyze data: Use appropriate statistical or qualitative analysis methods to analyze your data. As discussed earlier, common data analysis methods for descriptive research include descriptive statistics, cross-tabulation, content analysis, qualitative coding, visualization, and comparative analysis.
  • I nterpret results: Interpret your findings in light of your research question and objectives. Identify patterns, trends, and relationships in the data, and describe the characteristics of your sample or population.
  • Draw conclusions and report results: Draw conclusions based on your analysis and interpretation of the data. Report your results in a clear and concise manner, using appropriate tables, graphs, or figures to present your findings. Ensure that your report follows accepted research standards and guidelines.

When to Use Descriptive Research Design

Descriptive research design is used in situations where the researcher wants to describe a population or phenomenon in detail. It is used to gather information about the current status or condition of a group or phenomenon without making any causal inferences. Descriptive research design is useful in the following situations:

  • Exploratory research: Descriptive research design is often used in exploratory research to gain an initial understanding of a phenomenon or population.
  • Identifying trends: Descriptive research design can be used to identify trends or patterns in a population, such as changes in consumer behavior or attitudes over time.
  • Market research: Descriptive research design is commonly used in market research to understand consumer preferences, behavior, and attitudes.
  • Health research: Descriptive research design is useful in health research to describe the prevalence and distribution of a disease or health condition in a population.
  • Social science research: Descriptive research design is used in social science research to describe social phenomena such as cultural norms, values, and beliefs.
  • Educational research: Descriptive research design is used in educational research to describe the performance of students, schools, or educational programs.

Purpose of Descriptive Research Design

The main purpose of descriptive research design is to describe and measure the characteristics of a population or phenomenon in a systematic and objective manner. It involves collecting data that describe the current status or condition of the population or phenomenon of interest, without manipulating or altering any variables.

The purpose of descriptive research design can be summarized as follows:

  • To provide an accurate description of a population or phenomenon: Descriptive research design aims to provide a comprehensive and accurate description of a population or phenomenon of interest. This can help researchers to develop a better understanding of the characteristics of the population or phenomenon.
  • To identify trends and patterns: Descriptive research design can help researchers to identify trends and patterns in the data, such as changes in behavior or attitudes over time. This can be useful for making predictions and developing strategies.
  • To generate hypotheses: Descriptive research design can be used to generate hypotheses or research questions that can be tested in future studies. For example, if a descriptive study finds a correlation between two variables, this could lead to the development of a hypothesis about the causal relationship between the variables.
  • To establish a baseline: Descriptive research design can establish a baseline or starting point for future research. This can be useful for comparing data from different time periods or populations.

Characteristics of Descriptive Research Design

Descriptive research design has several key characteristics that distinguish it from other research designs. Some of the main characteristics of descriptive research design are:

  • Objective : Descriptive research design is objective in nature, which means that it focuses on collecting factual and accurate data without any personal bias. The researcher aims to report the data objectively without any personal interpretation.
  • Non-experimental: Descriptive research design is non-experimental, which means that the researcher does not manipulate any variables. The researcher simply observes and records the behavior or characteristics of the population or phenomenon of interest.
  • Quantitative : Descriptive research design is quantitative in nature, which means that it involves collecting numerical data that can be analyzed using statistical techniques. This helps to provide a more precise and accurate description of the population or phenomenon.
  • Cross-sectional: Descriptive research design is often cross-sectional, which means that the data is collected at a single point in time. This can be useful for understanding the current state of the population or phenomenon, but it may not provide information about changes over time.
  • Large sample size: Descriptive research design typically involves a large sample size, which helps to ensure that the data is representative of the population of interest. A large sample size also helps to increase the reliability and validity of the data.
  • Systematic and structured: Descriptive research design involves a systematic and structured approach to data collection, which helps to ensure that the data is accurate and reliable. This involves using standardized procedures for data collection, such as surveys, questionnaires, or observation checklists.

Advantages of Descriptive Research Design

Descriptive research design has several advantages that make it a popular choice for researchers. Some of the main advantages of descriptive research design are:

  • Provides an accurate description: Descriptive research design is focused on accurately describing the characteristics of a population or phenomenon. This can help researchers to develop a better understanding of the subject of interest.
  • Easy to conduct: Descriptive research design is relatively easy to conduct and requires minimal resources compared to other research designs. It can be conducted quickly and efficiently, and data can be collected through surveys, questionnaires, or observations.
  • Useful for generating hypotheses: Descriptive research design can be used to generate hypotheses or research questions that can be tested in future studies. For example, if a descriptive study finds a correlation between two variables, this could lead to the development of a hypothesis about the causal relationship between the variables.
  • Large sample size : Descriptive research design typically involves a large sample size, which helps to ensure that the data is representative of the population of interest. A large sample size also helps to increase the reliability and validity of the data.
  • Can be used to monitor changes : Descriptive research design can be used to monitor changes over time in a population or phenomenon. This can be useful for identifying trends and patterns, and for making predictions about future behavior or attitudes.
  • Can be used in a variety of fields : Descriptive research design can be used in a variety of fields, including social sciences, healthcare, business, and education.

Limitation of Descriptive Research Design

Descriptive research design also has some limitations that researchers should consider before using this design. Some of the main limitations of descriptive research design are:

  • Cannot establish cause and effect: Descriptive research design cannot establish cause and effect relationships between variables. It only provides a description of the characteristics of the population or phenomenon of interest.
  • Limited generalizability: The results of a descriptive study may not be generalizable to other populations or situations. This is because descriptive research design often involves a specific sample or situation, which may not be representative of the broader population.
  • Potential for bias: Descriptive research design can be subject to bias, particularly if the researcher is not objective in their data collection or interpretation. This can lead to inaccurate or incomplete descriptions of the population or phenomenon of interest.
  • Limited depth: Descriptive research design may provide a superficial description of the population or phenomenon of interest. It does not delve into the underlying causes or mechanisms behind the observed behavior or characteristics.
  • Limited utility for theory development: Descriptive research design may not be useful for developing theories about the relationship between variables. It only provides a description of the variables themselves.
  • Relies on self-report data: Descriptive research design often relies on self-report data, such as surveys or questionnaires. This type of data may be subject to biases, such as social desirability bias or recall bias.

About the author

' src=

Muhammad Hassan

Researcher, Academic Writer, Web developer

You may also like

One-to-One Interview in Research

One-to-One Interview – Methods and Guide

Ethnographic Research

Ethnographic Research -Types, Methods and Guide

Qualitative Research Methods

Qualitative Research Methods

Experimental Research Design

Experimental Design – Types, Methods, Guide

Research Methods

Research Methods – Types, Examples and Guide

Basic Research

Basic Research – Types, Methods and Examples

importance of descriptive case study

Designing and Conducting Case Studies

This guide examines case studies, a form of qualitative descriptive research that is used to look at individuals, a small group of participants, or a group as a whole. Researchers collect data about participants using participant and direct observations, interviews, protocols, tests, examinations of records, and collections of writing samples. Starting with a definition of the case study, the guide moves to a brief history of this research method. Using several well documented case studies, the guide then looks at applications and methods including data collection and analysis. A discussion of ways to handle validity, reliability, and generalizability follows, with special attention to case studies as they are applied to composition studies. Finally, this guide examines the strengths and weaknesses of case studies.

Definition and Overview

Case study refers to the collection and presentation of detailed information about a particular participant or small group, frequently including the accounts of subjects themselves. A form of qualitative descriptive research, the case study looks intensely at an individual or small participant pool, drawing conclusions only about that participant or group and only in that specific context. Researchers do not focus on the discovery of a universal, generalizable truth, nor do they typically look for cause-effect relationships; instead, emphasis is placed on exploration and description.

Case studies typically examine the interplay of all variables in order to provide as complete an understanding of an event or situation as possible. This type of comprehensive understanding is arrived at through a process known as thick description, which involves an in-depth description of the entity being evaluated, the circumstances under which it is used, the characteristics of the people involved in it, and the nature of the community in which it is located. Thick description also involves interpreting the meaning of demographic and descriptive data such as cultural norms and mores, community values, ingrained attitudes, and motives.

Unlike quantitative methods of research, like the survey, which focus on the questions of who, what, where, how much, and how many, and archival analysis, which often situates the participant in some form of historical context, case studies are the preferred strategy when how or why questions are asked. Likewise, they are the preferred method when the researcher has little control over the events, and when there is a contemporary focus within a real life context. In addition, unlike more specifically directed experiments, case studies require a problem that seeks a holistic understanding of the event or situation in question using inductive logic--reasoning from specific to more general terms.

In scholarly circles, case studies are frequently discussed within the context of qualitative research and naturalistic inquiry. Case studies are often referred to interchangeably with ethnography, field study, and participant observation. The underlying philosophical assumptions in the case are similar to these types of qualitative research because each takes place in a natural setting (such as a classroom, neighborhood, or private home), and strives for a more holistic interpretation of the event or situation under study.

Unlike more statistically-based studies which search for quantifiable data, the goal of a case study is to offer new variables and questions for further research. F.H. Giddings, a sociologist in the early part of the century, compares statistical methods to the case study on the basis that the former are concerned with the distribution of a particular trait, or a small number of traits, in a population, whereas the case study is concerned with the whole variety of traits to be found in a particular instance" (Hammersley 95).

Case studies are not a new form of research; naturalistic inquiry was the primary research tool until the development of the scientific method. The fields of sociology and anthropology are credited with the primary shaping of the concept as we know it today. However, case study research has drawn from a number of other areas as well: the clinical methods of doctors; the casework technique being developed by social workers; the methods of historians and anthropologists, plus the qualitative descriptions provided by quantitative researchers like LePlay; and, in the case of Robert Park, the techniques of newspaper reporters and novelists.

Park was an ex-newspaper reporter and editor who became very influential in developing sociological case studies at the University of Chicago in the 1920s. As a newspaper professional he coined the term "scientific" or "depth" reporting: the description of local events in a way that pointed to major social trends. Park viewed the sociologist as "merely a more accurate, responsible, and scientific reporter." Park stressed the variety and value of human experience. He believed that sociology sought to arrive at natural, but fluid, laws and generalizations in regard to human nature and society. These laws weren't static laws of the kind sought by many positivists and natural law theorists, but rather, they were laws of becoming--with a constant possibility of change. Park encouraged students to get out of the library, to quit looking at papers and books, and to view the constant experiment of human experience. He writes, "Go and sit in the lounges of the luxury hotels and on the doorsteps of the flophouses; sit on the Gold Coast settees and on the slum shakedowns; sit in the Orchestra Hall and in the Star and Garter Burlesque. In short, gentlemen [sic], go get the seats of your pants dirty in real research."

But over the years, case studies have drawn their share of criticism. In fact, the method had its detractors from the start. In the 1920s, the debate between pro-qualitative and pro-quantitative became quite heated. Case studies, when compared to statistics, were considered by many to be unscientific. From the 1930's on, the rise of positivism had a growing influence on quantitative methods in sociology. People wanted static, generalizable laws in science. The sociological positivists were looking for stable laws of social phenomena. They criticized case study research because it failed to provide evidence of inter subjective agreement. Also, they condemned it because of the few number of cases studied and that the under-standardized character of their descriptions made generalization impossible. By the 1950s, quantitative methods, in the form of survey research, had become the dominant sociological approach and case study had become a minority practice.

Educational Applications

The 1950's marked the dawning of a new era in case study research, namely that of the utilization of the case study as a teaching method. "Instituted at Harvard Business School in the 1950s as a primary method of teaching, cases have since been used in classrooms and lecture halls alike, either as part of a course of study or as the main focus of the course to which other teaching material is added" (Armisted 1984). The basic purpose of instituting the case method as a teaching strategy was "to transfer much of the responsibility for learning from the teacher on to the student, whose role, as a result, shifts away from passive absorption toward active construction" (Boehrer 1990). Through careful examination and discussion of various cases, "students learn to identify actual problems, to recognize key players and their agendas, and to become aware of those aspects of the situation that contribute to the problem" (Merseth 1991). In addition, students are encouraged to "generate their own analysis of the problems under consideration, to develop their own solutions, and to practically apply their own knowledge of theory to these problems" (Boyce 1993). Along the way, students also develop "the power to analyze and to master a tangled circumstance by identifying and delineating important factors; the ability to utilize ideas, to test them against facts, and to throw them into fresh combinations" (Merseth 1991).

In addition to the practical application and testing of scholarly knowledge, case discussions can also help students prepare for real-world problems, situations and crises by providing an approximation of various professional environments (i.e. classroom, board room, courtroom, or hospital). Thus, through the examination of specific cases, students are given the opportunity to work out their own professional issues through the trials, tribulations, experiences, and research findings of others. An obvious advantage to this mode of instruction is that it allows students the exposure to settings and contexts that they might not otherwise experience. For example, a student interested in studying the effects of poverty on minority secondary student's grade point averages and S.A.T. scores could access and analyze information from schools as geographically diverse as Los Angeles, New York City, Miami, and New Mexico without ever having to leave the classroom.

The case study method also incorporates the idea that students can learn from one another "by engaging with each other and with each other's ideas, by asserting something and then having it questioned, challenged and thrown back at them so that they can reflect on what they hear, and then refine what they say" (Boehrer 1990). In summary, students can direct their own learning by formulating questions and taking responsibility for the study.

Types and Design Concerns

Researchers use multiple methods and approaches to conduct case studies.

Types of Case Studies

Under the more generalized category of case study exist several subdivisions, each of which is custom selected for use depending upon the goals and/or objectives of the investigator. These types of case study include the following:

Illustrative Case Studies These are primarily descriptive studies. They typically utilize one or two instances of an event to show what a situation is like. Illustrative case studies serve primarily to make the unfamiliar familiar and to give readers a common language about the topic in question.

Exploratory (or pilot) Case Studies These are condensed case studies performed before implementing a large scale investigation. Their basic function is to help identify questions and select types of measurement prior to the main investigation. The primary pitfall of this type of study is that initial findings may seem convincing enough to be released prematurely as conclusions.

Cumulative Case Studies These serve to aggregate information from several sites collected at different times. The idea behind these studies is the collection of past studies will allow for greater generalization without additional cost or time being expended on new, possibly repetitive studies.

Critical Instance Case Studies These examine one or more sites for either the purpose of examining a situation of unique interest with little to no interest in generalizability, or to call into question or challenge a highly generalized or universal assertion. This method is useful for answering cause and effect questions.

Identifying a Theoretical Perspective

Much of the case study's design is inherently determined for researchers, depending on the field from which they are working. In composition studies, researchers are typically working from a qualitative, descriptive standpoint. In contrast, physicists will approach their research from a more quantitative perspective. Still, in designing the study, researchers need to make explicit the questions to be explored and the theoretical perspective from which they will approach the case. The three most commonly adopted theories are listed below:

Individual Theories These focus primarily on the individual development, cognitive behavior, personality, learning and disability, and interpersonal interactions of a particular subject.

Organizational Theories These focus on bureaucracies, institutions, organizational structure and functions, or excellence in organizational performance.

Social Theories These focus on urban development, group behavior, cultural institutions, or marketplace functions.

Two examples of case studies are used consistently throughout this chapter. The first, a study produced by Berkenkotter, Huckin, and Ackerman (1988), looks at a first year graduate student's initiation into an academic writing program. The study uses participant-observer and linguistic data collecting techniques to assess the student's knowledge of appropriate discourse conventions. Using the pseudonym Nate to refer to the subject, the study sought to illuminate the particular experience rather than to generalize about the experience of fledgling academic writers collectively.

For example, in Berkenkotter, Huckin, and Ackerman's (1988) study we are told that the researchers are interested in disciplinary communities. In the first paragraph, they ask what constitutes membership in a disciplinary community and how achieving membership might affect a writer's understanding and production of texts. In the third paragraph they state that researchers must negotiate their claims "within the context of his sub specialty's accepted knowledge and methodology." In the next paragraph they ask, "How is literacy acquired? What is the process through which novices gain community membership? And what factors either aid or hinder students learning the requisite linguistic behaviors?" This introductory section ends with a paragraph in which the study's authors claim that during the course of the study, the subject, Nate, successfully makes the transition from "skilled novice" to become an initiated member of the academic discourse community and that his texts exhibit linguistic changes which indicate this transition. In the next section the authors make explicit the sociolinguistic theoretical and methodological assumptions on which the study is based (1988). Thus the reader has a good understanding of the authors' theoretical background and purpose in conducting the study even before it is explicitly stated on the fourth page of the study. "Our purpose was to examine the effects of the educational context on one graduate student's production of texts as he wrote in different courses and for different faculty members over the academic year 1984-85." The goal of the study then, was to explore the idea that writers must be initiated into a writing community, and that this initiation will change the way one writes.

The second example is Janet Emig's (1971) study of the composing process of a group of twelfth graders. In this study, Emig seeks to answer the question of what happens to the self as a result educational stimuli in terms of academic writing. The case study used methods such as protocol analysis, tape-recorded interviews, and discourse analysis.

In the case of Janet Emig's (1971) study of the composing process of eight twelfth graders, four specific hypotheses were made:

  • Twelfth grade writers engage in two modes of composing: reflexive and extensive.
  • These differences can be ascertained and characterized through having the writers compose aloud their composition process.
  • A set of implied stylistic principles governs the writing process.
  • For twelfth grade writers, extensive writing occurs chiefly as a school-sponsored activity, or reflexive, as a self-sponsored activity.

In this study, the chief distinction is between the two dominant modes of composing among older, secondary school students. The distinctions are:

  • The reflexive mode, which focuses on the writer's thoughts and feelings.
  • The extensive mode, which focuses on conveying a message.

Emig also outlines the specific questions which guided the research in the opening pages of her Review of Literature , preceding the report.

Designing a Case Study

After considering the different sub categories of case study and identifying a theoretical perspective, researchers can begin to design their study. Research design is the string of logic that ultimately links the data to be collected and the conclusions to be drawn to the initial questions of the study. Typically, research designs deal with at least four problems:

  • What questions to study
  • What data are relevant
  • What data to collect
  • How to analyze that data

In other words, a research design is basically a blueprint for getting from the beginning to the end of a study. The beginning is an initial set of questions to be answered, and the end is some set of conclusions about those questions.

Because case studies are conducted on topics as diverse as Anglo-Saxon Literature (Thrane 1986) and AIDS prevention (Van Vugt 1994), it is virtually impossible to outline any strict or universal method or design for conducting the case study. However, Robert K. Yin (1993) does offer five basic components of a research design:

  • A study's questions.
  • A study's propositions (if any).
  • A study's units of analysis.
  • The logic that links the data to the propositions.
  • The criteria for interpreting the findings.

In addition to these five basic components, Yin also stresses the importance of clearly articulating one's theoretical perspective, determining the goals of the study, selecting one's subject(s), selecting the appropriate method(s) of collecting data, and providing some considerations to the composition of the final report.

Conducting Case Studies

To obtain as complete a picture of the participant as possible, case study researchers can employ a variety of approaches and methods. These approaches, methods, and related issues are discussed in depth in this section.

Method: Single or Multi-modal?

To obtain as complete a picture of the participant as possible, case study researchers can employ a variety of methods. Some common methods include interviews , protocol analyses, field studies, and participant-observations. Emig (1971) chose to use several methods of data collection. Her sources included conversations with the students, protocol analysis, discrete observations of actual composition, writing samples from each student, and school records (Lauer and Asher 1988).

Berkenkotter, Huckin, and Ackerman (1988) collected data by observing classrooms, conducting faculty and student interviews, collecting self reports from the subject, and by looking at the subject's written work.

A study that was criticized for using a single method model was done by Flower and Hayes (1984). In this study that explores the ways in which writers use different forms of knowing to create space, the authors used only protocol analysis to gather data. The study came under heavy fire because of their decision to use only one method.

Participant Selection

Case studies can use one participant, or a small group of participants. However, it is important that the participant pool remain relatively small. The participants can represent a diverse cross section of society, but this isn't necessary.

For example, the Berkenkotter, Huckin, and Ackerman (1988) study looked at just one participant, Nate. By contrast, in Janet Emig's (1971) study of the composition process of twelfth graders, eight participants were selected representing a diverse cross section of the community, with volunteers from an all-white upper-middle-class suburban school, an all-black inner-city school, a racially mixed lower-middle-class school, an economically and racially mixed school, and a university school.

Often, a brief "case history" is done on the participants of the study in order to provide researchers with a clearer understanding of their participants, as well as some insight as to how their own personal histories might affect the outcome of the study. For instance, in Emig's study, the investigator had access to the school records of five of the participants, and to standardized test scores for the remaining three. Also made available to the researcher was the information that three of the eight students were selected as NCTE Achievement Award winners. These personal histories can be useful in later stages of the study when data are being analyzed and conclusions drawn.

Data Collection

There are six types of data collected in case studies:

  • Archival records.
  • Interviews.
  • Direct observation.
  • Participant observation.

In the field of composition research, these six sources might be:

  • A writer's drafts.
  • School records of student writers.
  • Transcripts of interviews with a writer.
  • Transcripts of conversations between writers (and protocols).
  • Videotapes and notes from direct field observations.
  • Hard copies of a writer's work on computer.

Depending on whether researchers have chosen to use a single or multi-modal approach for the case study, they may choose to collect data from one or any combination of these sources.

Protocols, that is, transcriptions of participants talking aloud about what they are doing as they do it, have been particularly common in composition case studies. For example, in Emig's (1971) study, the students were asked, in four different sessions, to give oral autobiographies of their writing experiences and to compose aloud three themes in the presence of a tape recorder and the investigator.

In some studies, only one method of data collection is conducted. For example, the Flower and Hayes (1981) report on the cognitive process theory of writing depends on protocol analysis alone. However, using multiple sources of evidence to increase the reliability and validity of the data can be advantageous.

Case studies are likely to be much more convincing and accurate if they are based on several different sources of information, following a corroborating mode. This conclusion is echoed among many composition researchers. For example, in her study of predrafting processes of high and low-apprehensive writers, Cynthia Selfe (1985) argues that because "methods of indirect observation provide only an incomplete reflection of the complex set of processes involved in composing, a combination of several such methods should be used to gather data in any one study." Thus, in this study, Selfe collected her data from protocols, observations of students role playing their writing processes, audio taped interviews with the students, and videotaped observations of the students in the process of composing.

It can be said then, that cross checking data from multiple sources can help provide a multidimensional profile of composing activities in a particular setting. Sharan Merriam (1985) suggests "checking, verifying, testing, probing, and confirming collected data as you go, arguing that this process will follow in a funnel-like design resulting in less data gathering in later phases of the study along with a congruent increase in analysis checking, verifying, and confirming."

It is important to note that in case studies, as in any qualitative descriptive research, while researchers begin their studies with one or several questions driving the inquiry (which influence the key factors the researcher will be looking for during data collection), a researcher may find new key factors emerging during data collection. These might be unexpected patterns or linguistic features which become evident only during the course of the research. While not bearing directly on the researcher's guiding questions, these variables may become the basis for new questions asked at the end of the report, thus linking to the possibility of further research.

Data Analysis

As the information is collected, researchers strive to make sense of their data. Generally, researchers interpret their data in one of two ways: holistically or through coding. Holistic analysis does not attempt to break the evidence into parts, but rather to draw conclusions based on the text as a whole. Flower and Hayes (1981), for example, make inferences from entire sections of their students' protocols, rather than searching through the transcripts to look for isolatable characteristics.

However, composition researchers commonly interpret their data by coding, that is by systematically searching data to identify and/or categorize specific observable actions or characteristics. These observable actions then become the key variables in the study. Sharan Merriam (1988) suggests seven analytic frameworks for the organization and presentation of data:

  • The role of participants.
  • The network analysis of formal and informal exchanges among groups.
  • Historical.
  • Thematical.
  • Ritual and symbolism.
  • Critical incidents that challenge or reinforce fundamental beliefs, practices, and values.

There are two purposes of these frameworks: to look for patterns among the data and to look for patterns that give meaning to the case study.

As stated above, while most researchers begin their case studies expecting to look for particular observable characteristics, it is not unusual for key variables to emerge during data collection. Typical variables coded in case studies of writers include pauses writers make in the production of a text, the use of specific linguistic units (such as nouns or verbs), and writing processes (planning, drafting, revising, and editing). In the Berkenkotter, Huckin, and Ackerman (1988) study, for example, researchers coded the participant's texts for use of connectives, discourse demonstratives, average sentence length, off-register words, use of the first person pronoun, and the ratio of definite articles to indefinite articles.

Since coding is inherently subjective, more than one coder is usually employed. In the Berkenkotter, Huckin, and Ackerman (1988) study, for example, three rhetoricians were employed to code the participant's texts for off-register phrases. The researchers established the agreement among the coders before concluding that the participant used fewer off-register words as the graduate program progressed.

Composing the Case Study Report

In the many forms it can take, "a case study is generically a story; it presents the concrete narrative detail of actual, or at least realistic events, it has a plot, exposition, characters, and sometimes even dialogue" (Boehrer 1990). Generally, case study reports are extensively descriptive, with "the most problematic issue often referred to as being the determination of the right combination of description and analysis" (1990). Typically, authors address each step of the research process, and attempt to give the reader as much context as possible for the decisions made in the research design and for the conclusions drawn.

This contextualization usually includes a detailed explanation of the researchers' theoretical positions, of how those theories drove the inquiry or led to the guiding research questions, of the participants' backgrounds, of the processes of data collection, of the training and limitations of the coders, along with a strong attempt to make connections between the data and the conclusions evident.

Although the Berkenkotter, Huckin, and Ackerman (1988) study does not, case study reports often include the reactions of the participants to the study or to the researchers' conclusions. Because case studies tend to be exploratory, most end with implications for further study. Here researchers may identify significant variables that emerged during the research and suggest studies related to these, or the authors may suggest further general questions that their case study generated.

For example, Emig's (1971) study concludes with a section dedicated solely to the topic of implications for further research, in which she suggests several means by which this particular study could have been improved, as well as questions and ideas raised by this study which other researchers might like to address, such as: is there a correlation between a certain personality and a certain composing process profile (e.g. is there a positive correlation between ego strength and persistence in revising)?

Also included in Emig's study is a section dedicated to implications for teaching, which outlines the pedagogical ramifications of the study's findings for teachers currently involved in high school writing programs.

Sharan Merriam (1985) also offers several suggestions for alternative presentations of data:

  • Prepare specialized condensations for appropriate groups.
  • Replace narrative sections with a series of answers to open-ended questions.
  • Present "skimmer's" summaries at beginning of each section.
  • Incorporate headlines that encapsulate information from text.
  • Prepare analytic summaries with supporting data appendixes.
  • Present data in colorful and/or unique graphic representations.

Issues of Validity and Reliability

Once key variables have been identified, they can be analyzed. Reliability becomes a key concern at this stage, and many case study researchers go to great lengths to ensure that their interpretations of the data will be both reliable and valid. Because issues of validity and reliability are an important part of any study in the social sciences, it is important to identify some ways of dealing with results.

Multi-modal case study researchers often balance the results of their coding with data from interviews or writer's reflections upon their own work. Consequently, the researchers' conclusions become highly contextualized. For example, in a case study which looked at the time spent in different stages of the writing process, Berkenkotter concluded that her participant, Donald Murray, spent more time planning his essays than in other writing stages. The report of this case study is followed by Murray's reply, wherein he agrees with some of Berkenkotter's conclusions and disagrees with others.

As is the case with other research methodologies, issues of external validity, construct validity, and reliability need to be carefully considered.

Commentary on Case Studies

Researchers often debate the relative merits of particular methods, among them case study. In this section, we comment on two key issues. To read the commentaries, choose any of the items below:

Strengths and Weaknesses of Case Studies

Most case study advocates point out that case studies produce much more detailed information than what is available through a statistical analysis. Advocates will also hold that while statistical methods might be able to deal with situations where behavior is homogeneous and routine, case studies are needed to deal with creativity, innovation, and context. Detractors argue that case studies are difficult to generalize because of inherent subjectivity and because they are based on qualitative subjective data, generalizable only to a particular context.

Flexibility

The case study approach is a comparatively flexible method of scientific research. Because its project designs seem to emphasize exploration rather than prescription or prediction, researchers are comparatively freer to discover and address issues as they arise in their experiments. In addition, the looser format of case studies allows researchers to begin with broad questions and narrow their focus as their experiment progresses rather than attempt to predict every possible outcome before the experiment is conducted.

Emphasis on Context

By seeking to understand as much as possible about a single subject or small group of subjects, case studies specialize in "deep data," or "thick description"--information based on particular contexts that can give research results a more human face. This emphasis can help bridge the gap between abstract research and concrete practice by allowing researchers to compare their firsthand observations with the quantitative results obtained through other methods of research.

Inherent Subjectivity

"The case study has long been stereotyped as the weak sibling among social science methods," and is often criticized as being too subjective and even pseudo-scientific. Likewise, "investigators who do case studies are often regarded as having deviated from their academic disciplines, and their investigations as having insufficient precision (that is, quantification), objectivity and rigor" (Yin 1989). Opponents cite opportunities for subjectivity in the implementation, presentation, and evaluation of case study research. The approach relies on personal interpretation of data and inferences. Results may not be generalizable, are difficult to test for validity, and rarely offer a problem-solving prescription. Simply put, relying on one or a few subjects as a basis for cognitive extrapolations runs the risk of inferring too much from what might be circumstance.

High Investment

Case studies can involve learning more about the subjects being tested than most researchers would care to know--their educational background, emotional background, perceptions of themselves and their surroundings, their likes, dislikes, and so on. Because of its emphasis on "deep data," the case study is out of reach for many large-scale research projects which look at a subject pool in the tens of thousands. A budget request of $10,000 to examine 200 subjects sounds more efficient than a similar request to examine four subjects.

Ethical Considerations

Researchers conducting case studies should consider certain ethical issues. For example, many educational case studies are often financed by people who have, either directly or indirectly, power over both those being studied and those conducting the investigation (1985). This conflict of interests can hinder the credibility of the study.

The personal integrity, sensitivity, and possible prejudices and/or biases of the investigators need to be taken into consideration as well. Personal biases can creep into how the research is conducted, alternative research methods used, and the preparation of surveys and questionnaires.

A common complaint in case study research is that investigators change direction during the course of the study unaware that their original research design was inadequate for the revised investigation. Thus, the researchers leave unknown gaps and biases in the study. To avoid this, researchers should report preliminary findings so that the likelihood of bias will be reduced.

Concerns about Reliability, Validity, and Generalizability

Merriam (1985) offers several suggestions for how case study researchers might actively combat the popular attacks on the validity, reliability, and generalizability of case studies:

  • Prolong the Processes of Data Gathering on Site: This will help to insure the accuracy of the findings by providing the researcher with more concrete information upon which to formulate interpretations.
  • Employ the Process of "Triangulation": Use a variety of data sources as opposed to relying solely upon one avenue of observation. One example of such a data check would be what McClintock, Brannon, and Maynard (1985) refer to as a "case cluster method," that is, when a single unit within a larger case is randomly sampled, and that data treated quantitatively." For instance, in Emig's (1971) study, the case cluster method was employed, singling out the productivity of a single student named Lynn. This cluster profile included an advanced case history of the subject, specific examination and analysis of individual compositions and protocols, and extensive interview sessions. The seven remaining students were then compared with the case of Lynn, to ascertain if there are any shared, or unique dimensions to the composing process engaged in by these eight students.
  • Conduct Member Checks: Initiate and maintain an active corroboration on the interpretation of data between the researcher and those who provided the data. In other words, talk to your subjects.
  • Collect Referential Materials: Complement the file of materials from the actual site with additional document support. For example, Emig (1971) supports her initial propositions with historical accounts by writers such as T.S. Eliot, James Joyce, and D.H. Lawrence. Emig also cites examples of theoretical research done with regards to the creative process, as well as examples of empirical research dealing with the writing of adolescents. Specific attention is then given to the four stages description of the composing process delineated by Helmoltz, Wallas, and Cowley, as it serves as the focal point in this study.
  • Engage in Peer Consultation: Prior to composing the final draft of the report, researchers should consult with colleagues in order to establish validity through pooled judgment.

Although little can be done to combat challenges concerning the generalizability of case studies, "most writers suggest that qualitative research should be judged as credible and confirmable as opposed to valid and reliable" (Merriam 1985). Likewise, it has been argued that "rather than transplanting statistical, quantitative notions of generalizability and thus finding qualitative research inadequate, it makes more sense to develop an understanding of generalization that is congruent with the basic characteristics of qualitative inquiry" (1985). After all, criticizing the case study method for being ungeneralizable is comparable to criticizing a washing machine for not being able to tell the correct time. In other words, it is unjust to criticize a method for not being able to do something which it was never originally designed to do in the first place.

Annotated Bibliography

Armisted, C. (1984). How Useful are Case Studies. Training and Development Journal, 38 (2), 75-77.

This article looks at eight types of case studies, offers pros and cons of using case studies in the classroom, and gives suggestions for successfully writing and using case studies.

Bardovi-Harlig, K. (1997). Beyond Methods: Components of Second Language Teacher Education . New York: McGraw-Hill.

A compilation of various research essays which address issues of language teacher education. Essays included are: "Non-native reading research and theory" by Lee, "The case for Psycholinguistics" by VanPatten, and "Assessment and Second Language Teaching" by Gradman and Reed.

Bartlett, L. (1989). A Question of Good Judgment; Interpretation Theory and Qualitative Enquiry Address. 70th Annual Meeting of the American Educational Research Association. San Francisco.

Bartlett selected "quasi-historical" methodology, which focuses on the "truth" found in case records, as one that will provide "good judgments" in educational inquiry. He argues that although the method is not comprehensive, it can try to connect theory with practice.

Baydere, S. et. al. (1993). Multimedia conferencing as a tool for collaborative writing: a case study in Computer Supported Collaborative Writing. New York: Springer-Verlag.

The case study by Baydere et. al. is just one of the many essays in this book found in the series "Computer Supported Cooperative Work." Denley, Witefield and May explore similar issues in their essay, "A case study in task analysis for the design of a collaborative document production system."

Berkenkotter, C., Huckin, T., N., & Ackerman J. (1988). Conventions, Conversations, and the Writer: Case Study of a Student in a Rhetoric Ph.D. Program. Research in the Teaching of English, 22, 9-44.

The authors focused on how the writing of their subject, Nate or Ackerman, changed as he became more acquainted or familiar with his field's discourse community.

Berninger, V., W., and Gans, B., M. (1986). Language Profiles in Nonspeaking Individuals of Normal Intelligence with Severe Cerebral Palsy. Augmentative and Alternative Communication, 2, 45-50.

Argues that generalizations about language abilities in patients with severe cerebral palsy (CP) should be avoided. Standardized tests of different levels of processing oral language, of processing written language, and of producing written language were administered to 3 male participants (aged 9, 16, and 40 yrs).

Bockman, J., R., and Couture, B. (1984). The Case Method in Technical Communication: Theory and Models. Texas: Association of Teachers of Technical Writing.

Examines the study and teaching of technical writing, communication of technical information, and the case method in terms of those applications.

Boehrer, J. (1990). Teaching With Cases: Learning to Question. New Directions for Teaching and Learning, 42 41-57.

This article discusses the origins of the case method, looks at the question of what is a case, gives ideas about learning in case teaching, the purposes it can serve in the classroom, the ground rules for the case discussion, including the role of the question, and new directions for case teaching.

Bowman, W. R. (1993). Evaluating JTPA Programs for Economically Disadvantaged Adults: A Case Study of Utah and General Findings . Washington: National Commission for Employment Policy.

"To encourage state-level evaluations of JTPA, the Commission and the State of Utah co-sponsored this report on the effectiveness of JTPA Title II programs for adults in Utah. The technique used is non-experimental and the comparison group was selected from registrants with Utah's Employment Security. In a step-by-step approach, the report documents how non-experimental techniques can be applied and several specific technical issues can be addressed."

Boyce, A. (1993) The Case Study Approach for Pedagogists. Annual Meeting of the American Alliance for Health, Physical Education, Recreation and Dance. (Address). Washington DC.

This paper addresses how case studies 1) bridge the gap between teaching theory and application, 2) enable students to analyze problems and develop solutions for situations that will be encountered in the real world of teaching, and 3) helps students to evaluate the feasibility of alternatives and to understand the ramifications of a particular course of action.

Carson, J. (1993) The Case Study: Ideal Home of WAC Quantitative and Qualitative Data. Annual Meeting of the Conference on College Composition and Communication. (Address). San Diego.

"Increasingly, one of the most pressing questions for WAC advocates is how to keep [WAC] programs going in the face of numerous difficulties. Case histories offer the best chance for fashioning rhetorical arguments to keep WAC programs going because they offer the opportunity to provide a coherent narrative that contextualizes all documents and data, including what is generally considered scientific data. A case study of the WAC program, . . . at Robert Morris College in Pittsburgh demonstrates the advantages of this research method. Such studies are ideal homes for both naturalistic and positivistic data as well as both quantitative and qualitative information."

---. (1991). A Cognitive Process Theory of Writing. College Composition and Communication. 32. 365-87.

No abstract available.

Cromer, R. (1994) A Case Study of Dissociations Between Language and Cognition. Constraints on Language Acquisition: Studies of Atypical Children . Hillsdale: Lawrence Erlbaum Associates, 141-153.

Crossley, M. (1983) Case Study in Comparative and International Education: An Approach to Bridging the Theory-Practice Gap. Proceedings of the 11th Annual Conference of the Australian Comparative and International Education Society. Hamilton, NZ.

Case study research, as presented here, helps bridge the theory-practice gap in comparative and international research studies of education because it focuses on the practical, day-to-day context rather than on the national arena. The paper asserts that the case study method can be valuable at all levels of research, formation, and verification of theories in education.

Daillak, R., H., and Alkin, M., C. (1982). Qualitative Studies in Context: Reflections on the CSE Studies of Evaluation Use . California: EDRS

The report shows how the Center of the Study of Evaluation (CSE) applied qualitative techniques to a study of evaluation information use in local, Los Angeles schools. It critiques the effectiveness and the limitations of using case study, evaluation, field study, and user interview survey methodologies.

Davey, L. (1991). The Application of Case Study Evaluations. ERIC/TM Digest.

This article examines six types of case studies, the type of evaluation questions that can be answered, the functions served, some design features, and some pitfalls of the method.

Deutch, C. E. (1996). A course in research ethics for graduate students. College Teaching, 44, 2, 56-60.

This article describes a one-credit discussion course in research ethics for graduate students in biology. Case studies are focused on within the four parts of the course: 1) major issues, 2 )practical issues in scholarly work, 3) ownership of research results, and 4) training and personal decisions.

DeVoss, G. (1981). Ethics in Fieldwork Research. RIE 27p. (ERIC)

This article examines four of the ethical problems that can happen when conducting case study research: acquiring permission to do research, knowing when to stop digging, the pitfalls of doing collaborative research, and preserving the integrity of the participants.

Driscoll, A. (1985). Case Study of a Research Intervention: the University of Utah’s Collaborative Approach . San Francisco: Far West Library for Educational Research Development.

Paper presented at the annual meeting of the American Association of Colleges of Teacher Education, Denver, CO, March 1985. Offers information of in-service training, specifically case studies application.

Ellram, L. M. (1996). The Use of the Case Study Method in Logistics Research. Journal of Business Logistics, 17, 2, 93.

This article discusses the increased use of case study in business research, and the lack of understanding of when and how to use case study methodology in business.

Emig, J. (1971) The Composing Processes of Twelfth Graders . Urbana: NTCE.

This case study uses observation, tape recordings, writing samples, and school records to show that writing in reflexive and extensive situations caused different lengths of discourse and different clusterings of the components of the writing process.

Feagin, J. R. (1991). A Case For the Case Study . Chapel Hill: The University of North Carolina Press.

This book discusses the nature, characteristics, and basic methodological issues of the case study as a research method.

Feldman, H., Holland, A., & Keefe, K. (1989) Language Abilities after Left Hemisphere Brain Injury: A Case Study of Twins. Topics in Early Childhood Special Education, 9, 32-47.

"Describes the language abilities of 2 twin pairs in which 1 twin (the experimental) suffered brain injury to the left cerebral hemisphere around the time of birth and1 twin (the control) did not. One pair of twins was initially assessed at age 23 mo. and the other at about 30 mo.; they were subsequently evaluated in their homes 3 times at about 6-mo intervals."

Fidel, R. (1984). The Case Study Method: A Case Study. Library and Information Science Research, 6.

The article describes the use of case study methodology to systematically develop a model of online searching behavior in which study design is flexible, subject manner determines data gathering and analyses, and procedures adapt to the study's progressive change.

Flower, L., & Hayes, J. R. (1984). Images, Plans and Prose: The Representation of Meaning in Writing. Written Communication, 1, 120-160.

Explores the ways in which writers actually use different forms of knowing to create prose.

Frey, L. R. (1992). Interpreting Communication Research: A Case Study Approach Englewood Cliffs, N.J.: Prentice Hall.

The book discusses research methodologies in the Communication field. It focuses on how case studies bridge the gap between communication research, theory, and practice.

Gilbert, V. K. (1981). The Case Study as a Research Methodology: Difficulties and Advantages of Integrating the Positivistic, Phenomenological and Grounded Theory Approaches . The Annual Meeting of the Canadian Association for the Study of Educational Administration. (Address) Halifax, NS, Can.

This study on an innovative secondary school in England shows how a "low-profile" participant-observer case study was crucial to the initial observation, the testing of hypotheses, the interpretive approach, and the grounded theory.

Gilgun, J. F. (1994). A Case for Case Studies in Social Work Research. Social Work, 39, 4, 371-381.

This article defines case study research, presents guidelines for evaluation of case studies, and shows the relevance of case studies to social work research. It also looks at issues such as evaluation and interpretations of case studies.

Glennan, S. L., Sharp-Bittner, M. A. & Tullos, D. C. (1991). Augmentative and Alternative Communication Training with a Nonspeaking Adult: Lessons from MH. Augmentative and Alternative Communication, 7, 240-7.

"A response-guided case study documented changes in a nonspeaking 36-yr-old man's ability to communicate using 3 trained augmentative communication modes. . . . Data were collected in videotaped interaction sessions between the nonspeaking adult and a series of adult speaking."

Graves, D. (1981). An Examination of the Writing Processes of Seven Year Old Children. Research in the Teaching of English, 15, 113-134.

Hamel, J. (1993). Case Study Methods . Newbury Park: Sage. .

"In a most economical fashion, Hamel provides a practical guide for producing theoretically sharp and empirically sound sociological case studies. A central idea put forth by Hamel is that case studies must "locate the global in the local" thus making the careful selection of the research site the most critical decision in the analytic process."

Karthigesu, R. (1986, July). Television as a Tool for Nation-Building in the Third World: A Post-Colonial Pattern, Using Malaysia as a Case-Study. International Television Studies Conference. (Address). London, 10-12.

"The extent to which Television Malaysia, as a national mass media organization, has been able to play a role in nation building in the post-colonial period is . . . studied in two parts: how the choice of a model of nation building determines the character of the organization; and how the character of the organization influences the output of the organization."

Kenny, R. (1984). Making the Case for the Case Study. Journal of Curriculum Studies, 16, (1), 37-51.

The article looks at how and why the case study is justified as a viable and valuable approach to educational research and program evaluation.

Knirk, F. (1991). Case Materials: Research and Practice. Performance Improvement Quarterly, 4 (1 ), 73-81.

The article addresses the effectiveness of case studies, subject areas where case studies are commonly used, recent examples of their use, and case study design considerations.

Klos, D. (1976). Students as Case Writers. Teaching of Psychology, 3.2, 63-66.

This article reviews a course in which students gather data for an original case study of another person. The task requires the students to design the study, collect the data, write the narrative, and interpret the findings.

Leftwich, A. (1981). The Politics of Case Study: Problems of Innovation in University Education. Higher Education Review, 13.2, 38-64.

The article discusses the use of case studies as a teaching method. Emphasis is on the instructional materials, interdisciplinarity, and the complex relationships within the university that help or hinder the method.

Mabrito, M. (1991, Oct.). Electronic Mail as a Vehicle for Peer Response: Conversations of High and Low Apprehensive Writers. Written Communication, 509-32.

McCarthy, S., J. (1955). The Influence of Classroom Discourse on Student Texts: The Case of Ella . East Lansing: Institute for Research on Teaching.

A look at how students of color become marginalized within traditional classroom discourse. The essay follows the struggles of one black student: Ella.

Matsuhashi, A., ed. (1987). Writing in Real Time: Modeling Production Processes Norwood, NJ: Ablex Publishing Corporation.

Investigates how writers plan to produce discourse for different purposes to report, to generalize, and to persuade, as well as how writers plan for sentence level units of language. To learn about planning, an observational measure of pause time was used" (ERIC).

Merriam, S. B. (1985). The Case Study in Educational Research: A Review of Selected Literature. Journal of Educational Thought, 19.3, 204-17.

The article examines the characteristics of, philosophical assumptions underlying the case study, the mechanics of conducting a case study, and the concerns about the reliability, validity, and generalizability of the method.

---. (1988). Case Study Research in Education: A Qualitative Approach San Francisco: Jossey Bass.

Merry, S. E., & Milner, N. eds. (1993). The Possibility of Popular Justice: A Case Study of Community Mediation in the United States . Ann Arbor: U of Michigan.

". . . this volume presents a case study of one experiment in popular justice, the San Francisco Community Boards. This program has made an explicit claim to create an alternative justice, or new justice, in the midst of a society ordered by state law. The contributors to this volume explore the history and experience of the program and compare it to other versions of popular justice in the United States, Europe, and the Third World."

Merseth, K. K. (1991). The Case for Cases in Teacher Education. RIE. 42p. (ERIC).

This monograph argues that the case method of instruction offers unique potential for revitalizing the field of teacher education.

Michaels, S. (1987). Text and Context: A New Approach to the Study of Classroom Writing. Discourse Processes, 10, 321-346.

"This paper argues for and illustrates an approach to the study of writing that integrates ethnographic analysis of classroom interaction with linguistic analysis of written texts and teacher/student conversational exchanges. The approach is illustrated through a case study of writing in a single sixth grade classroom during a single writing assignment."

Milburn, G. (1995). Deciphering a Code or Unraveling a Riddle: A Case Study in the Application of a Humanistic Metaphor to the Reporting of Social Studies Teaching. Theory and Research in Education, 13.

This citation serves as an example of how case studies document learning procedures in a senior-level economics course.

Milley, J. E. (1979). An Investigation of Case Study as an Approach to Program Evaluation. 19th Annual Forum of the Association for Institutional Research. (Address). San Diego.

The case study method merged a narrative report focusing on the evaluator as participant-observer with document review, interview, content analysis, attitude questionnaire survey, and sociogram analysis. Milley argues that case study program evaluation has great potential for widespread use.

Minnis, J. R. (1985, Sept.). Ethnography, Case Study, Grounded Theory, and Distance Education Research. Distance Education, 6.2.

This article describes and defines the strengths and weaknesses of ethnography, case study, and grounded theory.

Nunan, D. (1992). Collaborative language learning and teaching . New York: Cambridge University Press.

Included in this series of essays is Peter Sturman’s "Team Teaching: a case study from Japan" and David Nunan’s own "Toward a collaborative approach to curriculum development: a case study."

Nystrand, M., ed. (1982). What Writers Know: The Language, Process, and Structure of Written Discourse . New York: Academic Press.

Owenby, P. H. (1992). Making Case Studies Come Alive. Training, 29, (1), 43-46. (ERIC)

This article provides tips for writing more effective case studies.

---. (1981). Pausing and Planning: The Tempo of Writer Discourse Production. Research in the Teaching of English, 15 (2),113-34.

Perl, S. (1979). The Composing Processes of Unskilled College Writers. Research in the Teaching of English, 13, 317-336.

"Summarizes a study of five unskilled college writers, focusing especially on one of the five, and discusses the findings in light of current pedagogical practice and research design."

Pilcher J. and A. Coffey. eds. (1996). Gender and Qualitative Research . Brookfield: Aldershot, Hants, England.

This book provides a series of essays which look at gender identity research, qualitative research and applications of case study to questions of gendered pedagogy.

Pirie, B. S. (1993). The Case of Morty: A Four Year Study. Gifted Education International, 9 (2), 105-109.

This case study describes a boy from kindergarten through third grade with above average intelligence but difficulty in learning to read, write, and spell.

Popkewitz, T. (1993). Changing Patterns of Power: Social Regulation and Teacher Education Reform. Albany: SUNY Press.

Popkewitz edits this series of essays that address case studies on educational change and the training of teachers. The essays vary in terms of discipline and scope. Also, several authors include case studies of educational practices in countries other than the United States.

---. (1984). The Predrafting Processes of Four High- and Four Low Apprehensive Writers. Research in the Teaching of English, 18, (1), 45-64.

Rasmussen, P. (1985, March) A Case Study on the Evaluation of Research at the Technical University of Denmark. International Journal of Institutional Management in Higher Education, 9 (1).

This is an example of a case study methodology used to evaluate the chemistry and chemical engineering departments at the University of Denmark.

Roth, K. J. (1986). Curriculum Materials, Teacher Talk, and Student Learning: Case Studies in Fifth-Grade Science Teaching . East Lansing: Institute for Research on Teaching.

Roth offers case studies on elementary teachers, elementary school teaching, science studies and teaching, and verbal learning.

Selfe, C. L. (1985). An Apprehensive Writer Composes. When a Writer Can't Write: Studies in Writer's Block and Other Composing-Process Problems . (pp. 83-95). Ed. Mike Rose. NMY: Guilford.

Smith-Lewis, M., R. and Ford, A. (1987). A User's Perspective on Augmentative Communication. Augmentative and Alternative Communication, 3, 12-7.

"During a series of in-depth interviews, a 25-yr-old woman with cerebral palsy who utilized augmentative communication reflected on the effectiveness of the devices designed for her during her school career."

St. Pierre, R., G. (1980, April). Follow Through: A Case Study in Metaevaluation Research . 64th Annual Meeting of the American Educational Research Association. (Address).

The three approaches to metaevaluation are evaluation of primary evaluations, integrative meta-analysis with combined primary evaluation results, and re-analysis of the raw data from a primary evaluation.

Stahler, T., M. (1996, Feb.) Early Field Experiences: A Model That Worked. ERIC.

"This case study of a field and theory class examines a model designed to provide meaningful field experiences for preservice teachers while remaining consistent with the instructor's beliefs about the role of teacher education in preparing teachers for the classroom."

Stake, R. E. (1995). The Art of Case Study Research. Thousand Oaks: Sage Publications.

This book examines case study research in education and case study methodology.

Stiegelbauer, S. (1984) Community, Context, and Co-curriculum: Situational Factors Influencing School Improvements in a Study of High Schools. Presented at the annual meeting of the American Educational Research Association, New Orleans, LA.

Discussion of several case studies: one looking at high school environments, another examining educational innovations.

Stolovitch, H. (1990). Case Study Method. Performance And Instruction, 29, (9), 35-37.

This article describes the case study method as a form of simulation and presents guidelines for their use in professional training situations.

Thaller, E. (1994). Bibliography for the Case Method: Using Case Studies in Teacher Education. RIE. 37 p.

This bibliography presents approximately 450 citations on the use of case studies in teacher education from 1921-1993.

Thrane, T. (1986). On Delimiting the Senses of Near-Synonyms in Historical Semantics: A Case Study of Adjectives of 'Moral Sufficiency' in the Old English Andreas. Linguistics Across Historical and Geographical Boundaries: In Honor of Jacek Fisiak on the Occasion of his Fiftieth Birthday . Berlin: Mouton de Gruyter.

United Nations. (1975). Food and Agriculture Organization. Report on the FAO/UNFPA Seminar on Methodology, Research and Country: Case Studies on Population, Employment and Productivity . Rome: United Nations.

This example case study shows how the methodology can be used in a demographic and psychographic evaluation. At the same time, it discusses the formation and instigation of the case study methodology itself.

Van Vugt, J. P., ed. (1994). Aids Prevention and Services: Community Based Research . Westport: Bergin and Garvey.

"This volume has been five years in the making. In the process, some of the policy applications called for have met with limited success, such as free needle exchange programs in a limited number of American cities, providing condoms to prison inmates, and advertisements that depict same-sex couples. Rather than dating our chapters that deal with such subjects, such policy applications are verifications of the type of research demonstrated here. Furthermore, they indicate the critical need to continue community based research in the various communities threatened by acquired immuno-deficiency syndrome (AIDS) . . . "

Welch, W., ed. (1981, May). Case Study Methodology in Educational Evaluation. Proceedings of the Minnesota Evaluation Conference. Minnesota. (Address).

The four papers in these proceedings provide a comprehensive picture of the rationale, methodology, strengths, and limitations of case studies.

Williams, G. (1987). The Case Method: An Approach to Teaching and Learning in Educational Administration. RIE, 31p.

This paper examines the viability of the case method as a teaching and learning strategy in instructional systems geared toward the training of personnel of the administration of various aspects of educational systems.

Yin, R. K. (1993). Advancing Rigorous Methodologies: A Review of 'Towards Rigor in Reviews of Multivocal Literatures.' Review of Educational Research, 61, (3).

"R. T. Ogawa and B. Malen's article does not meet its own recommended standards for rigorous testing and presentation of its own conclusions. Use of the exploratory case study to analyze multivocal literatures is not supported, and the claim of grounded theory to analyze multivocal literatures may be stronger."

---. (1989). Case Study Research: Design and Methods. London: Sage Publications Inc.

This book discusses in great detail, the entire design process of the case study, including entire chapters on collecting evidence, analyzing evidence, composing the case study report, and designing single and multiple case studies.

Related Links

Consider the following list of related Web sites for more information on the topic of case study research. Note: although many of the links cover the general category of qualitative research, all have sections that address issues of case studies.

  • Sage Publications on Qualitative Methodology: Search here for a comprehensive list of new books being published about "Qualitative Methodology" http://www.sagepub.co.uk/
  • The International Journal of Qualitative Studies in Education: An on-line journal "to enhance the theory and practice of qualitative research in education." On-line submissions are welcome. http://www.tandf.co.uk/journals/tf/09518398.html
  • Qualitative Research Resources on the Internet: From syllabi to home pages to bibliographies. All links relate somehow to qualitative research. http://www.nova.edu/ssss/QR/qualres.html

Becker, Bronwyn, Patrick Dawson, Karen Devine, Carla Hannum, Steve Hill, Jon Leydens, Debbie Matuskevich, Carol Traver, & Mike Palmquist. (2005). Case Studies. Writing@CSU . Colorado State University. https://writing.colostate.edu/guides/guide.cfm?guideid=60

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • Indian J Crit Care Med
  • v.23(Suppl 4); 2019 Dec

Understanding Research Study Designs

Priya ranganathan.

Department of Anesthesiology, Critical Care and Pain, Tata Memorial Hospital, Mumbai, Maharashtra, India

In this article, we will look at the important features of various types of research study designs used commonly in biomedical research.

How to cite this article

Ranganathan P. Understanding Research Study Designs. Indian J Crit Care Med 2019;23(Suppl 4):S305–S307.

We use a variety of research study designs in biomedical research. In this article, the main features of each of these designs are summarized.

TERMS USED IN RESEARCH DESIGNS

Exposure vs outcome.

Exposure refers to any factor that may be associated with the outcome of interest. It is also called the predictor variable or independent variable or risk factor. Outcome refers to the variable that is studied to assess the impact of the exposure on the population. It is also known as the predicted variable or the dependent variable. For example, in a study looking at nerve damage after organophosphate (OPC) poisoning, the exposure would be OPC and the outcome would be nerve damage.

Longitudinal vs Transversal Studies

In longitudinal studies, participants are followed over time to determine the association between exposure and outcome (or outcome and exposure). On the other hand, in transversal studies, observations about exposure and outcome are made at a single point in time.

Forward vs Backward Directed Studies

In forward-directed studies, the direction of enquiry moves from exposure to outcome. In backward-directed studies, the line of enquiry starts with outcome and then determines exposure.

Prospective vs Retrospective Studies

In prospective studies, the outcome has not occurred at the time of initiation of the study. The researcher determines exposure and follows participants into the future to assess outcomes. In retrospective studies, the outcome of interest has already occurred when the study commences.

CLASSIFICATION OF STUDY DESIGNS

Broadly, study designs can be classified as descriptive or analytical (inferential) studies.

Descriptive Studies

Descriptive studies describe the characteristics of interest in the study population (also referred to as sample, to differentiate it from the entire population in the universe). These studies do not have a comparison group. The simplest type of descriptive study is the case report. In a case report, the researcher describes his/her experience with symptoms, signs, diagnosis, or treatment of a patient. Sometimes, a group of patients having a similar experience may be grouped to form a case series.

Case reports and case series form the lowest level of evidence in biomedical research and, as such, are considered hypothesis-generating studies. However, they are easy to write and may be a good starting point for the budding researcher. The recognition of some important associations in the field of medicine—such as that of thalidomide with phocomelia and Kaposi's sarcoma with HIV infection—resulted from case reports and case series. The reader can look up several published case reports and case series related to complications after OPC poisoning. 1 , 2

Analytical (Inferential) Studies

Analytical or inferential studies try to prove a hypothesis and establish an association between an exposure and an outcome. These studies usually have a comparator group. Analytical studies are further classified as observational or interventional studies.

In observational studies, there is no intervention by the researcher. The researcher merely observes outcomes in different groups of participants who, for natural reasons, have or have not been exposed to a particular risk factor. Examples of observational studies include cross-sectional, case–control, and cohort studies.

Cross-sectional Studies

These are transversal studies where data are collected from the study population at a single point in time. Exposure and outcome are determined simultaneously. Cross-sectional studies are easy to conduct, involve no follow-up, and need limited resources. They offer useful information on prevalence of health conditions and possible associations between risk factors and outcomes. However, there are two major limitations of cross-sectional studies. First, it may not be possible to establish a clear cause–benefit relationship. For example, in a study of association between colon cancer and dietary fiber intake, it may be difficult to establish whether the low fiber intake preceded the symptoms of colon cancer or whether the symptoms of colon cancer resulted in a change in dietary fiber intake. Another important limitation of cross-sectional studies is survival bias. For example, in a study looking at alcohol intake vs mortality due to chronic liver disease, among the participants with the highest alcohol intake, several may have died of liver disease; this will not be picked up by the study and will give biased results. An example of a cross-sectional study is a survey on nurses’ knowledge and practices of initial management of acute poisoning. 3

Case–control Studies

Case–control studies are backward-directed studies. Here, the direction of enquiry begins with the outcome and then proceeds to exposure. Case–control studies are always retrospective, i.e., the outcome of interest has occurred when the study begins. The researcher identifies participants who have developed the outcome of interest (cases) and chooses matching participants who do not have the outcome (controls). Matching is done based on factors that are likely to influence the exposure or outcome (e.g., age, gender, socioeconomic status). The researcher then proceeds to determine exposure in cases and controls. If cases have a higher incidence of exposure than controls, it suggests an association between exposure and outcome. Case–control studies are relatively quick to conduct, need limited resources, and are useful when the outcome is rare. They also allow the researcher to study multiple exposures for a particular outcome. However, they have several limitations. First, matching of cases with controls may not be easy since many unknown confounders may affect exposure and outcome. Second, there may be biased in the way the history of exposure is determined in cases vs controls; one way to overcome this is to have a blinded assessor determining the exposure using a standard technique (e.g., a standardized questionnaire). However, despite this, it has been shown that cases are far more likely than controls to recall history of exposure—the “recall bias.” For example, mothers of babies born with congenital anomalies may provide a more detailed history of drugs ingested during their pregnancy than those with normal babies. Also, since case-control studies do not begin with a population at risk, it is not possible to determine the true risk of outcome. Instead, one can only calculate the odds of association between exposure and outcome.

Kendrick and colleagues designed a case–control study to look at the association between domestic poison prevention practices and medically attended poisoning in children. They identified children presenting with unintentional poisoning at home (cases with the outcome), matched them with community participants (controls without the outcome), and then elicited data from parents and caregivers on home safety practices (exposure). 4

Cohort Studies

Cohort studies resemble clinical trials except that the exposure is naturally determined instead of being decided by the investigator. Here, the direction of enquiry begins with the exposure and then proceeds to outcome. The researcher begins with a group of individuals who are free of outcome at baseline; of these, some have the exposure (study cohort) while others do not (control group). The groups are followed up over a period of time to determine occurrence of outcome. Cohort studies may be prospective (involving a period of follow-up after the start of the study) or retrospective (e.g., using medical records or registry data). Cohort studies are considered the strongest among the observational study designs. They provide proof of temporal relationship (exposure occurred before outcome), allow determination of risk, and permit multiple outcomes to be studied for a single exposure. However, they are expensive to conduct and time-consuming, there may be several losses to follow-up, and they are not suitable for studying rare outcomes. Also, there may be unknown confounders other than the exposure affecting the occurrence of the outcome.

Jayasinghe conducted a cohort study to look at the effect of acute organophosphorus poisoning on nerve function. They recruited 70 patients with OPC poisoning (exposed group) and 70 matched controls without history of pesticide exposure (unexposed controls). Participants were followed up or 6 weeks for neurophysiological assessments to determine nerve damage (outcome). Hung carried out a retrospective cohort study using a nationwide research database to look at the long-term effects of OPC poisoning on cardiovascular disease. From the database, he identified an OPC-exposed cohort and an unexposed control cohort (matched for gender and age) from several years back and then examined later records to look at the development of cardiovascular diseases in both groups. 5

Interventional Studies

In interventional studies (also known as experimental studies or clinical trials), the researcher deliberately allots participants to receive one of several interventions; of these, some may be experimental while others may be controls (either standard of care or placebo). Allotment of participants to a particular treatment arm is carried out through the process of randomization, which ensures that every participant has a similar chance of being in any of the arms, eliminating bias in selection. There are several other aspects crucial to the validity of the results of a clinical trial such as allocation concealment, blinding, choice of control, and statistical analysis plan. These will be discussed in a separate article.

The randomized controlled clinical trial is considered the gold standard for evaluating the efficacy of a treatment. Randomization leads to equal distribution of known and unknown confounders between treatment arms; therefore, we can be reasonably certain that any difference in outcome is a treatment effect and not due to other factors. The temporal sequence of cause and effect is established. It is possible to determine risk of the outcome in each treatment arm accurately. However, randomized controlled trials have their limitations and may not be possible in every situation. For example, it is unethical to randomize participants to an intervention that is likely to cause harm—e.g., smoking. In such cases, well-designed observational studies are the only option. Also, these trials are expensive to conduct and resource-intensive.

In a randomized controlled trial, Li et al. randomly allocated patients of paraquat poisoning to receive either conventional therapy (control group) or continuous veno-venous hemofiltration (intervention). Patients were followed up to look for mortality or other adverse events (outcome). 6

Researchers need to understand the features of different study designs, with their advantages and limitations so that the most appropriate design can be chosen for a particular research question. The Centre for Evidence Based Medicine offers an useful tool to determine the type of research design used in a particular study. 7

Source of support: Nil

Conflict of interest: None

  • Bipolar Disorder
  • Therapy Center
  • When To See a Therapist
  • Types of Therapy
  • Best Online Therapy
  • Best Couples Therapy
  • Best Family Therapy
  • Managing Stress
  • Sleep and Dreaming
  • Understanding Emotions
  • Self-Improvement
  • Healthy Relationships
  • Student Resources
  • Personality Types
  • Guided Meditations
  • Verywell Mind Insights
  • 2024 Verywell Mind 25
  • Mental Health in the Classroom
  • Editorial Process
  • Meet Our Review Board
  • Crisis Support

Descriptive Research in Psychology

Sometimes you need to dig deeper than the pure statistics

FG Trade / E+/ Getty

Types of Descriptive Research and the Methods Used

  • Advantages & Limitations of Descriptive Research

Best Practices for Conducting Descriptive Research

Descriptive research is one of the key tools needed in any psychology researcher’s toolbox in order to create and lead a project that is both equitable and effective. Because psychology, as a field, loves definitions, let’s start with one. The University of Minnesota’s Introduction to Psychology defines this type of research as one that is “...designed to provide a snapshot of the current state of affairs.” That's pretty broad, so what does that mean in practice? Dr. Heather Derry-Vick (PhD) , an assistant professor in psychiatry at Hackensack Meridian School of Medicine, helps us put it into perspective. "Descriptive research really focuses on defining, understanding, and measuring a phenomenon or an experience," she says. "Not trying to change a person's experience or outcome, or even really looking at the mechanisms for why that might be happening, but more so describing an experience or a process as it unfolds naturally.”

Within the descriptive research methodology there are multiple types, including the following.

Descriptive Survey Research

This involves going beyond a typical tool like a LIkert Scale —where you typically place your response to a prompt on a one to five scale. We already know that scales like this can be ineffective, particularly when studying pain, for example.

When that's the case, using a descriptive methodology can help dig deeper into how a person is thinking, feeling, and acting rather than simply quantifying it in a way that might be unclear or confusing.

Descriptive Observational Research

Think of observational research like an ethically-focused version of people-watching. One example would be watching the patterns of children on a playground—perhaps when looking at a concept like risky play or seeking to observe social behaviors between children of different ages.

Descriptive Case Study Research

A descriptive approach to a case study is akin to a biography of a person, honing in on the experiences of a small group to extrapolate to larger themes. We most commonly see descriptive case studies when those in the psychology field are using past clients as an example to illustrate a point.

Correlational Descriptive Research

While descriptive research is often about the here and now, this form of the methodology allows researchers to make connections between groups of people. As an example from her research, Derry-Vick says she uses this method to identify how gender might play a role in cancer scan anxiety, aka scanxiety.

Dr. Derry-Vick's research uses surveys and interviews to get a sense of how cancer patients are feeling and what they are experiencing both in the course of their treatment and in the lead-up to their next scan, which can be a significant source of stress.

David Marlon, PsyD, MBA , who works as a clinician and as CEO at Vegas Stronger, and whose research focused on leadership styles at community-based clinics, says that using descriptive research allowed him to get beyond the numbers.

In his case, that includes data points like how many unhoused people found stable housing over a certain period or how many people became drug-free—and identify the reasons for those changes.

Those [data points] are some practical, quantitative tools that are helpful. But when I question them on how safe they feel, when I question them on the depth of the bond or the therapeutic alliance, when I talk to them about their processing of traumas,  wellbeing...these are things that don't really fall on to a yes, no, or even on a Likert scale.

For the portion of his thesis that was focused on descriptive research, Marlon used semi-structured interviews to look at the how and the why of transformational leadership and its impact on clinics’ clients and staff.

Advantages & Limitations of Descriptive Research

So, if the advantages of using descriptive research include that it centers the research participants, gives us a clear picture of what is happening to a person in a particular moment,  and gives us very nuanced insights into how a particular situation is being perceived by the very person affected, are there drawbacks? Yes, there are. Dr. Derry-Vick says that it’s important to keep in mind that just because descriptive research tells us something is happening doesn’t mean it necessarily leads us to the resolution of a given problem.

I think that, by design, the descriptive research might not tell you why a phenomenon is happening. So it might tell you, very well, how often it's happening, or what the levels are, or help you understand it in depth. But that may or may not always tell you information about the causes or mechanisms for why something is happening.

Another limitation she identifies is that it also can’t tell you, on its own, whether a particular treatment pathway is having the desired effect.

“Descriptive research in and of itself can't really tell you whether a specific approach is going to be helpful until you take in a different approach to actually test it.”

Marlon, who believes in a multi-disciplinary approach, says that his subfield—addictions—is one where descriptive research had its limits, but helps readers go beyond preconceived notions of what addictions treatment looks and feels like when it is effective. “If we talked to and interviewed and got descriptive information from the clinicians and the clients, a much more precise picture would be painted, showing the need for a client's specific multidisciplinary approach augmented with a variety of modalities," he says. "If you tried to look at my discipline in a pure quantitative approach , it wouldn't begin to tell the real story.”

Because you’re controlling far fewer variables than other forms of research, it’s important to identify whether those you are describing, your study participants, should be informed that they are part of a study.

For example, if you’re observing and describing who is buying what in a grocery store to identify patterns, then you might not need to identify yourself.

However, if you’re asking people about their fear of certain treatment, or how their marginalized identities impact their mental health in a particular way, there is far more of a pressure to think deeply about how you, as the researcher, are connected to the people you are researching.

Many descriptive research projects use interviews as a form of research gathering and, as a result, descriptive research that is focused on this type of data gathering also has ethical and practical concerns attached. Thankfully, there are plenty of guides from established researchers about how to best conduct these interviews and/or formulate surveys .

While descriptive research has its limits, it is commonly used by researchers to get a clear vantage point on what is happening in a given situation.

Tools like surveys, interviews, and observation are often employed to dive deeper into a given issue and really highlight the human element in psychological research. At its core, descriptive research is rooted in a collaborative style that allows deeper insights when used effectively.

University of Minnesota. Introduction to Psychology .

By John Loeppky John Loeppky is a freelance journalist based in Regina, Saskatchewan, Canada, who has written about disability and health for outlets of all kinds.

Root out friction in every digital experience, super-charge conversion rates, and optimize digital self-service

Uncover insights from any interaction, deliver AI-powered agent coaching, and reduce cost to serve

Increase revenue and loyalty with real-time insights and recommendations delivered to teams on the ground

Know how your people feel and empower managers to improve employee engagement, productivity, and retention

Take action in the moments that matter most along the employee journey and drive bottom line growth

Whatever they’re are saying, wherever they’re saying it, know exactly what’s going on with your people

Get faster, richer insights with qual and quant tools that make powerful market research available to everyone

Run concept tests, pricing studies, prototyping + more with fast, powerful studies designed by UX research experts

Track your brand performance 24/7 and act quickly to respond to opportunities and challenges in your market

Explore the platform powering Experience Management

  • Free Account
  • Product Demos
  • For Digital
  • For Customer Care
  • For Human Resources
  • For Researchers
  • Financial Services
  • All Industries

Popular Use Cases

  • Customer Experience
  • Employee Experience
  • Net Promoter Score
  • Voice of Customer
  • Customer Success Hub
  • Product Documentation
  • Training & Certification
  • XM Institute
  • Popular Resources
  • Customer Stories
  • Artificial Intelligence

Market Research

  • Partnerships
  • Marketplace

The annual gathering of the experience leaders at the world’s iconic brands building breakthrough business results, live in Salt Lake City.

  • English/AU & NZ
  • Español/Europa
  • Español/América Latina
  • Português Brasileiro
  • REQUEST DEMO
  • Experience Management
  • Descriptive Research

Try Qualtrics for free

Descriptive research: what it is and how to use it.

8 min read Understanding the who, what and where of a situation or target group is an essential part of effective research and making informed business decisions.

For example you might want to understand what percentage of CEOs have a bachelor’s degree or higher. Or you might want to understand what percentage of low income families receive government support – or what kind of support they receive.

Descriptive research is what will be used in these types of studies.

In this guide we’ll look through the main issues relating to descriptive research to give you a better understanding of what it is, and how and why you can use it.

Free eBook: 2024 global market research trends report

What is descriptive research?

Descriptive research is a research method used to try and determine the characteristics of a population or particular phenomenon.

Using descriptive research you can identify patterns in the characteristics of a group to essentially establish everything you need to understand apart from why something has happened.

Market researchers use descriptive research for a range of commercial purposes to guide key decisions.

For example you could use descriptive research to understand fashion trends in a given city when planning your clothing collection for the year. Using descriptive research you can conduct in depth analysis on the demographic makeup of your target area and use the data analysis to establish buying patterns.

Conducting descriptive research wouldn’t, however, tell you why shoppers are buying a particular type of fashion item.

Descriptive research design

Descriptive research design uses a range of both qualitative research and quantitative data (although quantitative research is the primary research method) to gather information to make accurate predictions about a particular problem or hypothesis.

As a survey method, descriptive research designs will help researchers identify characteristics in their target market or particular population.

These characteristics in the population sample can be identified, observed and measured to guide decisions.

Descriptive research characteristics

While there are a number of descriptive research methods you can deploy for data collection, descriptive research does have a number of predictable characteristics.

Here are a few of the things to consider:

Measure data trends with statistical outcomes

Descriptive research is often popular for survey research because it generates answers in a statistical form, which makes it easy for researchers to carry out a simple statistical analysis to interpret what the data is saying.

Descriptive research design is ideal for further research

Because the data collection for descriptive research produces statistical outcomes, it can also be used as secondary data for another research study.

Plus, the data collected from descriptive research can be subjected to other types of data analysis .

Uncontrolled variables

A key component of the descriptive research method is that it uses random variables that are not controlled by the researchers. This is because descriptive research aims to understand the natural behavior of the research subject.

It’s carried out in a natural environment

Descriptive research is often carried out in a natural environment. This is because researchers aim to gather data in a natural setting to avoid swaying respondents.

Data can be gathered using survey questions or online surveys.

For example, if you want to understand the fashion trends we mentioned earlier, you would set up a study in which a researcher observes people in the respondent’s natural environment to understand their habits and preferences.

Descriptive research allows for cross sectional study

Because of the nature of descriptive research design and the randomness of the sample group being observed, descriptive research is ideal for cross sectional studies – essentially the demographics of the group can vary widely and your aim is to gain insights from within the group.

This can be highly beneficial when you’re looking to understand the behaviors or preferences of a wider population.

Descriptive research advantages

There are many advantages to using descriptive research, some of them include:

Cost effectiveness

Because the elements needed for descriptive research design are not specific or highly targeted (and occur within the respondent’s natural environment) this type of study is relatively cheap to carry out.

Multiple types of data can be collected

A big advantage of this research type, is that you can use it to collect both quantitative and qualitative data. This means you can use the stats gathered to easily identify underlying patterns in your respondents’ behavior.

Descriptive research disadvantages

Potential reliability issues.

When conducting descriptive research it’s important that the initial survey questions are properly formulated.

If not, it could make the answers unreliable and risk the credibility of your study.

Potential limitations

As we’ve mentioned, descriptive research design is ideal for understanding the what, who or where of a situation or phenomenon.

However, it can’t help you understand the cause or effect of the behavior. This means you’ll need to conduct further research to get a more complete picture of a situation.

Descriptive research methods

Because descriptive research methods include a range of quantitative and qualitative research, there are several research methods you can use.

Use case studies

Case studies in descriptive research involve conducting in-depth and detailed studies in which researchers get a specific person or case to answer questions.

Case studies shouldn’t be used to generate results, rather it should be used to build or establish hypothesis that you can expand into further market research .

For example you could gather detailed data about a specific business phenomenon, and then use this deeper understanding of that specific case.

Use observational methods

This type of study uses qualitative observations to understand human behavior within a particular group.

By understanding how the different demographics respond within your sample you can identify patterns and trends.

As an observational method, descriptive research will not tell you the cause of any particular behaviors, but that could be established with further research.

Use survey research

Surveys are one of the most cost effective ways to gather descriptive data.

An online survey or questionnaire can be used in descriptive studies to gather quantitative information about a particular problem.

Survey research is ideal if you’re using descriptive research as your primary research.

Descriptive research examples

Descriptive research is used for a number of commercial purposes or when organizations need to understand the behaviors or opinions of a population.

One of the biggest examples of descriptive research that is used in every democratic country, is during elections.

Using descriptive research, researchers will use surveys to understand who voters are more likely to choose out of the parties or candidates available.

Using the data provided, researchers can analyze the data to understand what the election result will be.

In a commercial setting, retailers often use descriptive research to figure out trends in shopping and buying decisions.

By gathering information on the habits of shoppers, retailers can get a better understanding of the purchases being made.

Another example that is widely used around the world, is the national census that takes place to understand the population.

The research will provide a more accurate picture of a population’s demographic makeup and help to understand changes over time in areas like population age, health and education level.

Where Qualtrics helps with descriptive research

Whatever type of research you want to carry out, there’s a survey type that will work.

Qualtrics can help you determine the appropriate method and ensure you design a study that will deliver the insights you need.

Our experts can help you with your market research needs , ensuring you get the most out of Qualtrics market research software to design, launch and analyze your data to guide better, more accurate decisions for your organization.

Related resources

Market intelligence 10 min read, marketing insights 11 min read, ethnographic research 11 min read, qualitative vs quantitative research 13 min read, qualitative research questions 11 min read, qualitative research design 12 min read, primary vs secondary research 14 min read, request demo.

Ready to learn more about Qualtrics?

  • Descriptive Research Designs: Types, Examples & Methods

busayo.longe

One of the components of research is getting enough information about the research problem—the what, how, when and where answers, which is why descriptive research is an important type of research. It is very useful when conducting research whose aim is to identify characteristics, frequencies, trends, correlations, and categories.

This research method takes a problem with little to no relevant information and gives it a befitting description using qualitative and quantitative research method s. Descriptive research aims to accurately describe a research problem.

In the subsequent sections, we will be explaining what descriptive research means, its types, examples, and data collection methods.

What is Descriptive Research?

Descriptive research is a type of research that describes a population, situation, or phenomenon that is being studied. It focuses on answering the how, what, when, and where questions If a research problem, rather than the why.

This is mainly because it is important to have a proper understanding of what a research problem is about before investigating why it exists in the first place. 

For example, an investor considering an investment in the ever-changing Amsterdam housing market needs to understand what the current state of the market is, how it changes (increasing or decreasing), and when it changes (time of the year) before asking for the why. This is where descriptive research comes in.

What Are The Types of Descriptive Research?

Descriptive research is classified into different types according to the kind of approach that is used in conducting descriptive research. The different types of descriptive research are highlighted below:

  • Descriptive-survey

Descriptive survey research uses surveys to gather data about varying subjects. This data aims to know the extent to which different conditions can be obtained among these subjects.

For example, a researcher wants to determine the qualification of employed professionals in Maryland. He uses a survey as his research instrument , and each item on the survey related to qualifications is subjected to a Yes/No answer. 

This way, the researcher can describe the qualifications possessed by the employed demographics of this community. 

  • Descriptive-normative survey

This is an extension of the descriptive survey, with the addition being the normative element. In the descriptive-normative survey, the results of the study should be compared with the norm.

For example, an organization that wishes to test the skills of its employees by a team may have them take a skills test. The skills tests are the evaluation tool in this case, and the result of this test is compared with the norm of each role.

If the score of the team is one standard deviation above the mean, it is very satisfactory, if within the mean, satisfactory, and one standard deviation below the mean is unsatisfactory.

  • Descriptive-status

This is a quantitative description technique that seeks to answer questions about real-life situations. For example, a researcher researching the income of the employees in a company, and the relationship with their performance.

A survey will be carried out to gather enough data about the income of the employees, then their performance will be evaluated and compared to their income. This will help determine whether a higher income means better performance and low income means lower performance or vice versa.

  • Descriptive-analysis

The descriptive-analysis method of research describes a subject by further analyzing it, which in this case involves dividing it into 2 parts. For example, the HR personnel of a company that wishes to analyze the job role of each employee of the company may divide the employees into the people that work at the Headquarters in the US and those that work from Oslo, Norway office.

A questionnaire is devised to analyze the job role of employees with similar salaries and who work in similar positions.

  • Descriptive classification

This method is employed in biological sciences for the classification of plants and animals. A researcher who wishes to classify the sea animals into different species will collect samples from various search stations, then classify them accordingly.

  • Descriptive-comparative

In descriptive-comparative research, the researcher considers 2 variables that are not manipulated, and establish a formal procedure to conclude that one is better than the other. For example, an examination body wants to determine the better method of conducting tests between paper-based and computer-based tests.

A random sample of potential participants of the test may be asked to use the 2 different methods, and factors like failure rates, time factors, and others will be evaluated to arrive at the best method.

  • Correlative Survey

Correlative surveys are used to determine whether the relationship between 2 variables is positive, negative, or neutral. That is, if 2 variables say X and Y are directly proportional, inversely proportional or are not related to each other.

Examples of Descriptive Research

There are different examples of descriptive research, that may be highlighted from its types, uses, and applications. However, we will be restricting ourselves to only 3 distinct examples in this article.

  • Comparing Student Performance:

An academic institution may wish 2 compare the performance of its junior high school students in English language and Mathematics. This may be used to classify students based on 2 major groups, with one group going ahead to study while courses, while the other study courses in the Arts & Humanities field.

Students who are more proficient in mathematics will be encouraged to go into STEM and vice versa. Institutions may also use this data to identify students’ weak points and work on ways to assist them.

  • Scientific Classification

During the major scientific classification of plants, animals, and periodic table elements, the characteristics and components of each subject are evaluated and used to determine how they are classified.

For example, living things may be classified into kingdom Plantae or kingdom animal is depending on their nature. Further classification may group animals into mammals, pieces, vertebrae, invertebrae, etc. 

All these classifications are made a result of descriptive research which describes what they are.

  • Human Behavior

When studying human behaviour based on a factor or event, the researcher observes the characteristics, behaviour, and reaction, then use it to conclude. A company willing to sell to its target market needs to first study the behaviour of the market.

This may be done by observing how its target reacts to a competitor’s product, then use it to determine their behaviour.

What are the Characteristics of Descriptive Research?  

The characteristics of descriptive research can be highlighted from its definition, applications, data collection methods, and examples. Some characteristics of descriptive research are:

  • Quantitativeness

Descriptive research uses a quantitative research method by collecting quantifiable information to be used for statistical analysis of the population sample. This is very common when dealing with research in the physical sciences.

  • Qualitativeness

It can also be carried out using the qualitative research method, to properly describe the research problem. This is because descriptive research is more explanatory than exploratory or experimental.

  • Uncontrolled variables

In descriptive research, researchers cannot control the variables like they do in experimental research.

  • The basis for further research

The results of descriptive research can be further analyzed and used in other research methods. It can also inform the next line of research, including the research method that should be used.

This is because it provides basic information about the research problem, which may give birth to other questions like why a particular thing is the way it is.

Why Use Descriptive Research Design?  

Descriptive research can be used to investigate the background of a research problem and get the required information needed to carry out further research. It is used in multiple ways by different organizations, and especially when getting the required information about their target audience.

  • Define subject characteristics :

It is used to determine the characteristics of the subjects, including their traits, behaviour, opinion, etc. This information may be gathered with the use of surveys, which are shared with the respondents who in this case, are the research subjects.

For example, a survey evaluating the number of hours millennials in a community spends on the internet weekly, will help a service provider make informed business decisions regarding the market potential of the community.

  • Measure Data Trends

It helps to measure the changes in data over some time through statistical methods. Consider the case of individuals who want to invest in stock markets, so they evaluate the changes in prices of the available stocks to make a decision investment decision.

Brokerage companies are however the ones who carry out the descriptive research process, while individuals can view the data trends and make decisions.

Descriptive research is also used to compare how different demographics respond to certain variables. For example, an organization may study how people with different income levels react to the launch of a new Apple phone.

This kind of research may take a survey that will help determine which group of individuals are purchasing the new Apple phone. Do the low-income earners also purchase the phone, or only the high-income earners do?

Further research using another technique will explain why low-income earners are purchasing the phone even though they can barely afford it. This will help inform strategies that will lure other low-income earners and increase company sales.

  • Validate existing conditions

When you are not sure about the validity of an existing condition, you can use descriptive research to ascertain the underlying patterns of the research object. This is because descriptive research methods make an in-depth analysis of each variable before making conclusions.

  • Conducted Overtime

Descriptive research is conducted over some time to ascertain the changes observed at each point in time. The higher the number of times it is conducted, the more authentic the conclusion will be.

What are the Disadvantages of Descriptive Research?  

  • Response and Non-response Bias

Respondents may either decide not to respond to questions or give incorrect responses if they feel the questions are too confidential. When researchers use observational methods, respondents may also decide to behave in a particular manner because they feel they are being watched.

  • The researcher may decide to influence the result of the research due to personal opinion or bias towards a particular subject. For example, a stockbroker who also has a business of his own may try to lure investors into investing in his own company by manipulating results.
  • A case-study or sample taken from a large population is not representative of the whole population.
  • Limited scope:The scope of descriptive research is limited to the what of research, with no information on why thereby limiting the scope of the research.

What are the Data Collection Methods in Descriptive Research?  

There are 3 main data collection methods in descriptive research, namely; observational method, case study method, and survey research.

1. Observational Method

The observational method allows researchers to collect data based on their view of the behaviour and characteristics of the respondent, with the respondents themselves not directly having an input. It is often used in market research, psychology, and some other social science research to understand human behaviour.

It is also an important aspect of physical scientific research, with it being one of the most effective methods of conducting descriptive research . This process can be said to be either quantitative or qualitative.

Quantitative observation involved the objective collection of numerical data , whose results can be analyzed using numerical and statistical methods. 

Qualitative observation, on the other hand, involves the monitoring of characteristics and not the measurement of numbers. The researcher makes his observation from a distance, records it, and is used to inform conclusions.

2. Case Study Method

A case study is a sample group (an individual, a group of people, organizations, events, etc.) whose characteristics are used to describe the characteristics of a larger group in which the case study is a subgroup. The information gathered from investigating a case study may be generalized to serve the larger group.

This generalization, may, however, be risky because case studies are not sufficient to make accurate predictions about larger groups. Case studies are a poor case of generalization.

3. Survey Research

This is a very popular data collection method in research designs. In survey research, researchers create a survey or questionnaire and distribute it to respondents who give answers.

Generally, it is used to obtain quick information directly from the primary source and also conducting rigorous quantitative and qualitative research. In some cases, survey research uses a blend of both qualitative and quantitative strategies.

Survey research can be carried out both online and offline using the following methods

  • Online Surveys: This is a cheap method of carrying out surveys and getting enough responses. It can be carried out using Formplus, an online survey builder. Formplus has amazing tools and features that will help increase response rates.
  • Offline Surveys: This includes paper forms, mobile offline forms , and SMS-based forms.

What Are The Differences Between Descriptive and Correlational Research?  

Before going into the differences between descriptive and correlation research, we need to have a proper understanding of what correlation research is about. Therefore, we will be giving a summary of the correlation research below.

Correlational research is a type of descriptive research, which is used to measure the relationship between 2 variables, with the researcher having no control over them. It aims to find whether there is; positive correlation (both variables change in the same direction), negative correlation (the variables change in the opposite direction), or zero correlation (there is no relationship between the variables).

Correlational research may be used in 2 situations;

(i) when trying to find out if there is a relationship between two variables, and

(ii) when a causal relationship is suspected between two variables, but it is impractical or unethical to conduct experimental research that manipulates one of the variables. 

Below are some of the differences between correlational and descriptive research:

  • Definitions :

Descriptive research aims is a type of research that provides an in-depth understanding of the study population, while correlational research is the type of research that measures the relationship between 2 variables. 

  • Characteristics :

Descriptive research provides descriptive data explaining what the research subject is about, while correlation research explores the relationship between data and not their description.

  • Predictions :

 Predictions cannot be made in descriptive research while correlation research accommodates the possibility of making predictions.

Descriptive Research vs. Causal Research

Descriptive research and causal research are both research methodologies, however, one focuses on a subject’s behaviors while the latter focuses on a relationship’s cause-and-effect. To buttress the above point, descriptive research aims to describe and document the characteristics, behaviors, or phenomena of a particular or specific population or situation. 

It focuses on providing an accurate and detailed account of an already existing state of affairs between variables. Descriptive research answers the questions of “what,” “where,” “when,” and “how” without attempting to establish any causal relationships or explain any underlying factors that might have caused the behavior.

Causal research, on the other hand, seeks to determine cause-and-effect relationships between variables. It aims to point out the factors that influence or cause a particular result or behavior. Causal research involves manipulating variables, controlling conditions or a subgroup, and observing the resulting effects. The primary objective of causal research is to establish a cause-effect relationship and provide insights into why certain phenomena happen the way they do.

Descriptive Research vs. Analytical Research

Descriptive research provides a detailed and comprehensive account of a specific situation or phenomenon. It focuses on describing and summarizing data without making inferences or attempting to explain underlying factors or the cause of the factor. 

It is primarily concerned with providing an accurate and objective representation of the subject of research. While analytical research goes beyond the description of the phenomena and seeks to analyze and interpret data to discover if there are patterns, relationships, or any underlying factors. 

It examines the data critically, applies statistical techniques or other analytical methods, and draws conclusions based on the discovery. Analytical research also aims to explore the relationships between variables and understand the underlying mechanisms or processes involved.

Descriptive Research vs. Exploratory Research

Descriptive research is a research method that focuses on providing a detailed and accurate account of a specific situation, group, or phenomenon. This type of research describes the characteristics, behaviors, or relationships within the given context without looking for an underlying cause. 

Descriptive research typically involves collecting and analyzing quantitative or qualitative data to generate descriptive statistics or narratives. Exploratory research differs from descriptive research because it aims to explore and gain firsthand insights or knowledge into a relatively unexplored or poorly understood topic. 

It focuses on generating ideas, hypotheses, or theories rather than providing definitive answers. Exploratory research is often conducted at the early stages of a research project to gather preliminary information and identify key variables or factors for further investigation. It involves open-ended interviews, observations, or small-scale surveys to gather qualitative data.

Read More – Exploratory Research: What are its Method & Examples?

Descriptive Research vs. Experimental Research

Descriptive research aims to describe and document the characteristics, behaviors, or phenomena of a particular population or situation. It focuses on providing an accurate and detailed account of the existing state of affairs. 

Descriptive research typically involves collecting data through surveys, observations, or existing records and analyzing the data to generate descriptive statistics or narratives. It does not involve manipulating variables or establishing cause-and-effect relationships.

Experimental research, on the other hand, involves manipulating variables and controlling conditions to investigate cause-and-effect relationships. It aims to establish causal relationships by introducing an intervention or treatment and observing the resulting effects. 

Experimental research typically involves randomly assigning participants to different groups, such as control and experimental groups, and measuring the outcomes. It allows researchers to control for confounding variables and draw causal conclusions.

Related – Experimental vs Non-Experimental Research: 15 Key Differences

Descriptive Research vs. Explanatory Research

Descriptive research focuses on providing a detailed and accurate account of a specific situation, group, or phenomenon. It aims to describe the characteristics, behaviors, or relationships within the given context. 

Descriptive research is primarily concerned with providing an objective representation of the subject of study without explaining underlying causes or mechanisms. Explanatory research seeks to explain the relationships between variables and uncover the underlying causes or mechanisms. 

It goes beyond description and aims to understand the reasons or factors that influence a particular outcome or behavior. Explanatory research involves analyzing data, conducting statistical analyses, and developing theories or models to explain the observed relationships.

Descriptive Research vs. Inferential Research

Descriptive research focuses on describing and summarizing data without making inferences or generalizations beyond the specific sample or population being studied. It aims to provide an accurate and objective representation of the subject of study. 

Descriptive research typically involves analyzing data to generate descriptive statistics, such as means, frequencies, or percentages, to describe the characteristics or behaviors observed.

Inferential research, however, involves making inferences or generalizations about a larger population based on a smaller sample. 

It aims to draw conclusions about the population characteristics or relationships by analyzing the sample data. Inferential research uses statistical techniques to estimate population parameters, test hypotheses, and determine the level of confidence or significance in the findings.

Related – Inferential Statistics: Definition, Types + Examples

Conclusion  

The uniqueness of descriptive research partly lies in its ability to explore both quantitative and qualitative research methods. Therefore, when conducting descriptive research, researchers have the opportunity to use a wide variety of techniques that aids the research process.

Descriptive research explores research problems in-depth, beyond the surface level thereby giving a detailed description of the research subject. That way, it can aid further research in the field, including other research methods .

It is also very useful in solving real-life problems in various fields of social science, physical science, and education.

Logo

Connect to Formplus, Get Started Now - It's Free!

  • descriptive research
  • descriptive research method
  • example of descriptive research
  • types of descriptive research
  • busayo.longe

Formplus

You may also like:

Type I vs Type II Errors: Causes, Examples & Prevention

This article will discuss the two different types of errors in hypothesis testing and how you can prevent them from occurring in your research

importance of descriptive case study

Acceptance Sampling: Meaning, Examples, When to Use

In this post, we will discuss extensively what acceptance sampling is and when it is applied.

Extrapolation in Statistical Research: Definition, Examples, Types, Applications

In this article we’ll look at the different types and characteristics of extrapolation, plus how it contrasts to interpolation.

Cross-Sectional Studies: Types, Pros, Cons & Uses

In this article, we’ll look at what cross-sectional studies are, how it applies to your research and how to use Formplus to collect...

Formplus - For Seamless Data Collection

Collect data the right way with a versatile data collection tool. try formplus and transform your work productivity today..

Case Study Research Method in Psychology

Saul Mcleod, PhD

Editor-in-Chief for Simply Psychology

BSc (Hons) Psychology, MRes, PhD, University of Manchester

Saul Mcleod, PhD., is a qualified psychology teacher with over 18 years of experience in further and higher education. He has been published in peer-reviewed journals, including the Journal of Clinical Psychology.

Learn about our Editorial Process

Olivia Guy-Evans, MSc

Associate Editor for Simply Psychology

BSc (Hons) Psychology, MSc Psychology of Education

Olivia Guy-Evans is a writer and associate editor for Simply Psychology. She has previously worked in healthcare and educational sectors.

On This Page:

Case studies are in-depth investigations of a person, group, event, or community. Typically, data is gathered from various sources using several methods (e.g., observations & interviews).

The case study research method originated in clinical medicine (the case history, i.e., the patient’s personal history). In psychology, case studies are often confined to the study of a particular individual.

The information is mainly biographical and relates to events in the individual’s past (i.e., retrospective), as well as to significant events that are currently occurring in his or her everyday life.

The case study is not a research method, but researchers select methods of data collection and analysis that will generate material suitable for case studies.

Freud (1909a, 1909b) conducted very detailed investigations into the private lives of his patients in an attempt to both understand and help them overcome their illnesses.

This makes it clear that the case study is a method that should only be used by a psychologist, therapist, or psychiatrist, i.e., someone with a professional qualification.

There is an ethical issue of competence. Only someone qualified to diagnose and treat a person can conduct a formal case study relating to atypical (i.e., abnormal) behavior or atypical development.

case study

 Famous Case Studies

  • Anna O – One of the most famous case studies, documenting psychoanalyst Josef Breuer’s treatment of “Anna O” (real name Bertha Pappenheim) for hysteria in the late 1800s using early psychoanalytic theory.
  • Little Hans – A child psychoanalysis case study published by Sigmund Freud in 1909 analyzing his five-year-old patient Herbert Graf’s house phobia as related to the Oedipus complex.
  • Bruce/Brenda – Gender identity case of the boy (Bruce) whose botched circumcision led psychologist John Money to advise gender reassignment and raise him as a girl (Brenda) in the 1960s.
  • Genie Wiley – Linguistics/psychological development case of the victim of extreme isolation abuse who was studied in 1970s California for effects of early language deprivation on acquiring speech later in life.
  • Phineas Gage – One of the most famous neuropsychology case studies analyzes personality changes in railroad worker Phineas Gage after an 1848 brain injury involving a tamping iron piercing his skull.

Clinical Case Studies

  • Studying the effectiveness of psychotherapy approaches with an individual patient
  • Assessing and treating mental illnesses like depression, anxiety disorders, PTSD
  • Neuropsychological cases investigating brain injuries or disorders

Child Psychology Case Studies

  • Studying psychological development from birth through adolescence
  • Cases of learning disabilities, autism spectrum disorders, ADHD
  • Effects of trauma, abuse, deprivation on development

Types of Case Studies

  • Explanatory case studies : Used to explore causation in order to find underlying principles. Helpful for doing qualitative analysis to explain presumed causal links.
  • Exploratory case studies : Used to explore situations where an intervention being evaluated has no clear set of outcomes. It helps define questions and hypotheses for future research.
  • Descriptive case studies : Describe an intervention or phenomenon and the real-life context in which it occurred. It is helpful for illustrating certain topics within an evaluation.
  • Multiple-case studies : Used to explore differences between cases and replicate findings across cases. Helpful for comparing and contrasting specific cases.
  • Intrinsic : Used to gain a better understanding of a particular case. Helpful for capturing the complexity of a single case.
  • Collective : Used to explore a general phenomenon using multiple case studies. Helpful for jointly studying a group of cases in order to inquire into the phenomenon.

Where Do You Find Data for a Case Study?

There are several places to find data for a case study. The key is to gather data from multiple sources to get a complete picture of the case and corroborate facts or findings through triangulation of evidence. Most of this information is likely qualitative (i.e., verbal description rather than measurement), but the psychologist might also collect numerical data.

1. Primary sources

  • Interviews – Interviewing key people related to the case to get their perspectives and insights. The interview is an extremely effective procedure for obtaining information about an individual, and it may be used to collect comments from the person’s friends, parents, employer, workmates, and others who have a good knowledge of the person, as well as to obtain facts from the person him or herself.
  • Observations – Observing behaviors, interactions, processes, etc., related to the case as they unfold in real-time.
  • Documents & Records – Reviewing private documents, diaries, public records, correspondence, meeting minutes, etc., relevant to the case.

2. Secondary sources

  • News/Media – News coverage of events related to the case study.
  • Academic articles – Journal articles, dissertations etc. that discuss the case.
  • Government reports – Official data and records related to the case context.
  • Books/films – Books, documentaries or films discussing the case.

3. Archival records

Searching historical archives, museum collections and databases to find relevant documents, visual/audio records related to the case history and context.

Public archives like newspapers, organizational records, photographic collections could all include potentially relevant pieces of information to shed light on attitudes, cultural perspectives, common practices and historical contexts related to psychology.

4. Organizational records

Organizational records offer the advantage of often having large datasets collected over time that can reveal or confirm psychological insights.

Of course, privacy and ethical concerns regarding confidential data must be navigated carefully.

However, with proper protocols, organizational records can provide invaluable context and empirical depth to qualitative case studies exploring the intersection of psychology and organizations.

  • Organizational/industrial psychology research : Organizational records like employee surveys, turnover/retention data, policies, incident reports etc. may provide insight into topics like job satisfaction, workplace culture and dynamics, leadership issues, employee behaviors etc.
  • Clinical psychology : Therapists/hospitals may grant access to anonymized medical records to study aspects like assessments, diagnoses, treatment plans etc. This could shed light on clinical practices.
  • School psychology : Studies could utilize anonymized student records like test scores, grades, disciplinary issues, and counseling referrals to study child development, learning barriers, effectiveness of support programs, and more.

How do I Write a Case Study in Psychology?

Follow specified case study guidelines provided by a journal or your psychology tutor. General components of clinical case studies include: background, symptoms, assessments, diagnosis, treatment, and outcomes. Interpreting the information means the researcher decides what to include or leave out. A good case study should always clarify which information is the factual description and which is an inference or the researcher’s opinion.

1. Introduction

  • Provide background on the case context and why it is of interest, presenting background information like demographics, relevant history, and presenting problem.
  • Compare briefly to similar published cases if applicable. Clearly state the focus/importance of the case.

2. Case Presentation

  • Describe the presenting problem in detail, including symptoms, duration,and impact on daily life.
  • Include client demographics like age and gender, information about social relationships, and mental health history.
  • Describe all physical, emotional, and/or sensory symptoms reported by the client.
  • Use patient quotes to describe the initial complaint verbatim. Follow with full-sentence summaries of relevant history details gathered, including key components that led to a working diagnosis.
  • Summarize clinical exam results, namely orthopedic/neurological tests, imaging, lab tests, etc. Note actual results rather than subjective conclusions. Provide images if clearly reproducible/anonymized.
  • Clearly state the working diagnosis or clinical impression before transitioning to management.

3. Management and Outcome

  • Indicate the total duration of care and number of treatments given over what timeframe. Use specific names/descriptions for any therapies/interventions applied.
  • Present the results of the intervention,including any quantitative or qualitative data collected.
  • For outcomes, utilize visual analog scales for pain, medication usage logs, etc., if possible. Include patient self-reports of improvement/worsening of symptoms. Note the reason for discharge/end of care.

4. Discussion

  • Analyze the case, exploring contributing factors, limitations of the study, and connections to existing research.
  • Analyze the effectiveness of the intervention,considering factors like participant adherence, limitations of the study, and potential alternative explanations for the results.
  • Identify any questions raised in the case analysis and relate insights to established theories and current research if applicable. Avoid definitive claims about physiological explanations.
  • Offer clinical implications, and suggest future research directions.

5. Additional Items

  • Thank specific assistants for writing support only. No patient acknowledgments.
  • References should directly support any key claims or quotes included.
  • Use tables/figures/images only if substantially informative. Include permissions and legends/explanatory notes.
  • Provides detailed (rich qualitative) information.
  • Provides insight for further research.
  • Permitting investigation of otherwise impractical (or unethical) situations.

Case studies allow a researcher to investigate a topic in far more detail than might be possible if they were trying to deal with a large number of research participants (nomothetic approach) with the aim of ‘averaging’.

Because of their in-depth, multi-sided approach, case studies often shed light on aspects of human thinking and behavior that would be unethical or impractical to study in other ways.

Research that only looks into the measurable aspects of human behavior is not likely to give us insights into the subjective dimension of experience, which is important to psychoanalytic and humanistic psychologists.

Case studies are often used in exploratory research. They can help us generate new ideas (that might be tested by other methods). They are an important way of illustrating theories and can help show how different aspects of a person’s life are related to each other.

The method is, therefore, important for psychologists who adopt a holistic point of view (i.e., humanistic psychologists ).

Limitations

  • Lacking scientific rigor and providing little basis for generalization of results to the wider population.
  • Researchers’ own subjective feelings may influence the case study (researcher bias).
  • Difficult to replicate.
  • Time-consuming and expensive.
  • The volume of data, together with the time restrictions in place, impacted the depth of analysis that was possible within the available resources.

Because a case study deals with only one person/event/group, we can never be sure if the case study investigated is representative of the wider body of “similar” instances. This means the conclusions drawn from a particular case may not be transferable to other settings.

Because case studies are based on the analysis of qualitative (i.e., descriptive) data , a lot depends on the psychologist’s interpretation of the information she has acquired.

This means that there is a lot of scope for Anna O , and it could be that the subjective opinions of the psychologist intrude in the assessment of what the data means.

For example, Freud has been criticized for producing case studies in which the information was sometimes distorted to fit particular behavioral theories (e.g., Little Hans ).

This is also true of Money’s interpretation of the Bruce/Brenda case study (Diamond, 1997) when he ignored evidence that went against his theory.

Breuer, J., & Freud, S. (1895).  Studies on hysteria . Standard Edition 2: London.

Curtiss, S. (1981). Genie: The case of a modern wild child .

Diamond, M., & Sigmundson, K. (1997). Sex Reassignment at Birth: Long-term Review and Clinical Implications. Archives of Pediatrics & Adolescent Medicine , 151(3), 298-304

Freud, S. (1909a). Analysis of a phobia of a five year old boy. In The Pelican Freud Library (1977), Vol 8, Case Histories 1, pages 169-306

Freud, S. (1909b). Bemerkungen über einen Fall von Zwangsneurose (Der “Rattenmann”). Jb. psychoanal. psychopathol. Forsch ., I, p. 357-421; GW, VII, p. 379-463; Notes upon a case of obsessional neurosis, SE , 10: 151-318.

Harlow J. M. (1848). Passage of an iron rod through the head.  Boston Medical and Surgical Journal, 39 , 389–393.

Harlow, J. M. (1868).  Recovery from the Passage of an Iron Bar through the Head .  Publications of the Massachusetts Medical Society. 2  (3), 327-347.

Money, J., & Ehrhardt, A. A. (1972).  Man & Woman, Boy & Girl : The Differentiation and Dimorphism of Gender Identity from Conception to Maturity. Baltimore, Maryland: Johns Hopkins University Press.

Money, J., & Tucker, P. (1975). Sexual signatures: On being a man or a woman.

Further Information

  • Case Study Approach
  • Case Study Method
  • Enhancing the Quality of Case Studies in Health Services Research
  • “We do things together” A case study of “couplehood” in dementia
  • Using mixed methods for evaluating an integrative approach to cancer care: a case study

Print Friendly, PDF & Email

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base

Methodology

  • Descriptive Research | Definition, Types, Methods & Examples

Descriptive Research | Definition, Types, Methods & Examples

Published on May 15, 2019 by Shona McCombes . Revised on June 22, 2023.

Descriptive research aims to accurately and systematically describe a population, situation or phenomenon. It can answer what , where , when and how   questions , but not why questions.

A descriptive research design can use a wide variety of research methods  to investigate one or more variables . Unlike in experimental research , the researcher does not control or manipulate any of the variables, but only observes and measures them.

Table of contents

When to use a descriptive research design, descriptive research methods, other interesting articles.

Descriptive research is an appropriate choice when the research aim is to identify characteristics, frequencies, trends, and categories.

It is useful when not much is known yet about the topic or problem. Before you can research why something happens, you need to understand how, when and where it happens.

Descriptive research question examples

  • How has the Amsterdam housing market changed over the past 20 years?
  • Do customers of company X prefer product X or product Y?
  • What are the main genetic, behavioural and morphological differences between European wildcats and domestic cats?
  • What are the most popular online news sources among under-18s?
  • How prevalent is disease A in population B?

Receive feedback on language, structure, and formatting

Professional editors proofread and edit your paper by focusing on:

  • Academic style
  • Vague sentences
  • Style consistency

See an example

importance of descriptive case study

Descriptive research is usually defined as a type of quantitative research , though qualitative research can also be used for descriptive purposes. The research design should be carefully developed to ensure that the results are valid and reliable .

Survey research allows you to gather large volumes of data that can be analyzed for frequencies, averages and patterns. Common uses of surveys include:

  • Describing the demographics of a country or region
  • Gauging public opinion on political and social topics
  • Evaluating satisfaction with a company’s products or an organization’s services

Observations

Observations allow you to gather data on behaviours and phenomena without having to rely on the honesty and accuracy of respondents. This method is often used by psychological, social and market researchers to understand how people act in real-life situations.

Observation of physical entities and phenomena is also an important part of research in the natural sciences. Before you can develop testable hypotheses , models or theories, it’s necessary to observe and systematically describe the subject under investigation.

Case studies

A case study can be used to describe the characteristics of a specific subject (such as a person, group, event or organization). Instead of gathering a large volume of data to identify patterns across time or location, case studies gather detailed data to identify the characteristics of a narrowly defined subject.

Rather than aiming to describe generalizable facts, case studies often focus on unusual or interesting cases that challenge assumptions, add complexity, or reveal something new about a research problem .

If you want to know more about statistics , methodology , or research bias , make sure to check out some of our other articles with explanations and examples.

  • Normal distribution
  • Degrees of freedom
  • Null hypothesis
  • Discourse analysis
  • Control groups
  • Mixed methods research
  • Non-probability sampling
  • Quantitative research
  • Ecological validity

Research bias

  • Rosenthal effect
  • Implicit bias
  • Cognitive bias
  • Selection bias
  • Negativity bias
  • Status quo bias

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the “Cite this Scribbr article” button to automatically add the citation to our free Citation Generator.

McCombes, S. (2023, June 22). Descriptive Research | Definition, Types, Methods & Examples. Scribbr. Retrieved July 27, 2024, from https://www.scribbr.com/methodology/descriptive-research/

Is this article helpful?

Shona McCombes

Shona McCombes

Other students also liked, what is quantitative research | definition, uses & methods, correlational research | when & how to use, descriptive statistics | definitions, types, examples, what is your plagiarism score.

Module 2: Research and Ethics in Abnormal Psychology

Descriptive research and case studies, learning objectives.

  • Explain the importance and uses of descriptive research, especially case studies, in studying abnormal behavior

Types of Research Methods

There are many research methods available to psychologists in their efforts to understand, describe, and explain behavior and the cognitive and biological processes that underlie it. Some methods rely on observational techniques. Other approaches involve interactions between the researcher and the individuals who are being studied—ranging from a series of simple questions; to extensive, in-depth interviews; to well-controlled experiments.

The three main categories of psychological research are descriptive, correlational, and experimental research. Research studies that do not test specific relationships between variables are called descriptive, or qualitative, studies . These studies are used to describe general or specific behaviors and attributes that are observed and measured. In the early stages of research, it might be difficult to form a hypothesis, especially when there is not any existing literature in the area. In these situations designing an experiment would be premature, as the question of interest is not yet clearly defined as a hypothesis. Often a researcher will begin with a non-experimental approach, such as a descriptive study, to gather more information about the topic before designing an experiment or correlational study to address a specific hypothesis. Descriptive research is distinct from correlational research , in which psychologists formally test whether a relationship exists between two or more variables. Experimental research goes a step further beyond descriptive and correlational research and randomly assigns people to different conditions, using hypothesis testing to make inferences about how these conditions affect behavior. It aims to determine if one variable directly impacts and causes another. Correlational and experimental research both typically use hypothesis testing, whereas descriptive research does not.

Each of these research methods has unique strengths and weaknesses, and each method may only be appropriate for certain types of research questions. For example, studies that rely primarily on observation produce incredible amounts of information, but the ability to apply this information to the larger population is somewhat limited because of small sample sizes. Survey research, on the other hand, allows researchers to easily collect data from relatively large samples. While surveys allow results to be generalized to the larger population more easily, the information that can be collected on any given survey is somewhat limited and subject to problems associated with any type of self-reported data. Some researchers conduct archival research by using existing records. While existing records can be a fairly inexpensive way to collect data that can provide insight into a number of research questions, researchers using this approach have no control on how or what kind of data was collected.

Correlational research can find a relationship between two variables, but the only way a researcher can claim that the relationship between the variables is cause and effect is to perform an experiment. In experimental research, which will be discussed later, there is a tremendous amount of control over variables of interest. While performing an experiment is a powerful approach, experiments are often conducted in very artificial settings, which calls into question the validity of experimental findings with regard to how they would apply in real-world settings. In addition, many of the questions that psychologists would like to answer cannot be pursued through experimental research because of ethical concerns.

The three main types of descriptive studies are case studies, naturalistic observation, and surveys.

Clinical or Case Studies

Psychologists can use a detailed description of one person or a small group based on careful observation.  Case studies  are intensive studies of individuals and have commonly been seen as a fruitful way to come up with hypotheses and generate theories. Case studies add descriptive richness. Case studies are also useful for formulating concepts, which are an important aspect of theory construction. Through fine-grained knowledge and description, case studies can fully specify the causal mechanisms in a way that may be harder in a large study.

Sigmund Freud   developed  many theories from case studies (Anna O., Little Hans, Wolf Man, Dora, etc.). F or example, he conducted a case study of a man, nicknamed “Rat Man,”  in which he claimed that this patient had been cured by psychoanalysis.  T he nickname derives from the fact that among the patient’s many compulsions, he had an obsession with nightmarish fantasies about rats. 

Today, more commonly, case studies reflect an up-close, in-depth, and detailed examination of an individual’s course of treatment. Case studies typically include a complete history of the subject’s background and response to treatment. From the particular client’s experience in therapy, the therapist’s goal is to provide information that may help other therapists who treat similar clients.

Case studies are generally a single-case design, but can also be a multiple-case design, where replication instead of sampling is the criterion for inclusion. Like other research methodologies within psychology, the case study must produce valid and reliable results in order to be useful for the development of future research. Distinct advantages and disadvantages are associated with the case study in psychology.

A commonly described limit of case studies is that they do not lend themselves to generalizability . The other issue is that the case study is subject to the bias of the researcher in terms of how the case is written, and that cases are chosen because they are consistent with the researcher’s preconceived notions, resulting in biased research. Another common problem in case study research is that of reconciling conflicting interpretations of the same case history.

Despite these limitations, there are advantages to using case studies. One major advantage of the case study in psychology is the potential for the development of novel hypotheses of the  cause of abnormal behavior   for later testing. Second, the case study can provide detailed descriptions of specific and rare cases and help us study unusual conditions that occur too infrequently to study with large sample sizes. The major disadvantage is that case studies cannot be used to determine causation, as is the case in experimental research, where the factors or variables hypothesized to play a causal role are manipulated or controlled by the researcher. 

Single-Case Experimental Designs

The lack of control available in the traditional case study research strategy led researchers to develop more sophisticated methods, such as single-subject research, which provides the statistical framework for making inferences from quantitative case-study data.

Pills

Figure 1 . Antipsychotics are the treatment of choice in managing schizophrenia and other psychotic disorders. Several major trials have been conducted examining the clinical difference between typical antipsychotics and atypical antipsychotics and how the selection may affect the quality of life.

The single-case experimental design  (sometimes called  single-participant research designs ), is particularly useful for studies of treatment effectiveness.  In  single-case experimental designs ,  the same  research participant  serves as the subject in both the experimental and control conditions.  One of the most common forms of the single-case experimental design is the A-B-A-B design, or  reversal design ,  reflecting the alternation between conditions, or phases A and B. The  AB design is a two-part or phase design composed of a baseline (“A” phase) with no changes, and a treatment or intervention (“B”) phase.  If there is a change, then the treatment may be said to have had an effect. However, it is subject to many possible competing hypotheses, making strong conclusions difficult. The A-B-A-B design, or reversal design, is a variant on the AB design. It introduces ways to control for the competing hypotheses and allows for stronger conclusions. T he reversal design (ABAB) is the most powerful of the single-subject research designs because it shows a strong reversal from baseline (“A”) to treatment (“B”) and back again. In an ABAB design, researchers observe behaviors in the “A” phase, institute treatment in the “B” phase, and then repeat the process. If the variable returns to baseline measure without treatment and then resumes its effects when reapplied, the researcher can have greater confidence in the efficacy of that treatment. However, many interventions cannot be reversed for ethical reasons (e.g., involving self-injurious behavior like smoking).  It may be unethical to end an experiment on a baseline measure if the treatment is self-sustaining and highly beneficial and/or related to health. Control condition participants may also deserve the benefits of research once all data has been collected. It is a researcher’s ethical duty to maximize benefits and to ensure that all participants have access to those benefits when possible.

File:A-B-A-B Design.png

Figure 2. The investigator looks for evidence that the change in the observed behavior occurred coincident with treatment. If the problem behavior declines whenever treatment is introduced (during the first and second treatment phases) but returns (is “reversed”) to baseline levels during the reversal phase, the experimenter can be reasonably confident the treatment had the intended effect.

Link to Learning: Famous Case Studies

Some well-known case studies that related to abnormal psychology include the following:

  • Harlow— Phineas Gage
  • Breuer & Freud (1895)— Anna O.
  • Cleckley’s case studies: on psychopathy ( The Mask of Sanity ) (1941) and multiple personality disorder ( The Three Faces of Eve ) (1957)
  • Freud and  Little Hans
  • Freud and the  Rat Man
  • John Money and the  John/Joan case
  • Genie (feral child)
  • Piaget’s studies
  • Rosenthal’s book on the  murder of Kitty Genovese
  • Washoe (sign language)
  • Patient H.M.

Naturalistic Observation

If you want to understand how behavior occurs, one of the best ways to gain information is to simply observe the behavior in its natural context. However, people might change their behavior in unexpected ways if they know they are being observed. How do researchers obtain accurate information when people tend to hide their natural behavior? As an example, imagine that your professor asks everyone in your class to raise their hand if they always wash their hands after using the restroom. Chances are that almost everyone in the classroom will raise their hand, but do you think hand washing after every trip to the restroom is really that universal?

This is very similar to the phenomenon mentioned earlier in this module: many individuals do not feel comfortable answering a question honestly. But if we are committed to finding out the facts about handwashing, we have other options available to us.

Suppose we send a researcher to a school playground to observe how aggressive or socially anxious children interact with peers. Will our observer blend into the playground environment by wearing a white lab coat, sitting with a clipboard, and staring at the swings? We want our researcher to be inconspicuous and unobtrusively positioned—perhaps pretending to be a school monitor while secretly recording the relevant information. This type of observational study is called naturalistic observation : observing behavior in its natural setting. To better understand peer exclusion, Suzanne Fanger collaborated with colleagues at the University of Texas to observe the behavior of preschool children on a playground. How did the observers remain inconspicuous over the duration of the study? They equipped a few of the children with wireless microphones (which the children quickly forgot about) and observed while taking notes from a distance. Also, the children in that particular preschool (a “laboratory preschool”) were accustomed to having observers on the playground (Fanger, Frankel, & Hazen, 2012).

woman in black leather jacket sitting on concrete bench

Figure 3 . In naturalistic observation, psychologists take their research into the streets, homes, restaurants, schools, and other settings where behavior can be directly observed.

It is critical that the observer be as unobtrusive and as inconspicuous as possible: when people know they are being watched, they are less likely to behave naturally. For example, psychologists have spent weeks observing the behavior of homeless people on the streets, in train stations, and bus terminals. They try to ensure that their naturalistic observations are unobtrusive, so as to minimize interference with the behavior they observe. Nevertheless, the presence of the observer may distort the behavior that is observed, and this must be taken into consideration (Figure 1).

The greatest benefit of naturalistic observation is the validity, or accuracy, of information collected unobtrusively in a natural setting. Having individuals behave as they normally would in a given situation means that we have a higher degree of ecological validity, or realism, than we might achieve with other research approaches. Therefore, our ability to generalize the findings of the research to real-world situations is enhanced. If done correctly, we need not worry about people modifying their behavior simply because they are being observed. Sometimes, people may assume that reality programs give us a glimpse into authentic human behavior. However, the principle of inconspicuous observation is violated as reality stars are followed by camera crews and are interviewed on camera for personal confessionals. Given that environment, we must doubt how natural and realistic their behaviors are.

The major downside of naturalistic observation is that they are often difficult to set up and control. Although something as simple as observation may seem like it would be a part of all research methods, participant observation is a distinct methodology that involves the researcher embedding themselves into a group in order to study its dynamics. For example, Festinger, Riecken, and Shacter (1956) were very interested in the psychology of a particular cult. However, this cult was very secretive and wouldn’t grant interviews to outside members. So, in order to study these people, Festinger and his colleagues pretended to be cult members, allowing them access to the behavior and psychology of the cult. Despite this example, it should be noted that the people being observed in a participant observation study usually know that the researcher is there to study them. [1]

Another potential problem in observational research is observer bias . Generally, people who act as observers are closely involved in the research project and may unconsciously skew their observations to fit their research goals or expectations. To protect against this type of bias, researchers should have clear criteria established for the types of behaviors recorded and how those behaviors should be classified. In addition, researchers often compare observations of the same event by multiple observers, in order to test inter-rater reliability : a measure of reliability that assesses the consistency of observations by different observers.

Often, psychologists develop surveys as a means of gathering data. Surveys are lists of questions to be answered by research participants, and can be delivered as paper-and-pencil questionnaires, administered electronically, or conducted verbally (Figure 3). Generally, the survey itself can be completed in a short time, and the ease of administering a survey makes it easy to collect data from a large number of people.

Surveys allow researchers to gather data from larger samples than may be afforded by other research methods . A sample is a subset of individuals selected from a population , which is the overall group of individuals that the researchers are interested in. Researchers study the sample and seek to generalize their findings to the population.

A sample online survey reads, “Dear visitor, your opinion is important to us. We would like to invite you to participate in a short survey to gather your opinions and feedback on your news consumption habits. The survey will take approximately 10-15 minutes. Simply click the “Yes” button below to launch the survey. Would you like to participate?” Two buttons are labeled “yes” and “no.”

Figure 4 . Surveys can be administered in a number of ways, including electronically administered research, like the survey shown here. (credit: Robert Nyman)

There is both strength and weakness in surveys when compared to case studies. By using surveys, we can collect information from a larger sample of people. A larger sample is better able to reflect the actual diversity of the population, thus allowing better generalizability. Therefore, if our sample is sufficiently large and diverse, we can assume that the data we collect from the survey can be generalized to the larger population with more certainty than the information collected through a case study. However, given the greater number of people involved, we are not able to collect the same depth of information on each person that would be collected in a case study.

Another potential weakness of surveys is something we touched on earlier in this module: people do not always give accurate responses. They may lie, misremember, or answer questions in a way that they think makes them look good. For example, people may report drinking less alcohol than is actually the case.

Any number of research questions can be answered through the use of surveys. One real-world example is the research conducted by Jenkins, Ruppel, Kizer, Yehl, and Griffin (2012) about the backlash against the U.S. Arab-American community following the terrorist attacks of September 11, 2001. Jenkins and colleagues wanted to determine to what extent these negative attitudes toward Arab-Americans still existed nearly a decade after the attacks occurred. In one study, 140 research participants filled out a survey with 10 questions, including questions asking directly about the participant’s overt prejudicial attitudes toward people of various ethnicities. The survey also asked indirect questions about how likely the participant would be to interact with a person of a given ethnicity in a variety of settings (such as, “How likely do you think it is that you would introduce yourself to a person of Arab-American descent?”). The results of the research suggested that participants were unwilling to report prejudicial attitudes toward any ethnic group. However, there were significant differences between their pattern of responses to questions about social interaction with Arab-Americans compared to other ethnic groups: they indicated less willingness for social interaction with Arab-Americans compared to the other ethnic groups. This suggested that the participants harbored subtle forms of prejudice against Arab-Americans, despite their assertions that this was not the case (Jenkins et al., 2012).

Think iT Over

Research has shown that parental depressive symptoms are linked to a number of negative child outcomes. A classmate of yours is interested in  the associations between parental depressive symptoms and actual child behaviors in everyday life [2] because this associations remains largely unknown. After reading this section, what do you think is the best way to better understand such associations? Which method might result in the most valid data?

A-B-A-B design:  an experimental design in which the a person is given treatment, or experimental condition (B), to compare against the baseline (A), and this repeats in order to determine effectiveness

clinical or case study:  observational research study focusing on one or a few people

correlational research:  tests whether a relationship exists between two or more variables

descriptive research:  research studies that do not test specific relationships between variables; they are used to describe general or specific behaviors and attributes that are observed and measured

experimental research:  tests a hypothesis to determine cause-and-effect relationships

generalizability:  inferring that the results for a sample apply to the larger population

inter-rater reliability:  measure of agreement among observers on how they record and classify a particular event

naturalistic observation:  observation of behavior in its natural setting

observer bias:  when observations may be skewed to align with observer expectations

population:  overall group of individuals that the researchers are interested in

sample:  subset of individuals selected from the larger population

single-case experimental design:   when the same  research participant  serves as the subject in both the experimental and control conditions

survey:  list of questions to be answered by research participants—given as paper-and-pencil questionnaires, administered electronically, or conducted verbally—allowing researchers to collect data from a large number of people

  • Scollon, C. N. (2020). Research designs. In R. Biswas-Diener & E. Diener (Eds), Noba textbook series: Psychology. Champaign, IL: DEF publishers. Retrieved from http://noba.to/acxb2thy ↵
  • Slatcher, R. B., & Trentacosta, C. J. (2011). A naturalistic observation study of the links between parental depressive symptoms and preschoolers' behaviors in everyday life. Journal of family psychology : JFP : journal of the Division of Family Psychology of the American Psychological Association (Division 43), 25(3), 444–448. https://doi.org/10.1037/a0023728 ↵
  • Modification and adaptation. Authored by : Sonja Ann Miller for Lumen Learning. Provided by : Lumen Learning. License : CC BY-SA: Attribution-ShareAlike
  • Approaches to Research. Authored by : OpenStax College. Located at : http://cnx.org/contents/[email protected]:iMyFZJzg@5/Approaches-to-Research . License : CC BY: Attribution . License Terms : Download for free at http://cnx.org/contents/[email protected]
  • Descriptive Research. Provided by : Boundless. Located at : https://www.boundless.com/psychology/textbooks/boundless-psychology-textbook/researching-psychology-2/types-of-research-studies-27/descriptive-research-124-12659/ . License : CC BY-SA: Attribution-ShareAlike
  • Case Study. Provided by : Wikipedia. Located at : https://en.wikipedia.org/wiki/Case_study . License : CC BY-SA: Attribution-ShareAlike
  • Rat man. Provided by : Wikipedia. Located at : https://en.wikipedia.org/wiki/Rat_Man#Legacy . License : CC BY-SA: Attribution-ShareAlike
  • Case study in psychology. Provided by : Wikipedia. Located at : https://en.wikipedia.org/wiki/Case_study_in_psychology . License : CC BY-SA: Attribution-ShareAlike
  • Research Designs. Authored by : Christie Napa Scollon. Provided by : Singapore Management University. Located at : https://nobaproject.com/modules/research-designs#reference-6 . Project : The Noba Project. License : CC BY-NC-SA: Attribution-NonCommercial-ShareAlike
  • Single subject design. Provided by : Wikipedia. Located at : https://en.wikipedia.org/wiki/Single-subject_design . License : CC BY-SA: Attribution-ShareAlike
  • Single subject research. Provided by : Wikipedia. Located at : https://en.wikipedia.org/wiki/Single-subject_research#A-B-A-B . License : Public Domain: No Known Copyright
  • Pills. Authored by : qimono. Provided by : Pixabay. Located at : https://pixabay.com/illustrations/pill-capsule-medicine-medical-1884775/ . License : CC0: No Rights Reserved
  • ABAB Design. Authored by : Doc. Yu. Provided by : Wikimedia. Located at : https://commons.wikimedia.org/wiki/File:A-B-A-B_Design.png . License : CC BY-SA: Attribution-ShareAlike

Footer Logo Lumen Waymaker

AD Center Site Banner

  • Section 2: Home
  • Developing the Quantitative Research Design
  • Qualitative Descriptive Design
  • Design and Development Research (DDR) For Instructional Design
  • Qualitative Narrative Inquiry Research
  • Action Research Resource
  • Case Study Design in an Applied Doctorate

Qualitative Research Designs

Case study design, using case study design in the applied doctoral experience (ade), applicability of case study design to applied problem of practice, case study design references.

  • SAGE Research Methods
  • Research Examples (SAGE) This link opens in a new window
  • Dataset Examples (SAGE) This link opens in a new window
  • IRB Resource Center This link opens in a new window

The field of qualitative research there are a number of research designs (also referred to as “traditions” or “genres”), including case study, phenomenology, narrative inquiry, action research, ethnography, grounded theory, as well as a number of critical genres including Feminist theory, indigenous research, critical race theory and cultural studies. The choice of research design is directly tied to and must be aligned with your research problem and purpose. As Bloomberg & Volpe (2019) explain:

Choice of research design is directly tied to research problem and purpose. As the researcher, you actively create the link among problem, purpose, and design through a process of reflecting on problem and purpose, focusing on researchable questions, and considering how to best address these questions. Thinking along these lines affords a research study methodological congruence (p. 38).

Case study is an in-depth exploration from multiple perspectives of a bounded social phenomenon, be this a social system such as a program, event, institution, organization, or community (Stake, 1995, 2005; Yin, 2018). Case study is employed across disciplines, including education, health care, social work, sociology, and organizational studies. The purpose is to generate understanding and deep insights to inform professional practice, policy development, and community or social action (Bloomberg 2018).

Yin (2018) and Stake (1995, 2005), two of the key proponents of case study methodology, use different terms to describe case studies. Yin categorizes case studies as exploratory or descriptive . The former is used to explore those situations in which the intervention being evaluated has no clear single set of outcomes. The latter is used to describe an intervention or phenomenon and the real-life context in which it occurred. Stake identifies case studies as intrinsic or instrumental , and he proposes that a primary distinction in designing case studies is between single and multiple (or collective) case study designs. A single case study may be an instrumental case study (research focuses on an issue or concern in one bounded case) or an intrinsic case study (the focus is on the case itself because the case presents a unique situation). A longitudinal case study design is chosen when the researcher seeks to examine the same single case at two or more different points in time or to capture trends over time. A multiple case study design is used when a researcher seeks to determine the prevalence or frequency of a particular phenomenon. This approach is useful when cases are used for purposes of a cross-case analysis in order to compare, contrast, and synthesize perspectives regarding the same issue. The focus is on the analysis of diverse cases to determine how these confirm the findings within or between cases, or call the findings into question.

Case study affords significant interaction with research participants, providing an in-depth picture of the phenomenon (Bloomberg & Volpe, 2019). Research is extensive, drawing on multiple methods of data collection, and involves multiple data sources. Triangulation is critical in attempting to obtain an in-depth understanding of the phenomenon under study and adds rigor, breadth, and depth to the study and provides corroborative evidence of the data obtained. Analysis of data can be holistic or embedded—that is, dealing with the whole or parts of the case (Yin, 2018). With multiple cases the typical analytic strategy is to provide detailed description of themes within each case (within-case analysis), followed by thematic analysis across cases (cross-case analysis), providing insights regarding how individual cases are comparable along important dimensions. Research culminates in the production of a detailed description of a setting and its participants, accompanied by an analysis of the data for themes or patterns (Stake, 1995, 2005; Yin, 2018). In addition to thick, rich description, the researcher’s interpretations, conclusions, and recommendations contribute to the reader’s overall understanding of the case study.

Analysis of findings should show that the researcher has attended to all the data, should address the most significant aspects of the case, and should demonstrate familiarity with the prevailing thinking and discourse about the topic. The goal of case study design (as with all qualitative designs) is not generalizability but rather transferability —that is, how (if at all) and in what ways understanding and knowledge can be applied in similar contexts and settings. The qualitative researcher attempts to address the issue of transferability by way of thick, rich description that will provide the basis for a case or cases to have relevance and potential application across a broader context.

Qualitative research methods ask the questions of "what" and "how" a phenomenon is understood in a real-life context (Bloomberg & Volpe, 2019). In the education field, qualitative research methods uncover educational experiences and practices because qualitative research allows the researcher to reveal new knowledge and understanding. Moreover, qualitative descriptive case studies describe, analyze and interpret events that explain the reasoning behind specific phenomena (Bloomberg, 2018). As such, case study design can be the foundation for a rigorous study within the Applied Doctoral Experience (ADE).

Case study design is an appropriate research design to consider when conceptualizing and conducting a dissertation research study that is based on an applied problem of practice with inherent real-life educational implications. Case study researchers study current, real-life cases that are in progress so that they can gather accurate information that is current. This fits well with the ADE program, as students are typically exploring a problem of practice. Because of the flexibility of the methods used, a descriptive design provides the researcher with the opportunity to choose data collection methods that are best suited to a practice-based research purpose, and can include individual interviews, focus groups, observation, surveys, and critical incident questionnaires. Methods are triangulated to contribute to the study’s trustworthiness. In selecting the set of data collection methods, it is important that the researcher carefully consider the alignment between research questions and the type of data that is needed to address these. Each data source is one piece of the “puzzle,” that contributes to the researcher’s holistic understanding of a phenomenon. The various strands of data are woven together holistically to promote a deeper understanding of the case and its application to an educationally-based problem of practice.

Research studies within the Applied Doctoral Experience (ADE) will be practical in nature and focus on problems and issues that inform educational practice.  Many of the types of studies that fall within the ADE framework are exploratory, and align with case study design. Case study design fits very well with applied problems related to educational practice, as the following set of examples illustrate:

Elementary Bilingual Education Teachers’ Self-Efficacy in Teaching English Language Learners: A Qualitative Case Study

The problem to be addressed in the proposed study is that some elementary bilingual education teachers’ beliefs about their lack of preparedness to teach the English language may negatively impact the language proficiency skills of Hispanic ELLs (Ernst-Slavit & Wenger, 2016; Fuchs et al., 2018; Hoque, 2016). The purpose of the proposed qualitative descriptive case study was to explore the perspectives and experiences of elementary bilingual education teachers regarding their perceived lack of preparedness to teach the English language and how this may impact the language proficiency of Hispanic ELLs.

Exploring Minority Teachers Experiences Pertaining to their Value in Education: A Single Case Study of Teachers in New York City

The problem is that minority K-12 teachers are underrepresented in the United States, with research indicating that school leaders and teachers in schools that are populated mainly by black students, staffed mostly by white teachers who may be unprepared to deal with biases and stereotypes that are ingrained in schools (Egalite, Kisida, & Winters, 2015; Milligan & Howley, 2015). The purpose of this qualitative exploratory single case study was to develop a clearer understanding of minority teachers’ experiences concerning the under-representation of minority K-12 teachers in urban school districts in the United States since there are so few of them.

Exploring the Impact of an Urban Teacher Residency Program on Teachers’ Cultural Intelligence: A Qualitative Case Study

The problem to be addressed by this case study is that teacher candidates often report being unprepared and ill-equipped to effectively educate culturally diverse students (Skepple, 2015; Beutel, 2018). The purpose of this study was to explore and gain an in-depth understanding of the perceived impact of an urban teacher residency program in urban Iowa on teachers’ cultural competence using the cultural intelligence (CQ) framework (Earley & Ang, 2003).

Qualitative Case Study that Explores Self-Efficacy and Mentorship on Women in Academic Administrative Leadership Roles

The problem was that female school-level administrators might be less likely to experience mentorship, thereby potentially decreasing their self-efficacy (Bing & Smith, 2019; Brown, 2020; Grant, 2021). The purpose of this case study was to determine to what extent female school-level administrators in the United States who had a mentor have a sense of self-efficacy and to examine the relationship between mentorship and self-efficacy.

Suburban Teacher and Administrator Perceptions of Culturally Responsive Teaching to Promote Connectedness in Students of Color: A Qualitative Case Study

The problem to be addressed in this study is the racial discrimination experienced by students of color in suburban schools and the resulting negative school experience (Jara & Bloomsbury, 2020; Jones, 2019; Kohli et al., 2017; Wandix-White, 2020). The purpose of this case study is to explore how culturally responsive practices can counteract systemic racism and discrimination in suburban schools thereby meeting the needs of students of color by creating positive learning experiences. 

As you can see, all of these studies were well suited to qualitative case study design. In each of these studies, the applied research problem and research purpose were clearly grounded in educational practice as well as directly aligned with qualitative case study methodology. In the Applied Doctoral Experience (ADE), you will be focused on addressing or resolving an educationally relevant research problem of practice. As such, your case study, with clear boundaries, will be one that centers on a real-life authentic problem in your field of practice that you believe is in need of resolution or improvement, and that the outcome thereof will be educationally valuable.

Bloomberg, L. D. (2018). Case study method. In B. B. Frey (Ed.), The SAGE Encyclopedia of educational research, measurement, and evaluation (pp. 237–239). SAGE. https://go.openathens.net/redirector/nu.edu?url=https%3A%2F%2Fmethods.sagepub.com%2FReference%2Fthe-sage-encyclopedia-of-educational-research-measurement-and-evaluation%2Fi4294.xml

Bloomberg, L. D. & Volpe, M. (2019). Completing your qualitative dissertation: A road map from beginning to end . (4th Ed.). SAGE.

Stake, R. E. (1995). The art of case study research. SAGE.

Stake, R. E. (2005). Qualitative case studies. In N. K. Denzin and Y. S. Lincoln (Eds.), The SAGE handbook of qualitative research (3rd ed., pp. 443–466). SAGE.

Yin, R. (2018). Case study research and applications: Designs and methods. SAGE.

  • << Previous: Action Research Resource
  • Next: SAGE Research Methods >>
  • Last Updated: Jul 28, 2023 8:05 AM
  • URL: https://resources.nu.edu/c.php?g=1013605

National University

© Copyright 2024 National University. All Rights Reserved.

Privacy Policy | Consumer Information

Supporting customer care and analytics with personal AI assistant: : Case study of a food wholesale industry

New citation alert added.

This alert has been successfully added and will be sent to:

You will be notified whenever a record that you have chosen has been cited.

To manage your alert preferences, click on the button below.

New Citation Alert!

Please log in to your account

Information & Contributors

Bibliometrics & citations, view options, recommendations, customization rule generation for electronic sales promotion system in wholesale industry.

In a sales promotion task, suppliers prepare and present the sales promotion proposal plans for negotiating with retailer's buyers what commodities they should sell.For automating the sales promotion tasks, a B-to-B EC system using a one-to-one ...

A Customer Management Dilemma: When Is It Profitable to Reward One's Own Customers?

This study attempts to answer a basic customer management dilemma facing firms: when should the firm use behavior-based pricing BBP to discriminate between its own and competitors' customers in a competitive market? If BBP is profitable, when should the ...

Hybrid intelligence in procurement: Disillusionment with AI’s superiority?

Despite the numerous benefits of general artificial intelligence applications, there are challenges in its introduction and implementation. This paper examines the limits of artificial intelligence and the capabilities of so-called ...

  • Interplay between artificial intelligence and human intelligence in procurement.

Information

Published in.

Elsevier Science Publishers B. V.

Netherlands

Publication History

Author tags.

  • Artificial Intelligence
  • Personal AI Assistant
  • Customer Care
  • Sales Process
  • Wholesale Industry
  • Research-article

Contributors

Other metrics, bibliometrics, article metrics.

  • 0 Total Citations
  • 0 Total Downloads
  • Downloads (Last 12 months) 0
  • Downloads (Last 6 weeks) 0

View options

Login options.

Check if you have access through your login credentials or your institution to get full access on this article.

Full Access

Share this publication link.

Copying failed.

Share on social media

Affiliations, export citations.

  • Please download or close your previous search result export first before starting a new bulk export. Preview is not available. By clicking download, a status dialog will open to start the export process. The process may take a few minutes but once it finishes a file will be downloadable from your browser. You may continue to browse the DL while the export process is in progress. Download
  • Download citation
  • Copy citation

We are preparing your search results for download ...

We will inform you here when the file is ready.

Your file of search results citations is now ready.

Your search export query has expired. Please try again.

Remote sensing imagery to predict soybean yield: a case study of vegetation indices contribution

  • Published: 27 July 2024

Cite this article

importance of descriptive case study

  • Lucas R. Amaral   ORCID: orcid.org/0000-0001-8071-4449 1 ,
  • Henrique Oldoni   ORCID: orcid.org/0000-0003-3862-003X 2 ,
  • Gustavo M. M. Baptista   ORCID: orcid.org/0000-0002-1973-2725 3 ,
  • Gustavo H. S. Ferreira   ORCID: orcid.org/0000-0001-7841-2767 4 ,
  • Rodrigo G. Freitas   ORCID: orcid.org/0000-0002-9787-2678 1 ,
  • Cenneya L. Martins   ORCID: orcid.org/0000-0002-4585-2739 1 ,
  • Isabella A. Cunha   ORCID: orcid.org/0000-0002-4004-3406 1 &
  • Adão F. Santos   ORCID: orcid.org/0000-0003-3405-5360 5  

Explore all metrics

Mapping the spatial variability of crops is critical for precision agriculture. In this sense, remote sensing is a key technology generally dependent on the result of vegetation indices (VIs). Therefore, investigating the sensitivity of VIs and their contribution toward explaining crop variability and assisting in predicting yield is one of the pathways scientific research needs to explore. In this study, we evaluated 12 VIs with different acquisition principles in four soybean-producing fields. Using these VIs proved to be interesting to increase the performance of yield prediction models using the Randon Forest algorithm. However, simply adding VIs to the model is not enough; these VIs must aggregate information on crop variability. Some VIs are calculated based on the variation of the scene under study, and these can be an interesting option to complement the information provided by more traditional VIs, such as NDVI, assisting in predictive models, even if their direct correlation with crop yield is low in some situations. We found that using VIs groups with the same acquisition principle in isolation did not allow reaching performance of models that contained more than one principle simultaneously. In this study, the CI and TC2 indices stood out. Thus, associating VIs with different acquisition principles and, consequently, capturing different responses to variability in vegetation vigor and canopy structure is more important than the number of predictor variables itself.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save.

  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime

Price includes VAT (Russian Federation)

Instant access to the full article PDF.

Rent this article via DeepDyve

Institutional subscriptions

importance of descriptive case study

Data availability

The data used in this research can be made available through direct request to the corresponding author.

Ali, A., Martelli, R., Lupia, F., & Barbanti, L. (2019). Assessing multiple years’ spatial variability of crop yields using satellite vegetation indices. Remote Sensing , 11 , 2384. https://doi.org/10.3390/RS11202384 .

Article   Google Scholar  

Bahrami, H., McNairn, H., Mahdianpari, M., & Homayouni, S. (2022). A meta-analysis of remote sensing technologies and methodologies for crop characterization. Remote Sensing , 14 , 5633. https://doi.org/10.3390/rs14225633 .

Baptista, G. M. M. (2015). Aplicação do Índice de Vegetação por Profundidade de Feição Espectral (SFDVI - Spectral Feature Depth Vegetation Index) em dados RapidEye (Application of Spectral Feature Depth Vegetation Index (SFDVI) to RapidEye data). In: proceedings of the XVII Simpósio Brasileiro de Sensoriamento Remoto – SBSR. INPE, João Pessoa, PB, Brazil, pp 2277–2284.

Crusiol, L. G. T., Nanni, M. R., Furlanetto, R. H., Sibaldelli, R. N. R., Cezar, E., Sun, L., Foloni, J. S. S., Mertz-Henning, L. M., Nepomuceno, A. L., Neumaier, N., & Farias, J. R. B. (2021). Yield prediction in soybean crop grown under different levels of water availability using reflectance spectroscopy and partial least squares regression. Remote Sensing , 13 , 977. https://doi.org/10.3390/rs13050977 .

Demmel, M. (2013). Site-Specific Recording of yields. In H. J. Heege (Ed.), Precision in Crop Farming - Site specific concepts and sensing methods: Applications and results . Springer. https://doi.org/10.1007/978-94-007-6760-7 .

Ding, Y., Zhao, K., Zheng, X., & Jiang, T. (2014). Temporal dynamics of spatial heterogeneity over cropland quantified by time-series NDVI, near infrared and red reflectance of Landsat 8 OLI imagery. International Journal of Applied Earth Observation and Geoinformation , 30 , 139–145. https://doi.org/10.1016/j.jag.2014.01.009 .

Dray, S., & Dufour, A. (2007). The ade4 Package: Implementing the duality diagram for ecologists. Journal of Statistical Software , 22 (4), 1–20. https://doi.org/10.18637/jss.v022.i04 .

Figueiredo, G. K. D. A., Brunsell, N. A., Rocha, J. V., Lamparelli, R. A. C., & Picoli, M. C. A. (2016). Using temporal stability to estimate soya bean yield: A case study in Paraná state, Brazil. International Journal of Remote Sensing , 37 (5), 1223–1242. https://doi.org/10.1080/01431161.2016.1148280 .

Filippi, P., Jones, E. J., Wimalathunge, N. S., Somarathna, P. S. S. N., Pozza, L. E., Ugbaje, S. U., Jephcott, T. G., Paterson, S. E., Whelan, B. M., & Bishop, T. F. A. (2019). An approach to forecast grain crop yield using multi-layered, multi-farm data sets and machine learning. Precision Agriculture , 20 (5), 1115–1029. https://doi.org/10.1007/s11119-018-09628-4 .

Gebbers, R., & Adamchuk, V. I. (2010). Precision Agriculture and Food Security. Science , 327 , 828–831. https://doi.org/10.1126/science.1183899 .

Article   CAS   PubMed   Google Scholar  

Jin, S., & Sader, S. A. (2005). Comparison of time series tasseled cap wetness and the normalized difference moisture index in detecting forest disturbances. Remote Sensing of Environment , 94 , 364–372. https://doi.org/10.1016/j.rse.2004.10.012 .

Kauth, R. J., & Thomas, G. S. (1976). The Tasselled Cap - a graphic description of the spectral-temporal development of agricultural crops as seen by Landsat. In: Proceedings of Symposium on Machine Processing of Remotely Sensed Data. Purdue University: West Lafayette, IN, USA, pp 41–51.

Kayad, A., Sozzi, M., Gatto, S., Marinello, F., & Pirotti, F. (2019). Monitoring within-field variability of corn yield using Sentinel-2 and machine learning techniques. Remote Sensing , 11 , 2873. https://doi.org/10.3390/RS11232873 .

Kross, A., Znoj, E., Callegari, D., Kaur, G., Sunohara, M., Lapen, D. R., & McNairn, H. (2020). Using artificial neural networks and remotely sensed data to evaluate the relative importance of variables for prediction of within-field corn and soybean yields. Remote Sensing , 12 , 2230. https://doi.org/10.3390/rs12142230 .

Kumar, C., Mubvumba, P., Huang, Y., Dhillon, J., & Reddy, K. (2023). Multi-stage corn yield prediction using high-resolution UAV multispectral data and machine learning models. Agronomy , 13 , 1277. https://doi.org/10.3390/agronomy13051277 .

Leroux, C., Jones, H., Clenet, A., Dreux, B., Becu, M., & Tysseyre, B. (2018). A general method to filter out defective spatial observations from yield mapping datasets. Precision Agriculture , 18 , 789–808. https://doi.org/10.1007/s11119-017-9555-0 .

Li, F., Miao, Y., Feng, G., Yuan, F., Yue, S., Gao, X., Liu, Y., Liu, B., Ustin, S. L., & Chen, X. (2014). Improving estimation of summer maize nitrogen status with red edge-based spectral vegetation indices. Field Crops Research , 157 , 111–123. https://doi.org/10.1016/j.fcr.2013.12.018 .

Lobell, D. B. (2013). The use of satellite data for crop yield gap analysis. Field Crops Research , 143 , 56–64. https://doi.org/10.1016/j.fcr.2012.08.008 .

Maldaner, L. F., Molin, J. P., & Spekken, M. (2022). Methodology to filter out outliers in high spatial density data to improve maps reliability. Scientia Agricola , 79 , e20200178. https://doi.org/10.1590/1678-992X-2020-0178 .

Masino, A., Rugeroni, P., Borrás, L., & Rotundo, J. L. (2018). Spatial and temporal plant-to-plant variability effects on soybean yield. European Journal of Agronomy , 98 , 14–24. https://doi.org/10.1016/j.eja.2018.02.006 .

Pagano, M. C., & Miransari, M. (2016). The importance of soybean production worldwide. In: Abiotic and Biotic Stresses in Soybean Production: Soybean Production: Volume 5, pp. 1–26. Elsevier. https://doi.org/10.1016/B978-0-12-801536-0.00001-3 .

Peng, Y., Nguy-Robertson, A., Arkebauer, T., & Gitelson, A. A. (2017). Assessment of canopy chlorophyll content retrieval in maize and soybean: Implications of hysteresis on the development of generic algorithms. Remote Sensing , 9 , 226. https://doi.org/10.3390/rs9030226 .

Richardson, A. J., & Wiegand, C. L. (1977). Distinguishing vegetation from soil background information. Photogrammetric Engineering and Remote Sensing , 43 , 1541–1552.

Google Scholar  

Sishodia, R. P., Ray, R. L., & Singh, S. K. (2020). Applications of remote sensing in precision agriculture: A review. Remote Sensing , 12 , 3136. https://doi.org/10.3390/rs12193136 .

Skakun, S., Kalecinski, N. I., Brown, M. G. L., Johnson, D. M., Vermote, E. F., Roger, J. C., & Franch, B. (2021). Assessing within-field corn and soybean yield variability from WorldView-3, Planet, Sentinel-2, and Landsat 8 satellite imagery. Remote Sensing , 13 , 872. https://doi.org/10.3390/RS13050872 .

Snoek, J., Larochelle, H., Adams, R. P., Pereira, F., Burges, C. J. C., Bottou, L., & Weinberger, K. Q. (2012). Practical Bayesian optimization of machine learning algorithms. Advances in neural information processing systems, arXiv . https://doi.org/10.48550/arXiv.1206.2944 .

Tavakoli, H., Mohtasebi, S. S., Alimardani, R., & Gebbers, R. (2014). Evaluation of different sensing approaches concerning to nondestructive estimation of leaf area index (LAI) for winter wheat. International Journal on Smart Sensing and Intelligent Systems , 7 (1), 337–359. https://doi.org/10.34657/4497 .

Tesfaye, A. A., & Awoke, B. G. (2021). Evaluation of the saturation property of vegetation indices derived from Sentinel-2 in mixed crop-forest ecosystem. Spatial Information Research , 29 , 109–121. https://doi.org/10.1007/s41324-020-00339-5 .

Viña, A., Gitelson, A. A., Nguy-Robertson, A. L., & Peng, Y. (2011). Comparison of different vegetation indices for the remote assessment of green leaf area index of crops. Remote Sensing of Environment , 115 , 3468–3478. https://doi.org/10.1016/j.rse.2011.08.010 .

Wang, Q., Adiku, S., Tenhunen, J., & Granier, A. (2005). On the relationship of NDVI with leaf area index in a deciduous forest site. Remote Sensing of Environment , 94 , 244–255. https://doi.org/10.1016/j.rse.2004.10.006 .

Weiss, M., Jacob, F., & Duveiller, G. (2020). Remote sensing for agricultural applications: A meta-review. Remote Sensing of Environment , 236 , 111402. https://doi.org/10.1016/j.rse.2019.111402 .

Xue, J., & Su, B. (2017). Significant remote sensing vegetation indices: A review of developments and applications. Journal of Sensors , 2017,1353691. https://doi.org/10.1155/2017/1353691 .

Yu, L., Shang, J., Cheng, Z., Gao, Z., Wang, Z., Tian, L., et al. (2020). Assessment of cornfield LAI retrieved from multi-source satellite data using continuous field LAI measurements based on a wireless sensor network. Remote Sensing , 12 (20), 3304. https://doi.org/10.3390/rs12203304 .

Download references

Acknowledgements

The authors would like to thank everyone who collaborated in data collection and field experiments at the four study sites.

This research was funded by São Paulo Research Foundation - FAPESP (Process number 2022/03160-8). The first author has a B-level productivity grant by CNPq – Brazil (306867/2022-2).

Author information

Authors and affiliations.

School of Agricultural Engineering, Universidade Estadual de Campinas - UNICAMP, Campinas, SP, Brazil

Lucas R. Amaral, Rodrigo G. Freitas, Cenneya L. Martins & Isabella A. Cunha

Interdisciplinary Center of Energy Planning, Universidade Estadual de Campinas – UNICAMP, Campinas, SP, Brazil

Henrique Oldoni

Geoscience Institute, University of Brasília, Brasília, DF, Brazil

Gustavo M. M. Baptista

Department of Geography, University of Brasília, Brasília, DF, Brazil

Gustavo H. S. Ferreira

Lavras School of Agricultural Sciences, Federal University of Lavras, Lavras, MG, Brazil

Adão F. Santos

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Lucas R. Amaral .

Ethics declarations

Competing interests.

The authors declare no conflict of interest.

Additional information

Publisher’s note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Amaral, L.R., Oldoni, H., Baptista, G.M.M. et al. Remote sensing imagery to predict soybean yield: a case study of vegetation indices contribution. Precision Agric (2024). https://doi.org/10.1007/s11119-024-10174-5

Download citation

Accepted : 15 July 2024

Published : 27 July 2024

DOI : https://doi.org/10.1007/s11119-024-10174-5

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Remote sensing
  • Yield mapping
  • Crop variability
  • Vegetation index
  • Find a journal
  • Publish with us
  • Track your research
  • Open access
  • Published: 28 July 2024

Assessing self-reported public health emergency competencies for civil aviation personnel in China: a pilot study

  • Zuokun Liu 1 ,
  • Yixin Li 2 ,
  • Zhuo Li 3 , 4 ,
  • Jingya Dong 1 ,
  • Huan Yu 2 &
  • Hui Yin 1 , 5 , 6  

BMC Public Health volume  24 , Article number:  2014 ( 2024 ) Cite this article

Metrics details

Introduction

COVID-19 has demonstrated the importance of competent staff with expertise in public health emergency preparedness and response in the civil aviation system. The civil aviation system is a critical sentinel and checkpoint to prevent imported cases and slow the spread of communicable diseases. Understanding the current competencies of staff to deal with public health emergencies will help government agencies develop targeted training and evidence-based policies to improve their public health preparedness and response capabilities.

This cross-sectional pilot study was conducted from November 2022 to October 2023, involving 118 staff members from various positions within China’s civil aviation system. A 59-item questionnaire was translated and developed according to a competency profile. Data were collected using the self-report questionnaire to measure the workforce’s self-perceptions of knowledge and skills associated with public health emergency proficiency, categorized into (1) general competency, (2) preparedness competency, (3) response competency, and (4) recovery competency. KMO & Bartlett test and Cronbach’s α reliability analysis were used to test the reliability and validity of the questionnaire. Descriptive statistics, independent sample T-test, ANOVA, and linear regression models were performed to analyze the competencies.

A total of 107 staff members from the aviation system were surveyed in this study. The KMO & Bartlett test, (KMO = 0.919, P  < 0.001) and Cronbach’s α coefficients (α = 0.985) for this questionnaire were acceptable. The results suggested that respondents scored a mean of 6.48 out of 9 for the single question. However, the staff needed to acquire more knowledge in investigating epidemic information (5.92) and case managing (5.91) in the response stage. Overall, males scored higher (409.05 ± 81.39) than females (367.99 ± 84.97), with scores in the medical department (445.67 ± 72.01) higher than management (387.00 ± 70.87) and general department (362.32 ± 86.93). Additionally, those with completely subjective evaluation (425.79 ± 88.10) scored higher than the general group (374.39 ± 79.91). To predict the total score, female medical workers were more likely to have lower scores (β = -34.5, P  = 0.041). Compared with those in the medical department, the management workers (β = -65.54, P  = 0.008) and general workers (β = -78.06, P  < 0.001) were associated with a lower total score.

Conclusions

There was still a gap between the public health emergency competencies of the civil aviation system and the demand. Staff in China’s civil aviation systems demonstrated overall competence in public health emergency preparedness and response. However, there was a need to enhance the accumulation of practical experience. Implementing effective training programs for public health emergencies was recommended to mitigate knowledge gaps. Meanwhile, regular training evaluations were also recommended to give comprehensive feedback on the value of the training programs.

Peer Review reports

The wide spread of the COVID-19 pandemic around the world had brought increased attention to the link between air travel and the spread of public health emergency. Air travel played an important role in the pandemic by allowing the virus to spread across the oceans and borders between continents at a much faster rate than in any previous era [ 1 , 2 ]. According to Article 43 of the International Health Regulations (IHR, 2005), in the event of a Public Health Emergency of International Concern (PHEIC), the “Contracting States” could impose “Travel and Trade Restriction Measures” on the entry of passengers, goods, containers, depending on the spread, proliferation, and danger of communicable disease. In addition, Articles 25 and 28 of the regulations also stipulated specific provisions on aviation-related hygiene measures to provide a reference for specific aviation hygiene [ 3 ]. Convention on International Civil Aviation (1944. Article 14 of Chicago) also contained vague items relating to air transport restrictions on communicable diseases [ 4 ]. However, as an obstruction to international cooperation, travel restrictions violated the IHR, partly leading to countries’ hesitancy and dispute on aviation measures when the pandemic emerged [ 5 ]. Therefore the proper implementation of the airline response measures, and the high level of public health emergency competency among airline staff were of great importance in slowing down the spread of pathogens and preventing outbreaks.

Air travel played a significant role in promoting the spread of the epidemic. Airports are bustling hubs where domestic and international passengers frequently transit, necessitating stringent measures to prevent physical contact from serving as avenues for disease transmission. An analysis of the relationship between the aviation system and the prevalence of COVID-19 suggested that countries with more flight frequency and airports would have significantly higher infection rates [ 6 ]. Other studies evaluated travel restrictions in the 2009 H1N1 and 2019 COVID-19 pandemic, demonstrating the role of travel restrictions in reducing the international spread of communicable diseases [ 7 , 8 ]. Measures like implementing “circuit breakers” (When the number of passengers testing positive for nucleic acid on a flight reaches a threshold, these air routes will be temporarily suspended) and restricting the number of flights have proven effective in reducing both the number of COVID-19 cases and the speed of transmission among patients and carriers [ 9 ]. . On the contrary, restrictive measures would significantly reduce flight frequency, ultimately resulting in incalculable losses in profitability [ 10 ]. The International Civil Aviation Organization (ICAO) estimated that the global international air passenger capacity in 2020 was 60% lower than in 2019 [ 11 ]. This resulted in a severe financial crisis, with most airlines grounded in the first half of 2020. The International Air Transport Association (IATA) estimated that the aviation industry would incur losses of $770 billion within six months, with total losses for airlines worldwide in 2020 estimated at $2.41 trillion [ 12 ]. There was a close relationship between the civil aviation system, the spread and prevention of the epidemic, and the sharing of weal and woe.

In the public health emergency mechanism of the civil aviation system, the comprehensive competency of personnel to respond to outbreaks played a key role, which meant the measurement and inspection of their competencies were essential prerequisites for the subsequent training and promotion [ 13 ]. However, there has been no established questionnaire for the personnel of the aviation system in China. Most of these investigations were focused on healthcare professionals, such as doctors or nurses [ 14 , 15 ]. Moreover, because of the professionalism and particularity of the aviation system, the general medical system competency questionnaire may only be partially applicable.

This study primarily referenced a capability index system developed by the Netherlands National Centre for Infectious Diseases. This system is mainly based on the 4R theory of crisis management, proposed by Robert Heath in the book “Crisis Management,” which consists of four stages: Reduction, Readiness, Response, and Recovery. These stages correspond to various phases of emergency public health event prevention and control [ 16 , 17 ]. Finally, this research expected to develop and compile a questionnaire on the competency of civil aviation system personnel in dealing with epidemics in China based on the existing index system [ 18 ] and distributed the questionnaire in different departments for reliability testing and preliminary application to assess the competency profiles of civil aviation system personnel in different dimensions and made corresponding recommendations.

The Chinese translation and revision of the questionnaire

The Chinese translation and revision of the questionnaire were divided into two stages. The former was based on translating a 59-item profile of communicable disease preparedness and response professionals in the air transport public health sector [ 18 ]. A preliminary questionnaire was prepared by using the 9-point Likert method according to the 59 competence items. In the second stage, the questionnaire was sent to experts from the Chinese Center for Disease Control and Prevention (CDC), China Entry-Exit Inspection and Quarantine (CIQ), colleges and customs, to obtain feedback opinions, and the questionnaire was revised based on the proposed advice to make it more suitable for Chinese civil aviation system. This questionnaire was based on the framework of 4R crisis management theory and was divided into four sections. The first section replaces “Reduction” with “General competency” since this index system only corresponds to manpower. The subsequent three sections of the questionnaire remain consistent with the 4R theory, including preparedness, response, and recovery stages.

Preliminary study

Currently, there were no published studies utilizing this questionnaire or similar instruments to establish reference values. This was due to the fact that the questionnaire employed in this survey was newly developed in 2020 under the backdrop of the COVID-19 pandemic. Therefore, this study could only conduct preliminary study to estimate the sample size.

The translated questionnaire was distributed to 30 employees across various departments within the civil aviation system, with 10 randomly selected from each of the medical, administrative, and general departments. Upon analyzing the scores of these three groups of questionnaires, the mean and standard deviation were calculated for each group: medical (453.1 ± 72.8), administrative (399.6 ± 75.3), and general (386.7 ± 66.0), respectively. Using one-way analysis of variance F-tests from PASS 15, with α and β values set at 0.05 and 0.1, the estimated total sample size for this study was finally determined to be 90 people. Taking into account about 10% of invalid questionnaires, it was roughly estimated that this study required a sample of at least about 100 people.

Questionnaire distribution and data analysis

The questionnaire was distributed to civil aviation system personnel through the We Chat by using the electronic questionnaire platform, “Sojump”. A total of 118 questionnaires were obtained, of which 107 were finally included, after excluding the questionnaires with short response time, confusing logic, and consistent options. High-low grouping analysis [ 19 , 20 ], KMO & Bartlett test [ 21 ], and Cronbach’s α test were used for questionnaire validity testing [ 22 ]. In this study, since only intergroup comparisons are involved, Cronbach’s alpha was set at a minimum value of 0.7. Questionnaire items with Cronbach’s α below this threshold will be removed [ 23 ]. Descriptive analysis was used to illustrate the respondents’ basic information. T-tests and variance analysis were used to test the differences. Linear regression models were finally constructed by selecting factors of influence. SPSS 26.0 and R 4.2.3 were used as data analysis software.

Model of public health emergency competencies and questionnaire framework

After Chinese translation and modification, as Fig.  1 shows, a model of public health emergence competencies for civil aviation system personnel was established. The model contained two main dimensions, including “General competency” and “Public health emergency competency”, and six main competencies, including “Communication”, “Professional competence”, “Collaboration”, “Preparedness”, “Response” and “Recovery”. Table  1 indicates the description of the six competencies. The three competencies under the category of public health emergency were subdivided into eight more detailed competency indicators, so there were a total of 11 competency indicators that could be investigated. Based on that, the questionnaire containing 64 questions was established and distributed, of which five were for basic information, and 59 were for evaluating competencies.

figure 1

Model of public health emergency competencies for civil aviation system personnel

Validity and reliability of the questionnaires

The total and individual stage scores were analyzed by high-low grouping analysis (Table  2 ), which taking the top 27% and the bottom 27% scores and dividing them into two groups for an independent sample t-test [ 19 ]. The results all met the significance criteria and showed a statistical difference, indicating good questionnaire validity.

The KMO and Bartletts chi-square test results (Table  3 ) showed that the items were suitable for factor analysis (KMO = 0.919, P  < 0.001). Cronbach’s α reliability analysis of the questionnaire showed that the overall Cronbach’s α coefficient was 0.985, and Cronbach’s α coefficients of the four stages were 0.928, 0.952, 0.983, and 0.929. Respectively, all coefficients were more significant than 0.70. Indeed, the majority of items had α values greater than 0.9. The results indicated that the questionnaire reliability was acceptable, so no items were removed.

Results of public health emergency competencies of personnel in civil aviation systems

Basic information.

As shown in Table  4 , a total of 107 staff members from the aviation system were surveyed in this study, with 69 (64.5%) females and 38 (35.5%) males. All departments were divided into three sorts, including medical, management, and general posts. Among them, medical departments mainly included health management departments or medical centers in the civil aviation system (18 persons, 16.8%). The management departments mainly included civil aviation bureaus or local administrations (27 persons, 25.2%). The general posts were the majority and mainly included front-line airport workers (56 persons, 57.9%). The length of service was stratified from less than five years to more than 15 years and distributed uniformly in amount. Subjective evaluation refers to the overall subjective evaluation of the respondent’s competency to prevent and control epidemics. Most respondents thought that they were completely or basically competent, and only four people thought that they had difficulty meeting the demands of a public health emergency.

Scores of civil aviation system personnel’s public health emergency competencies.

As Table  5 shows, The values displayed show the mean scores of all staff in different epidemic stages, due to varying numbers of questions in each stage, the scores across stages weren’t directly comparable. Therefore, mean scores were calculated for each stage by dividing the total score by the number of questions in that stage and then computing the mean, which were all capped at 9 points. The statistical analysis revealed that respondents scored a mean of 6.48 for the total questionnaire. The respondents scored high in essential general competencies, preparedness and recovery phases but performed poorly in the response stage. On a detailed scale, the three general competencies were all scored ≥ 7. In the stages of epidemic prevention, the training and drills in the preparation stage got a high score of 7.26, indicating the adequacy of daily training. However, the lowest scores for investigating epidemic information (5.92) and case managing (5.91) were in the response stage. On the whole, the score reflected the relative insufficiency of personnel competencies in the actual epidemic response activities and the implementation of measures.

According to the different position types, the radar chart of the ability distribution was drawn (Fig.  2 ). There were obvious differences among the three different position types. Medical position (blue line) had highest score in all the competencies. In contrast, the competencies of management staff (yellow line) were almost identical to the average (red line). The personnel in general posts (green line) were generally lower than average.

figure 2

Radar chart of distribution of public health emergency competencies in different positions

Analysis of the variability of personnel competencies in civil aviation systems.

The results of the difference test show that gender, type of occupation, and level of subjective evaluation have statistical significance on the competence score except for the length of service (Table  6 ). Overall, males scored higher (409.05 ± 81.39) than females (367.99 ± 84.97), with scores in the medical department (445.67 ± 72.01) notably higher than those in the management (387.00 ± 70.87) and general department (362.32 ± 86.93). Additionally, those with completely subjective evaluation (425.79 ± 88.10) scored higher than those in the general group (374.39 ± 79.91). There was a slight increase in general competency score by length of service, whereas there was no significant statistical difference. Three statistically significant influencing factors were selected, and a multiple linear regression equation was used to establish a model to predict the total score (Table  7 ). There was no significant difference between male and female staff in general competencies. However, male staff scored higher at three public health emergency stages. As a whole, female medical workers were more likely to have lower scores (β = -34.5, P  = 0.041). Compared with those in the medicine department, the management workers (β = -65.54, P  = 0.008) and general workers (β = -78.06, P  < 0.001) were associated with a lower total score. In addition, those who rated their overall subjective evaluation better had higher competence significantly than those who were lower in all stages. Workers with completely subjective evaluation were likelier to have higher scores (β = 36.7, P  = 0.054) than workers with basically competent.

This study developed a model and questionnaire of public health emergency competencies for civil aviation personnel. The terminology and scenarios used in the questionnaire were aligned with the actual situation of the civil aviation personnel’s work. After modification, the final analysis showed high reliability and validity. This indicated that the questionnaire’s quality and translation were acceptable, meeting the professional skills of the surveyed civil aviation staff.

The questionnaire was divided into various dimensions according to different phases of the epidemic. Overall, the competencies of civil aviation system personnel scored moderately, with room for improvement in some items, especially in the response stage. Most civil aviation personnel had an acceptable level of competence, which meant that they could meet the basic needs of the civil aviation system to ensure regular operation during public health emergencies. The relatively high general competency scores showed an intention to collaborate and the basic professional skills required to implement outbreak control. However, the staff needed training to become more skilled in policies and response, to deal with complex, uncertain epidemic emergency in the actual response process. In the subsequent training, more emphasis also needed to be placed on practical effects. In fact, studies have shown that simulation drills can help both medical and aviation personnel improve their ability to respond to epidemic or accidents [ 24 , 25 ].

Various factors, including gender, position, and subjective evaluation, crucially influenced the final scores. Males were comparable to females in general competencies but had higher scores in each public health emergency stage, presumably because they were inborn open-minded, rational and calmer in emergencies [ 26 ]. It was not surprising that medical personnel, with their professional knowledge and skills, were more likely to be exposed to actual outbreaks, face patients and have a fairly strong competitive advantage in dealing with public health emergence. Furthermore, those with optimistic subjective evaluation also had higher final scores on the questionnaire, which indicated that self-confidence and optimism were more beneficial in dealing with public health emergencies, which had similar results in other studies [ 27 , 28 ]. Length of service did not affect public health emergency competencies, possibly because their daily work experience was not directly related to experiencing a significant epidemic over a long period. These results were similar to those of previous studies on the competency of health system personnel [ 14 , 15 ].

Some recommendations were made about the model of public health emergency competencies for civil aviation system personnel. Primarily, the epidemic information acquisition and public health emergency treatment in the emergency stage were the top priorities that needed urgent improvement. Therefore, in later training, emphasis should be placed on simulating responses in real emergencies to increase familiarity and understanding of on-site emergency treatment [ 29 ]. Then, the post differences were crucial factors affecting civil aviation personnel’s competencies. Generally, the front-line workers were less capable of responding to public health emergencies. However, they were often exposed to people infected with communicable diseases in real situations. Therefore, more specific training was required to better serve as the first barrier in the face of public health emergencies.

Limitations

The questionnaire was developed based on an existing English aviation system competency model of the public health emergency. Though carefully translated, there were still differences between the expressions and idioms, making the questionnaire challenging for respondents. Secondly, although all items in this questionnaire had Cronbach’s α coefficients greater than 0.7, a few of them exceeded 0.95, indicating a probable high level of content consistency among the questionnaire items [ 30 ]. In addition, because of the lack of similar prior studies, the estimate of the sample size of civil aviation staff might be below the actual requirement due to the bias of preliminary survey. The proportion of each unit and occupation type needed to be balanced. The number of medical and management staff was lower, which is related to the difference in the proportion of the number of positions in the civil aviation system. The above questions indicated that the questionnaire still needed to be mature. Subsequent linguistic refinements and improvements to the questionnaire itself were needed. There were still problems with the survey process, and subsequent studies with more adequate sample sizes were pending.

This study developed a localized competency questionnaire based on the competency model developed by the Dutch CDC for preventing and controlling outbreaks in the aviation system. A reliability test and preliminary application study were conducted. According to the results, the questionnaire was usable. However, the public health emergency competencies to prevent and control the epidemic were weak. The stage of response phase for civil aviation staff, gender, position, and subjective evaluation would crucially influence the competence. The Chinese questionnaire can theoretically be used to investigate the public health emergency competencies of personnel in the civil aviation system. Researchers can analyze the scoring characteristics of different departments, age groups, or other demographics. New training and improvement plans can be formulated based on data analysis results.

Data availability

Availability of data and materialsThe datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.

Abbreviations

World Health Organization

Public Health Emergency of International Concern

International Health Regulations

Centers for Disease Control and Prevention (Chinese)

International Civil Aviation Organization

China Entry-Exit Inspection and quarantine

Kaiser-Meyer-Olkin

Coronavirus disease 2019

International Air Transport Association

Mangili A, Vindenes T, Gendreau M. Infectious risks of Air Travel. Microbiol Spectr 2015, 3(5).

Feng S, Jin Z. Infectious diseases spreading on a metapopulation network coupled with its second-neighbor network. Appl Math Comput. 2019;361:87–97.

PubMed   PubMed Central   Google Scholar  

World Health Organization. International Health regulations (2005), 3rd. In. World Health Organization; 2016.

International Civil Aviation Organization. Convention on International Civil Aviation, 9th ed - Doc 7300 In. International Civil Aviation Organization; 2006.

Aidan F, Bogoch II. Human mobility and the global spread of infectious diseases a Focus on Air Travel. Trends Parasitol. 2018;34:S1471492218301429.

Google Scholar  

Subiakto Y. Aviation medicine capacity on facing biological threat in Indonesia airports. Infect Dis Rep. 2020;12(Suppl 1):8738.

Article   PubMed   PubMed Central   Google Scholar  

Oztig LI, Askin OE. Human mobility and coronavirus disease 2019 (COVID-19): a negative binomial regression analysis. Public Health 2020(185-):185.

Christidis P, Christodoulou A. The predictive capacity of air travel patterns during the global spread of the COVID-19 pandemic: risk, uncertainty and randomness. Int J Environ Res Public Health 2020, 17(10).

Yu M, Chen Z. The effect of aviation responses to the control of imported COVID-19 cases. J Air Transp Manage 2021, 97.

Li Z. Air Emergency Transport under COVID-19: impact, measures, and Future. Hindawi Limited; 2021.

Liu A, Kim YR, O’Connell JF. COVID-19 AND THE AVIATION INDUSTRY: the interrelationship between the spread of the COVID-19 pandemic and the frequency of flights on the EU Market. Annals Tourism Res 2021.

Suk M, Kim W. COVID-19 and the airline industry: crisis management and resilience. Tourism Rev 2021.

Mou J, Liu C, Chen S, Huang G, Lu X. Temporal characteristics of the Chinese Aviation Network and their effects on the spread of Infectious diseases. Sci Rep. 2017;7(1):1275.

Yang Y, Chen N, Cheng M, Chen C, Zhou H, Wang Z, Yu W, Shi J. Perceptions among Medical Staff in Community Health centres of coping Capacity regarding Infectious Disease epidemics: a cross-sectional study in Shanghai, China. Int J Gen Med. 2021;14:1251–61.

Song S, Li X, Bell SA, Yang X, Zhang W. Emergency response: a cross-sectional study of Core competencies for nurses regarding Major Infectious Disease outbreaks. J Emerg Nurs. 2021;47(6):902–13.

Article   PubMed   Google Scholar  

Lu D, Yeun-Sim Jeong S, Zhu L. Development and validation of a management of Workplace Violence competence scale for nursing practicum students. Asian Nurs Res. 2021;15(1):23–9.

Article   Google Scholar  

Tang L, Fan B, Li C, Zhao G. Empirical evaluation of the Environmental Emergency Management Capability of local governments in China. Sustainability. 2022;14(11):6760.

Rooij DD, Rebel R, Raab J, Hadjichristodoulou C, Belfroid E, Timen A. Development of a competency profile for professionals involved in infectious disease preparedness and response in the air transport public health sector. PLoS ONE 2020, 15.

Kelley TL. The selection of upper and lower groups for the validation of test items. J Educ Psychol. 1939;30:17–24.

Yar Yıldırım V. Homework process in Higher Education Scale (HPHES): a validity and reliability study. Int J Assess Tools Educ. 2021;8:120–34.

Carrard S, Mooser C, Hilfiker R, Mittaz Hager AG. Evaluation of the psychometric properties of the Swiss French version of the older people’s quality of life questionnaire (OPQOL-35-SF). Health Qual Life Outcomes. 2022;20(1):43.

Dias K, White J, Metcalfe C, Kipping R, Papadaki A, Jago R. Acceptability, internal consistency and test–retest reliability of scales to assess parental and nursery staff’s self-efficacy, motivation and knowledge in relation to pre-school children’s nutrition, oral health and physical activity. Public Health Nutr 2019:1–9.

Bland JM, Altman DG. Statistics notes: Cronbach’s alpha. BMJ. 1997;314(7080):572.

Article   PubMed   PubMed Central   CAS   Google Scholar  

Idrose AM, Adnan WA, Villa GF, Abdullah AH. The use of classroom training and simulation in the training of medical responders for airport disaster. Emerg Med J. 2007;24(1):7–11.

Griswold S, Fralliccardi A, Boulet J, Moadel T, Franzen D, Auerbach M, Hart D, Goswami V, Hui J, Gordon JA. Simulation-based Education to ensure provider competency within the Health Care System. Acad Emerg Med. 2018;25(2):168–76.

Petersen J, Hyde JS. Chapter two. Gender-related academic and occupational interests and goals. Adv Child Dev Behav. 2014;47:43–76.

Xu B, Yu J, Li S, Chen L, Lin Z. Factors influencing the coping abilities in clinic nursing students under public health emergency (COVID-19): a cross-sectional study. BMC Nurs. 2021;20(1):167.

Bock JO, Hajek A, König HH. The Longitudinal Association between Psychological Factors and Health Care Use. Health Serv Res. 2018;53(2):1065–91.

Hu JS, Smith JK. In-flight Medical emergencies. Am Fam Physician. 2021;103(9):547–52.

PubMed   Google Scholar  

Tavakol M, Dennick R. Making sense of Cronbach’s alpha. Int J Med Educ. 2011;2:53–5.

Download references

Acknowledgements

Thanks to FangFang Liu for providing English translation support.

This study was funded by National Administration of Disease Prevention and Control.

Author information

Authors and affiliations.

Department of Global Health, School of Public Health, Peking University Health Science Center, 38 Xue Yuan Road, Haidian District, Beijing, 100191, China

Zuokun Liu, Jingya Dong & Hui Yin

Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, 100191, China

Yixin Li & Huan Yu

Institute of Area Studies, Peking University, Beijing, 100871, China

Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China

Institute of Global Health, Peking University Health Science Center, Beijing, 100191, China

Center for Global Biosecurity Governance Research, China Foreign Affairs University, Beijing, 100037, China

You can also search for this author in PubMed   Google Scholar

Contributions

LZK and YH(Yinhui) designed the questionnaire, conducted the survey, and wrote the article. LZK and LYX analysed the data. YH(Yuhua)and DJY provided technical support. LZ and YH(Yuhua) participated revision. YH(Yinhui) provided guidance and participated in language editing and. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Hui Yin .

Ethics declarations

Ethics approval and consent to participate.

This study has been approved by the Biomedical Ethics Committee of Peking University with the approval number IRB00001052-23086. All respondents were able to voluntarily choose whether or not to complete the questionnaire, and all those who completed the questionnaire signed an informed consent form before the survey began.

Consent for publication

Not Applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ . The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/ ) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Reprints and permissions

About this article

Cite this article.

Liu, Z., Li, Y., Li, Z. et al. Assessing self-reported public health emergency competencies for civil aviation personnel in China: a pilot study. BMC Public Health 24 , 2014 (2024). https://doi.org/10.1186/s12889-024-18846-7

Download citation

Received : 12 December 2023

Accepted : 13 May 2024

Published : 28 July 2024

DOI : https://doi.org/10.1186/s12889-024-18846-7

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Public health emergency
  • Preparedness

BMC Public Health

ISSN: 1471-2458

importance of descriptive case study

As a prosecutor, Harris mixed criminal justice reform with tough-on-crime approach

  • Medium Text

U.S. Vice President Kamala Harris delivers remarks to the women and men's National Collegiate Athletic Association (NCAA) Champion teams at the White House in Washington

ANTI-DEATH PENALTY

'a fair deal'.

Sign up here.

Reporting by Luc Cohen in New York; additional reporting by Jarrett Renshaw; editing by Amy Stevens

Our Standards: The Thomson Reuters Trust Principles. , opens new tab

importance of descriptive case study

Thomson Reuters

Reports on the New York federal courts. Previously worked as a correspondent in Venezuela and Argentina.

A general view of the Iowa state capitol on the day of the Iowa Caucus in Des Moines, Iowa

Venezuela's Maduro, opposition each claim presidential victory

Venezuelans were awaiting results late on Sunday in the most consequential election in a quarter-century of socialist party rule, with President Nicolas Maduro confident of victory even as the opposition has attracted impassioned support and warned of possible irregularities.

Israeli Military Police investigate suspected abuse of Palestinian detainee near Beersheba

  • Case Reports

Case Study Research

  • November 2019
  • In book: Methodological Issues in Management Research: Advances, Challenges, and the Way Ahead (pp.163-179)
  • This person is not on ResearchGate, or hasn't claimed this research yet.

Satyendra C Pandey at Institute of Rural Management Anand

  • Institute of Rural Management Anand

Discover the world's research

  • 25+ million members
  • 160+ million publication pages
  • 2.3+ billion citations
  • Hangrengga Berlian
  • Bram Hertasning
  • Hibnu Nugroho

Azhari Aziz Samudra

  • Ida Bagus Gede Surya Peradantha
  • Sri Rochana Widyastutieningrum
  • Santosa Soewarlan
  • Ida Bagus Gde Yudha Triguna
  • Melisa Melisa

Rafiq Zulkarnaen

  • Edward Noel Mwamakula

Raiza Mtandi

  • Nondwe Nomnikelo Mzokwana

Dwiningtyas Padmaningrum

  • Rana Fathinah Maharani

Alois Danek

  • Jarmila Klugerová
  • Pier Franco Luigi Fraboni
  • Matthew Barsalou
  • Robert Perkin

Giedre Kvieskiene

  • Bob Algozzine

Elizabeth A Shanahan

  • Y.S. Lincoln
  • Sharan B. Merriam
  • Kathleen M. Eisenhardt
  • A.M. Huberman

Ruth Horowitz

  • Recruit researchers
  • Join for free
  • Login Email Tip: Most researchers use their institutional email address as their ResearchGate login Password Forgot password? Keep me logged in Log in or Continue with Google Welcome back! Please log in. Email · Hint Tip: Most researchers use their institutional email address as their ResearchGate login Password Forgot password? Keep me logged in Log in or Continue with Google No account? Sign up

IMAGES

  1. what is descriptive case study design

    importance of descriptive case study

  2. importance of descriptive case study

    importance of descriptive case study

  3. what is descriptive case study design

    importance of descriptive case study

  4. importance of descriptive case study

    importance of descriptive case study

  5. Descriptive Research Case Study Ppt Powerpoint Presentation

    importance of descriptive case study

  6. what is descriptive case study design

    importance of descriptive case study

VIDEO

  1. Descriptive Study designs: Case report, case series, Ecological and cross-sectional study designs

  2. Descriptive Research definition, types, and its use in education

  3. Meaning Scope and Importance of Statistics Chapter 1 Class 11 One shot STATISTICS

  4. Why to use Descriptive Research? #descriptiveresearch

  5. Research Design/Importance/ contents/ Characteristics/ Types/Research Methodology/ Malayalam

  6. What Can You Expect?

COMMENTS

  1. Case Study Methodology of Qualitative Research: Key Attributes and

    A case study is one of the most commonly used methodologies of social research. This article attempts to look into the various dimensions of a case study research strategy, the different epistemological strands which determine the particular case study type and approach adopted in the field, discusses the factors which can enhance the effectiveness of a case study research, and the debate ...

  2. Case Study

    A descriptive case study is used to describe a particular phenomenon in detail. This type of case study is useful when the researcher wants to provide a comprehensive account of the phenomenon. For Example, a researcher might conduct a descriptive case study on a particular community to understand its social and economic characteristics. The ...

  3. Continuing to enhance the quality of case study methodology in health

    A key tenet of case study methodology often underemphasized in literature is the importance of defining the case and phenomenon. Researches should clearly describe the case with sufficient detail to allow readers to fully understand the setting and context and determine applicability. ... According to Yin's 40 approach to descriptive case ...

  4. What is a Case Study?

    Descriptive case studies aim to provide a complete and accurate representation of a phenomenon or event within its context. These case studies are often based on an established theoretical framework, which guides how data is collected and analyzed. ... They are particularly important in explanatory case studies, which seek to understand the ...

  5. Descriptive Research Design

    As discussed earlier, common data analysis methods for descriptive research include descriptive statistics, cross-tabulation, content analysis, qualitative coding, visualization, and comparative analysis. I nterpret results: Interpret your findings in light of your research question and objectives.

  6. What Is a Case Study?

    Revised on November 20, 2023. A case study is a detailed study of a specific subject, such as a person, group, place, event, organization, or phenomenon. Case studies are commonly used in social, educational, clinical, and business research. A case study research design usually involves qualitative methods, but quantitative methods are ...

  7. Case Study Method: A Step-by-Step Guide for Business Researchers

    Case study reporting is as important as empirical material collection and interpretation. The quality of a case study does not only depend on the empirical material collection and analysis but also on its reporting (Denzin & Lincoln, 1998). A sound report structure, along with "story-like" writing is crucial to case study reporting.

  8. What Is Qualitative Research? An Overview and Guidelines

    This guide explains the focus, rigor, and relevance of qualitative research, highlighting its role in dissecting complex social phenomena and providing in-depth, human-centered insights. The guide also examines the rationale for employing qualitative methods, underscoring their critical importance.

  9. Case Study Methods and Examples

    The purpose of case study research is twofold: (1) to provide descriptive information and (2) to suggest theoretical relevance. Rich description enables an in-depth or sharpened understanding of the case. It is unique given one characteristic: case studies draw from more than one data source. Case studies are inherently multimodal or mixed ...

  10. (PDF) Qualitative Case Study Methodology: Study Design and

    A descriptive case study allowed for a deeper exploration of the contextual factors that shaped these perceptions, including cultural influences, organizational dynamics, and specific challenges ...

  11. Study designs: Part 2

    Descriptive studies, irrespective of the subtype, are often very easy to conduct. For case reports, case series, and ecological studies, the data are already available. For cross-sectional studies, these can be easily collected (usually in one encounter). Thus, these study designs are often inexpensive, quick and do not need too much effort.

  12. Guide: Designing and Conducting Case Studies

    Designing and Conducting Case Studies. This guide examines case studies, a form of qualitative descriptive research that is used to look at individuals, a small group of participants, or a group as a whole. Researchers collect data about participants using participant and direct observations, interviews, protocols, tests, examinations of ...

  13. Understanding Research Study Designs

    The simplest type of descriptive study is the case report. In a case report, the researcher describes his/her experience with symptoms, signs, diagnosis, or treatment of a patient. Sometimes, a group of patients having a similar experience may be grouped to form a case series. ... Another important limitation of cross-sectional studies is ...

  14. Descriptive Research in Psychology

    Descriptive Case Study Research . A descriptive approach to a case study is akin to a biography of a person, honing in on the experiences of a small group to extrapolate to larger themes. We most commonly see descriptive case studies when those in the psychology field are using past clients as an example to illustrate a point.

  15. Descriptive research: What it is and how to use it

    Descriptive research design. Descriptive research design uses a range of both qualitative research and quantitative data (although quantitative research is the primary research method) to gather information to make accurate predictions about a particular problem or hypothesis. As a survey method, descriptive research designs will help ...

  16. Descriptive Research Designs: Types, Examples & Methods

    2. Case Study Method. A case study is a sample group (an individual, a group of people, organizations, events, etc.) whose characteristics are used to describe the characteristics of a larger group in which the case study is a subgroup. The information gathered from investigating a case study may be generalized to serve the larger group.

  17. Case Study Research Method in Psychology

    Descriptive case studies: Describe an intervention or phenomenon and the real-life context in which it occurred. It is helpful for illustrating certain topics within an evaluation. ... Clearly state the focus/importance of the case. 2. Case Presentation. Describe the presenting problem in detail, including symptoms, duration,and impact on daily ...

  18. Descriptive Research

    Descriptive research aims to accurately and systematically describe a population, situation or phenomenon. It can answer what, where, when and how questions, but not why questions. A descriptive research design can use a wide variety of research methods to investigate one or more variables. Unlike in experimental research, the researcher does ...

  19. Descriptive Research and Case Studies

    Case studies add descriptive richness. Case studies are also useful for formulating concepts, which are an important aspect of theory construction. Through fine-grained knowledge and description, case studies can fully specify the causal mechanisms in a way that may be harder in a large study.

  20. (PDF) Case study as a research method

    Case study method enables a researcher to closely examine the data within a specific context. In most cases, a case study method selects a small geograph ical area or a very li mited number. of ...

  21. (PDF) The case study as a type of qualitative research

    Abstract. This article presents the case study as a type of qualitative research. Its aim is to give a detailed description of a case study - its definition, some classifications, and several ...

  22. LibGuides: Section 2: Case Study Design in an Applied Doctorate

    Moreover, qualitative descriptive case studies describe, analyze and interpret events that explain the reasoning behind specific phenomena (Bloomberg, 2018). As such, case study design can be the foundation for a rigorous study within the Applied Doctoral Experience (ADE). ... it is important that the researcher carefully consider the alignment ...

  23. Supporting customer care and analytics with personal AI assistant

    In this paper, we adopt an exploratory, descriptive single-case study design in a food wholesale industry to illustrate (i) how the personal AI assistant adds value to the sales process and the company, and (ii) how human-like top expert AI suggestions enhance sales people competences. The significance of the study stems from its positioning in ...

  24. Full article: Use and misuse of psychoactive medicines: a descriptive

    An important next step of our work would be to study, at national level, the use and misuse of PMed, especially the PMed highlighted in our research as requiring particular attention, namely by analysing the morbimortality consequences (e.g. hospitalisations, poisonings and deaths) associated with their use, allowing a detailed assessment of ...

  25. On the importance of internet access for children's health and

    The present paper adds to existing research by showing evidence of the importance of the digital divide on children's health and wellbeing in China. China provides an exemplary case of the positive health impact of the internet that complements previous research for Western countries. The remainder of the paper is structured as follows.

  26. Toward Developing a Framework for Conducting Case Study Research

    The definition above is an example of an all-inclusive descriptive definition of case study research represented by Yin (2003).According to the definition of case study research, there is no doubt that this research strategy is one of the most powerful methods used by researchers to realize both practical and theoretical aims.

  27. Remote sensing imagery to predict soybean yield: a case study of

    Mapping the spatial variability of crops is critical for precision agriculture. In this sense, remote sensing is a key technology generally dependent on the result of vegetation indices (VIs). Therefore, investigating the sensitivity of VIs and their contribution toward explaining crop variability and assisting in predicting yield is one of the pathways scientific research needs to explore. In ...

  28. Assessing self-reported public health emergency competencies for civil

    COVID-19 has demonstrated the importance of competent staff with expertise in public health emergency preparedness and response in the civil aviation system. The civil aviation system is a critical sentinel and checkpoint to prevent imported cases and slow the spread of communicable diseases. Understanding the current competencies of staff to deal with public health emergencies will help ...

  29. As a prosecutor, Harris mixed criminal justice reform with tough-on

    U.S. Vice President Kamala Harris, whom Joe Biden has endorsed to replace him on the Democratic presidential ticket, started her political career as a California prosecutor who blended criminal ...

  30. (PDF) Case Study Research

    a descriptive case study is tha t the researcher must begin with a descriptive theory . ... of cases in a case study research design is an important element, hence requiring .