University of the People Logo

Home > Blog > Tips for Online Students > Why Is Critical Thinking Important and How to Improve It

Tips for Online Students , Tips for Students

Why Is Critical Thinking Important and How to Improve It

relevance of critical thinking and problem solving

Updated: July 8, 2024

Published: April 2, 2020

Why-Is-Critical-Thinking-Important-a-Survival-Guide

Why is critical thinking important? The decisions that you make affect your quality of life. And if you want to ensure that you live your best, most successful and happy life, you’re going to want to make conscious choices. That can be done with a simple thing known as critical thinking. Here’s how to improve your critical thinking skills and make decisions that you won’t regret.

What Is Critical Thinking?

Critical thinking is the process of analyzing facts to form a judgment. Essentially, it involves thinking about thinking. Historically, it dates back to the teachings of Socrates , as documented by Plato.

Today, it is seen as a complex concept understood best by philosophers and psychologists. Modern definitions include “reasonable, reflective thinking focused on deciding what to believe or do” and “deciding what’s true and what you should do.”

The Importance Of Critical Thinking

Why is critical thinking important? Good question! Here are a few undeniable reasons why it’s crucial to have these skills.

1. Critical Thinking Is Universal

Critical thinking is a domain-general thinking skill. What does this mean? It means that no matter what path or profession you pursue, these skills will always be relevant and will always be beneficial to your success. They are not specific to any field.

2. Crucial For The Economy

Our future depends on technology, information, and innovation. Critical thinking is needed for our fast-growing economies, to solve problems as quickly and as effectively as possible.

3. Improves Language & Presentation Skills

In order to best express ourselves, we need to know how to think clearly and systematically — meaning practice critical thinking! Critical thinking also means knowing how to break down texts, and in turn, improve our ability to comprehend.

4. Promotes Creativity

By practicing critical thinking, we are allowing ourselves not only to solve problems but also to come up with new and creative ideas to do so. Critical thinking allows us to analyze these ideas and adjust them accordingly.

5. Important For Self-Reflection

Without critical thinking, how can we really live a meaningful life? We need this skill to self-reflect and justify our ways of life and opinions. Critical thinking provides us with the tools to evaluate ourselves in the way that we need to.

Photo by Marcelo Chagas from Pexels

6. the basis of science & democracy.

In order to have a democracy and to prove scientific facts, we need critical thinking in the world. Theories must be backed up with knowledge. In order for a society to effectively function, its citizens need to establish opinions about what’s right and wrong (by using critical thinking!).

Benefits Of Critical Thinking

We know that critical thinking is good for society as a whole, but what are some benefits of critical thinking on an individual level? Why is critical thinking important for us?

1. Key For Career Success

Critical thinking is crucial for many career paths. Not just for scientists, but lawyers , doctors, reporters, engineers , accountants, and analysts (among many others) all have to use critical thinking in their positions. In fact, according to the World Economic Forum, critical thinking is one of the most desirable skills to have in the workforce, as it helps analyze information, think outside the box, solve problems with innovative solutions, and plan systematically.

2. Better Decision Making

There’s no doubt about it — critical thinkers make the best choices. Critical thinking helps us deal with everyday problems as they come our way, and very often this thought process is even done subconsciously. It helps us think independently and trust our gut feeling.

3. Can Make You Happier!

While this often goes unnoticed, being in touch with yourself and having a deep understanding of why you think the way you think can really make you happier. Critical thinking can help you better understand yourself, and in turn, help you avoid any kind of negative or limiting beliefs, and focus more on your strengths. Being able to share your thoughts can increase your quality of life.

4. Form Well-Informed Opinions

There is no shortage of information coming at us from all angles. And that’s exactly why we need to use our critical thinking skills and decide for ourselves what to believe. Critical thinking allows us to ensure that our opinions are based on the facts, and help us sort through all that extra noise.

5. Better Citizens

One of the most inspiring critical thinking quotes is by former US president Thomas Jefferson: “An educated citizenry is a vital requisite for our survival as a free people.” What Jefferson is stressing to us here is that critical thinkers make better citizens, as they are able to see the entire picture without getting sucked into biases and propaganda.

6. Improves Relationships

While you may be convinced that being a critical thinker is bound to cause you problems in relationships, this really couldn’t be less true! Being a critical thinker can allow you to better understand the perspective of others, and can help you become more open-minded towards different views.

7. Promotes Curiosity

Critical thinkers are constantly curious about all kinds of things in life, and tend to have a wide range of interests. Critical thinking means constantly asking questions and wanting to know more, about why, what, who, where, when, and everything else that can help them make sense of a situation or concept, never taking anything at face value.

8. Allows For Creativity

Critical thinkers are also highly creative thinkers, and see themselves as limitless when it comes to possibilities. They are constantly looking to take things further, which is crucial in the workforce.

9. Enhances Problem Solving Skills

Those with critical thinking skills tend to solve problems as part of their natural instinct. Critical thinkers are patient and committed to solving the problem, similar to Albert Einstein, one of the best critical thinking examples, who said “It’s not that I’m so smart; it’s just that I stay with problems longer.” Critical thinkers’ enhanced problem-solving skills makes them better at their jobs and better at solving the world’s biggest problems. Like Einstein, they have the potential to literally change the world.

10. An Activity For The Mind

Just like our muscles, in order for them to be strong, our mind also needs to be exercised and challenged. It’s safe to say that critical thinking is almost like an activity for the mind — and it needs to be practiced. Critical thinking encourages the development of many crucial skills such as logical thinking, decision making, and open-mindness.

11. Creates Independence

When we think critically, we think on our own as we trust ourselves more. Critical thinking is key to creating independence, and encouraging students to make their own decisions and form their own opinions.

12. Crucial Life Skill

Critical thinking is crucial not just for learning, but for life overall! Education isn’t just a way to prepare ourselves for life, but it’s pretty much life itself. Learning is a lifelong process that we go through each and every day.

How To Improve Your Critical Thinking

Now that you know the benefits of thinking critically, how do you actually do it?

  • Define Your Question: When it comes to critical thinking, it’s important to always keep your goal in mind. Know what you’re trying to achieve, and then figure out how to best get there.
  • Gather Reliable Information: Make sure that you’re using sources you can trust — biases aside. That’s how a real critical thinker operates!
  • Ask The Right Questions: We all know the importance of questions, but be sure that you’re asking the right questions that are going to get you to your answer.
  • Look Short & Long Term: When coming up with solutions, think about both the short- and long-term consequences. Both of them are significant in the equation.
  • Explore All Sides: There is never just one simple answer, and nothing is black or white. Explore all options and think outside of the box before you come to any conclusions.

How Is Critical Thinking Developed At School?

Critical thinking is developed in nearly everything we do, but much of this essential skill is encouraged and practiced in school. Fostering a culture of inquiry is crucial, encouraging students to ask questions, analyze information, and evaluate evidence.

Teaching strategies like Socratic questioning, problem-based learning, and collaborative discussions help students think for themselves. When teachers ask questions, students can respond critically and reflect on their learning. Group discussions also expand their thinking, making them independent thinkers and effective problem solvers.

How Does Critical Thinking Apply To Your Career?

Critical thinking is a valuable asset in any career. Employers value employees who can think critically, ask insightful questions, and offer creative solutions. Demonstrating critical thinking skills can set you apart in the workplace, showing your ability to tackle complex problems and make informed decisions.

In many careers, from law and medicine to business and engineering, critical thinking is essential. Lawyers analyze cases, doctors diagnose patients, business analysts evaluate market trends, and engineers solve technical issues—all requiring strong critical thinking skills.

Critical thinking also enhances your ability to communicate effectively, making you a better team member and leader. By analyzing and evaluating information, you can present clear, logical arguments and make persuasive presentations.

Incorporating critical thinking into your career helps you stay adaptable and innovative. It encourages continuous learning and improvement, which are crucial for professional growth and success in a rapidly changing job market.

Photo by Oladimeji Ajegbile from Pexels

Critical thinking is a vital skill with far-reaching benefits for personal and professional success. It involves systematic skills such as analysis, evaluation, inference, interpretation, and explanation to assess information and arguments.

By gathering relevant data, considering alternative perspectives, and using logical reasoning, critical thinking enables informed decision-making. Reflecting on and refining these processes further enhances their effectiveness.

The future of critical thinking holds significant importance as it remains essential for adapting to evolving challenges and making sound decisions in various aspects of life.

What are the benefits of developing critical thinking skills?

Critical thinking enhances decision-making, problem-solving, and the ability to evaluate information critically. It helps in making informed decisions, understanding others’ perspectives, and improving overall cognitive abilities.

How does critical thinking contribute to problem-solving abilities?

Critical thinking enables you to analyze problems thoroughly, consider multiple solutions, and choose the most effective approach. It fosters creativity and innovative thinking in finding solutions.

What role does critical thinking play in academic success?

Critical thinking is crucial in academics as it allows you to analyze texts, evaluate evidence, construct logical arguments, and understand complex concepts, leading to better academic performance.

How does critical thinking promote effective communication skills?

Critical thinking helps you articulate thoughts clearly, listen actively, and engage in meaningful discussions. It improves your ability to argue logically and understand different viewpoints.

How can critical thinking skills be applied in everyday situations?

You can use critical thinking to make better personal and professional decisions, solve everyday problems efficiently, and understand the world around you more deeply.

What role does skepticism play in critical thinking?

Skepticism encourages questioning assumptions, evaluating evidence, and distinguishing between facts and opinions. It helps in developing a more rigorous and open-minded approach to thinking.

What strategies can enhance critical thinking?

Strategies include asking probing questions, engaging in reflective thinking, practicing problem-solving, seeking diverse perspectives, and analyzing information critically and logically.

In this article

At UoPeople, our blog writers are thinkers, researchers, and experts dedicated to curating articles relevant to our mission: making higher education accessible to everyone. Read More

More From Forbes

The power of critical thinking: enhancing decision-making and problem-solving.

Forbes Coaches Council

  • Share to Facebook
  • Share to Twitter
  • Share to Linkedin

Dr. Ron Young, Founder and Board Chair of Trove, Inc . Ron specializes in psychological coaching & transition consulting.

Critical thinking is a fundamental cognitive process that enables individuals to objectively analyze, evaluate and interpret information to make informed decisions and solve complex problems. It involves employing reasoning and logic, questioning assumptions, recognizing biases and considering multiple perspectives. It requires self-monitored, self-directed, self-disciplined and self-corrective thinking. Critical thinking is essential in a world of information and diverse opinions. It helps us see things more clearly and avoid being misled or deceived.

Importance Of Critical Thinking

Critical thinking is crucial in various aspects of life, including education, professional endeavors and personal decision-making. In academic settings, it allows students to comprehend and engage with complex subjects while discerning valid arguments from fallacious ones. In the workplace, critical thinking empowers individuals to analyze problems, devise creative solutions and make informed judgments. In everyday life, it helps individuals navigate an increasingly complex world by making sound choices and avoiding cognitive biases. It is our primary defense against misleading or "spun" information.

Benefits Of Critical Thinking

There are many benefits of critical thinking.

Enhanced Decision-Making

Critical thinking helps us trust our gut feelings and think independently. It enables individuals to make logical and well-reasoned decisions based on evidence and objective analysis. It encourages the consideration of all relevant factors and the evaluation of potential consequences, leading to more informed choices.

Effective Problem-Solving

Critical thinking facilitates the identification of underlying issues, the generation of innovative solutions and the evaluation of their viability. It encourages individuals to approach problems from different angles and consider various perspectives, increasing the likelihood of finding effective resolutions.

Reduction Of Cognitive Biases

Critical thinking supports self-reflection. It helps individuals recognize and challenge cognitive biases that hinder clear judgment. Individuals can better overcome confirmation bias, groupthink and the availability heuristic (judging the likelihood of an event based on recall of similar events) by understanding and questioning their assumptions and beliefs. It requires a commitment to overcoming the tendency to see the world from a narrow, self-centered perspective.

Enhanced Communication Skills

Practicing critical thinking fosters effective communication by enabling individuals to articulate and defend their ideas with logical reasoning and evidence. It encourages active listening, empathy and the ability to evaluate and respond to counterarguments, leading to more constructive and meaningful discussions.

More United Citizens

Using critical thinking enables citizens to see the whole picture by better protecting against biases and propaganda. It reduces partisanship and a “we/they” mentality.

Cultivating Critical Thinking

How can you cultivate critical thinking?

Be curious and inquisitive.

Foster a mindset of curiosity and an eagerness to explore and understand the world. Talk with people from different backgrounds, cultures, political affiliations or religions. Ask probing questions, seek new perspectives and engage in active learning. Learn from people who hold different viewpoints.

Develop analytical skills.

You can do this by learning to break down complex problems into manageable parts, recognize patterns and identify cause-and-effect relationships. Remember, not all opinions are equal, and some are flat-out wrong.

Evaluate information.

Develop skills to evaluate the credibility and reliability of information sources. Be aware of bias, assess evidence and differentiate between fact and opinion. Guard against "swallowing information whole" or believing that "If it's on the internet, it must be true."

Practice reflection.

Engage in reflective thinking by evaluating your thoughts, beliefs and assumptions. Consider alternative viewpoints, and be open to changing your perspective based on new information.

Embrace intellectual humility.

Be humble and aware that you could be wrong. Knowledge is an ongoing process; be open to admitting mistakes or gaps in understanding. Embrace a growth mindset that values continuous learning and improvement.

Develop your sense of belonging.

The third tier in Maslow's hierarchy of needs is a sense of belonging. One aspect of belonging is connection. All humans have this need. Without critical thinking, we are vulnerable to making our group's beliefs our own rather than evaluating which beliefs align with our values.

Align your view and your values.

Rather than defining yourself by a particular view, ask whether a different view aligns with your values. When we identify ourselves by the beliefs of our reference group (religious, political, etc.), we look for ways to justify our ideas. In doing so, we deny ourselves access to critical thinking.

Evidence Of Critical Thinking

When you practice critical thinking, it will be evident in several areas:

Evidence-Based Decision-Making

Rely on facts rather than emotions or personal biases. Follow five distinct steps, called the five A’s : ask, access, appraise, apply and audit. Gather relevant information, evaluate the evidence objectively and consider different perspectives before making decisions. Then reevaluate them as you learn new information.

Problem-Solving

Approach problems systematically by defining the issue, gathering relevant data, brainstorming potential solutions and evaluating feasibility. Engage in collaborative problem-solving to benefit from diverse perspectives. Open-mindedly consider alternative systems of thought. Recognize assumptions, implications and practical consequences, then adjust as needed.

Effective Communication

Solve complex problems by clearly and effectively communicating with others. Utilize critical thinking skills to articulate your thoughts clearly, listen actively and engage in respectful and constructive dialogue. Challenge ideas through logical arguments and evidence rather than resorting to personal attacks. Respecting people with different views does not mean you agree with their opinions. Evaluate, formulate and communicate questions with clarity and precision.

Continuous Learning

Apply critical thinking to ongoing personal and professional development. Seek opportunities for further education, engage in intellectual discourse and actively challenge your beliefs and assumptions.

Using Critical Thinking

Critical thinking is a powerful cognitive tool that empowers individuals to navigate the complexities of the modern world. Critical thinking enhances decision-making, problem-solving and communication abilities by fostering logical reasoning, analytical skills and an open mindset. It enables individuals to overcome cognitive biases, evaluate information effectively and make informed choices. Cultivating and applying critical thinking skills benefits individuals and contributes to a more thoughtful and rational society. Embracing critical thinking is essential for fostering intellectual growth, facilitating progress and addressing the challenges of the 21st century.

Forbes Coaches Council is an invitation-only community for leading business and career coaches. Do I qualify?

Ron Young

  • Editorial Standards
  • Reprints & Permissions

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List

Logo of jintell

Critical Thinking: A Model of Intelligence for Solving Real-World Problems

Diane f. halpern.

1 Department of Psychology, Claremont McKenna College, Emerita, Altadena, CA 91001, USA

Dana S. Dunn

2 Department of Psychology, Moravian College, Bethlehem, PA 18018, USA; ude.naivarom@nnud

Most theories of intelligence do not directly address the question of whether people with high intelligence can successfully solve real world problems. A high IQ is correlated with many important outcomes (e.g., academic prominence, reduced crime), but it does not protect against cognitive biases, partisan thinking, reactance, or confirmation bias, among others. There are several newer theories that directly address the question about solving real-world problems. Prominent among them is Sternberg’s adaptive intelligence with “adaptation to the environment” as the central premise, a construct that does not exist on standardized IQ tests. Similarly, some scholars argue that standardized tests of intelligence are not measures of rational thought—the sort of skill/ability that would be needed to address complex real-world problems. Other investigators advocate for critical thinking as a model of intelligence specifically designed for addressing real-world problems. Yes, intelligence (i.e., critical thinking) can be enhanced and used for solving a real-world problem such as COVID-19, which we use as an example of contemporary problems that need a new approach.

1. Introduction

The editors of this Special Issue asked authors to respond to a deceptively simple statement: “How Intelligence Can Be a Solution to Consequential World Problems.” This statement holds many complexities, including how intelligence is defined and which theories are designed to address real-world problems.

2. The Problem with Using Standardized IQ Measures for Real-World Problems

For the most part, we identify high intelligence as having a high score on a standardized test of intelligence. Like any test score, IQ can only reflect what is on the given test. Most contemporary standardized measures of intelligence include vocabulary, working memory, spatial skills, analogies, processing speed, and puzzle-like elements (e.g., Wechsler Adult Intelligence Scale Fourth Edition; see ( Drozdick et al. 2012 )). Measures of IQ correlate with many important outcomes, including academic performance ( Kretzschmar et al. 2016 ), job-related skills ( Hunter and Schmidt 1996 ), reduced likelihood of criminal behavior ( Burhan et al. 2014 ), and for those with exceptionally high IQs, obtaining a doctorate and publishing scholarly articles ( McCabe et al. 2020 ). Gottfredson ( 1997, p. 81 ) summarized these effects when she said the “predictive validity of g is ubiquitous.” More recent research using longitudinal data, found that general mental abilities and specific abilities are good predictors of several work variables including job prestige, and income ( Lang and Kell 2020 ). Although assessments of IQ are useful in many contexts, having a high IQ does not protect against falling for common cognitive fallacies (e.g., blind spot bias, reactance, anecdotal reasoning), relying on biased and blatantly one-sided information sources, failing to consider information that does not conform to one’s preferred view of reality (confirmation bias), resisting pressure to think and act in a certain way, among others. This point was clearly articulated by Stanovich ( 2009, p. 3 ) when he stated that,” IQ tests measure only a small set of the thinking abilities that people need.”

3. Which Theories of Intelligence Are Relevant to the Question?

Most theories of intelligence do not directly address the question of whether people with high intelligence can successfully solve real world problems. For example, Grossmann et al. ( 2013 ) cite many studies in which IQ scores have not predicted well-being, including life satisfaction and longevity. Using a stratified random sample of Americans, these investigators found that wise reasoning is associated with life satisfaction, and that “there was no association between intelligence and well-being” (p. 944). (critical thinking [CT] is often referred to as “wise reasoning” or “rational thinking,”). Similar results were reported by Wirthwein and Rost ( 2011 ) who compared life satisfaction in several domains for gifted adults and adults of average intelligence. There were no differences in any of the measures of subjective well-being, except for leisure, which was significantly lower for the gifted adults. Additional research in a series of experiments by Stanovich and West ( 2008 ) found that participants with high cognitive ability were as likely as others to endorse positions that are consistent with their biases, and they were equally likely to prefer one-sided arguments over those that provided a balanced argument. There are several newer theories that directly address the question about solving real-world problems. Prominent among them is Sternberg’s adaptive intelligence with “adaptation to the environment” as the central premise, a construct that does not exist on standardized IQ tests (e.g., Sternberg 2019 ). Similarly, Stanovich and West ( 2014 ) argue that standardized tests of intelligence are not measures of rational thought—the sort of skill/ability that would be needed to address complex real-world problems. Halpern and Butler ( 2020 ) advocate for CT as a useful model of intelligence for addressing real-world problems because it was designed for this purpose. Although there is much overlap among these more recent theories, often using different terms for similar concepts, we use Halpern and Butler’s conceptualization to make our point: Yes, intelligence (i.e., CT) can be enhanced and used for solving a real-world problem like COVID-19.

4. Critical Thinking as an Applied Model for Intelligence

One definition of intelligence that directly addresses the question about intelligence and real-world problem solving comes from Nickerson ( 2020, p. 205 ): “the ability to learn, to reason well, to solve novel problems, and to deal effectively with novel problems—often unpredictable—that confront one in daily life.” Using this definition, the question of whether intelligent thinking can solve a world problem like the novel coronavirus is a resounding “yes” because solutions to real-world novel problems are part of his definition. This is a popular idea in the general public. For example, over 1000 business managers and hiring executives said that they want employees who can think critically based on the belief that CT skills will help them solve work-related problems ( Hart Research Associates 2018 ).

We define CT as the use of those cognitive skills or strategies that increase the probability of a desirable outcome. It is used to describe thinking that is purposeful, reasoned, and goal directed--the kind of thinking involved in solving problems, formulating inferences, calculating likelihoods, and making decisions, when the thinker is using skills that are thoughtful and effective for the particular context and type of thinking task. International surveys conducted by the OECD ( 2019, p. 16 ) established “key information-processing competencies” that are “highly transferable, in that they are relevant to many social contexts and work situations; and ‘learnable’ and therefore subject to the influence of policy.” One of these skills is problem solving, which is one subset of CT skills.

The CT model of intelligence is comprised of two components: (1) understanding information at a deep, meaningful level and (2) appropriate use of CT skills. The underlying idea is that CT skills can be identified, taught, and learned, and when they are recognized and applied in novel settings, the individual is demonstrating intelligent thought. CT skills include judging the credibility of an information source, making cost–benefit calculations, recognizing regression to the mean, understanding the limits of extrapolation, muting reactance responses, using analogical reasoning, rating the strength of reasons that support and fail to support a conclusion, and recognizing hindsight bias or confirmation bias, among others. Critical thinkers use these skills appropriately, without prompting, and usually with conscious intent in a variety of settings.

One of the key concepts in this model is that CT skills transfer in appropriate situations. Thus, assessments using situational judgments are needed to assess whether particular skills have transferred to a novel situation where it is appropriate. In an assessment created by the first author ( Halpern 2018 ), short paragraphs provide information about 20 different everyday scenarios (e.g., A speaker at the meeting of your local school board reported that when drug use rises, grades decline; so schools need to enforce a “war on drugs” to improve student grades); participants provide two response formats for every scenario: (a) constructed responses where they respond with short written responses, followed by (b) forced choice responses (e.g., multiple choice, rating or ranking of alternatives) for the same situations.

There is a large and growing empirical literature to support the assertion that CT skills can be learned and will transfer (when taught for transfer). See for example, Holmes et al. ( 2015 ), who wrote in the prestigious Proceedings of the National Academy of Sciences , that there was “significant and sustained improvement in students’ critical thinking behavior” (p. 11,199) for students who received CT instruction. Abrami et al. ( 2015, para. 1 ) concluded from a meta-analysis that “there are effective strategies for teaching CT skills, both generic and content specific, and CT dispositions, at all educational levels and across all disciplinary areas.” Abrami et al. ( 2008, para. 1 ), included 341 effect sizes in a meta-analysis. They wrote: “findings make it clear that improvement in students’ CT skills and dispositions cannot be a matter of implicit expectation.” A strong test of whether CT skills can be used for real-word problems comes from research by Butler et al. ( 2017 ). Community adults and college students (N = 244) completed several scales including an assessment of CT, an intelligence test, and an inventory of real-life events. Both CT scores and intelligence scores predicted individual outcomes on the inventory of real-life events, but CT was a stronger predictor.

Heijltjes et al. ( 2015, p. 487 ) randomly assigned participants to either a CT instruction group or one of six other control conditions. They found that “only participants assigned to CT instruction improved their reasoning skills.” Similarly, when Halpern et al. ( 2012 ) used random assignment of participants to either a learning group where they were taught scientific reasoning skills using a game format or a control condition (which also used computerized learning and was similar in length), participants in the scientific skills learning group showed higher proportional learning gains than students who did not play the game. As the body of additional supportive research is too large to report here, interested readers can find additional lists of CT skills and support for the assertion that these skills can be learned and will transfer in Halpern and Dunn ( Forthcoming ). There is a clear need for more high-quality research on the application and transfer of CT and its relationship to IQ.

5. Pandemics: COVID-19 as a Consequential Real-World Problem

A pandemic occurs when a disease runs rampant over an entire country or even the world. Pandemics have occurred throughout history: At the time of writing this article, COVID-19 is a world-wide pandemic whose actual death rate is unknown but estimated with projections of several million over the course of 2021 and beyond ( Mega 2020 ). Although vaccines are available, it will take some time to inoculate most or much of the world’s population. Since March 2020, national and international health agencies have created a list of actions that can slow and hopefully stop the spread of COVID (e.g., wearing face masks, practicing social distancing, avoiding group gatherings), yet many people in the United States and other countries have resisted their advice.

Could instruction in CT encourage more people to accept and comply with simple life-saving measures? There are many possible reasons to believe that by increasing citizens’ CT abilities, this problematic trend can be reversed for, at least, some unknown percentage of the population. We recognize the long history of social and cognitive research showing that changing attitudes and behaviors is difficult, and it would be unrealistic to expect that individuals with extreme beliefs supported by their social group and consistent with their political ideologies are likely to change. For example, an Iranian cleric and an orthodox rabbi both claimed (separately) that the COVID-19 vaccine can make people gay ( Marr 2021 ). These unfounded opinions are based on deeply held prejudicial beliefs that we expect to be resistant to CT. We are targeting those individuals who beliefs are less extreme and may be based on reasonable reservations, such as concern about the hasty development of the vaccine and the lack of long-term data on its effects. There should be some unknown proportion of individuals who can change their COVID-19-related beliefs and actions with appropriate instruction in CT. CT can be a (partial) antidote for the chaos of the modern world with armies of bots creating content on social media, political and other forces deliberately attempting to confuse issues, and almost all media labeled “fake news” by social influencers (i.e., people with followers that sometimes run to millions on various social media). Here, are some CT skills that could be helpful in getting more people to think more critically about pandemic-related issues.

Reasoning by Analogy and Judging the Credibility of the Source of Information

Early communications about the ability of masks to prevent the spread of COVID from national health agencies were not consistent. In many regions of the world, the benefits of wearing masks incited prolonged and acrimonious debates ( Tang 2020 ). However, after the initial confusion, virtually all of the global and national health organizations (e.g., WHO, National Health Service in the U. K., U. S. Centers for Disease Control and Prevention) endorse masks as a way to slow the spread of COVID ( Cheng et al. 2020 ; Chu et al. 2020 ). However, as we know, some people do not trust governmental agencies and often cite the conflicting information that was originally given as a reason for not wearing a mask. There are varied reasons for refusing to wear a mask, but the one most often cited is that it is against civil liberties ( Smith 2020 ). Reasoning by analogy is an appropriate CT skill for evaluating this belief (and a key skill in legal thinking). It might be useful to cite some of the many laws that already regulate our behavior such as, requiring health inspections for restaurants, setting speed limits, mandating seat belts when riding in a car, and establishing the age at which someone can consume alcohol. Individuals would be asked to consider how the mandate to wear a mask compares to these and other regulatory laws.

Another reason why some people resist the measures suggested by virtually every health agency concerns questions about whom to believe. Could training in CT change the beliefs and actions of even a small percentage of those opposed to wearing masks? Such training would include considering the following questions with practice across a wide domain of knowledge: (a) Does the source have sufficient expertise? (b) Is the expertise recent and relevant? (c) Is there a potential for gain by the information source, such as financial gain? (d) What would the ideal information source be and how close is the current source to the ideal? (e) Does the information source offer evidence that what they are recommending is likely to be correct? (f) Have you traced URLs to determine if the information in front of you really came from the alleged source?, etc. Of course, not everyone will respond in the same way to each question, so there is little likelihood that we would all think alike, but these questions provide a framework for evaluating credibility. Donovan et al. ( 2015 ) were successful using a similar approach to improve dynamic decision-making by asking participants to reflect on questions that relate to the decision. Imagine the effect of rigorous large-scale education in CT from elementary through secondary schools, as well as at the university-level. As stated above, empirical evidence has shown that people can become better thinkers with appropriate instruction in CT. With training, could we encourage some portion of the population to become more astute at judging the credibility of a source of information? It is an experiment worth trying.

6. Making Cost—Benefit Assessments for Actions That Would Slow the Spread of COVID-19

Historical records show that refusal to wear a mask during a pandemic is not a new reaction. The epidemic of 1918 also included mandates to wear masks, which drew public backlash. Then, as now, many people refused, even when they were told that it was a symbol of “wartime patriotism” because the 1918 pandemic occurred during World War I ( Lovelace 2020 ). CT instruction would include instruction in why and how to compute cost–benefit analyses. Estimates of “lives saved” by wearing a mask can be made meaningful with graphical displays that allow more people to understand large numbers. Gigerenzer ( 2020 ) found that people can understand risk ratios in medicine when the numbers are presented as frequencies instead of probabilities. If this information were used when presenting the likelihood of illness and death from COVID-19, could we increase the numbers of people who understand the severity of this disease? Small scale studies by Gigerenzer have shown that it is possible.

Analyzing Arguments to Determine Degree of Support for a Conclusion

The process of analyzing arguments requires that individuals rate the strength of support for and against a conclusion. By engaging in this practice, they must consider evidence and reasoning that may run counter to a preferred outcome. Kozyreva et al. ( 2020 ) call the deliberate failure to consider both supporting and conflicting data “deliberate ignorance”—avoiding or failing to consider information that could be useful in decision-making because it may collide with an existing belief. When applied to COVID-19, people would have to decide if the evidence for and against wearing a face mask is a reasonable way to stop the spread of this disease, and if they conclude that it is not, what are the costs and benefits of not wearing masks at a time when governmental health organizations are making them mandatory in public spaces? Again, we wonder if rigorous and systematic instruction in argument analysis would result in more positive attitudes and behaviors that relate to wearing a mask or other real-world problems. We believe that it is an experiment worth doing.

7. Conclusions

We believe that teaching CT is a worthwhile approach for educating the general public in order to improve reasoning and motivate actions to address, avert, or ameliorate real-world problems like the COVID-19 pandemic. Evidence suggests that CT can guide intelligent responses to societal and global problems. We are NOT claiming that CT skills will be a universal solution for the many real-world problems that we confront in contemporary society, or that everyone will substitute CT for other decision-making practices, but we do believe that systematic education in CT can help many people become better thinkers, and we believe that this is an important step toward creating a society that values and practices routine CT. The challenges are great, but the tools to tackle them are available, if we are willing to use them.

Author Contributions

Conceptualization, D.F.H. and D.S.D.; resources, D.F.H.; data curation, writing—original draft preparation, D.F.H.; writing—review and editing, D.F.H. and D.S.D. All authors have read and agreed to the published version of the manuscript.

This research received no external funding.

Institutional Review Board Statement

No IRB Review.

Informed Consent Statement

No Informed Consent.

Conflicts of Interest

The authors declare no conflict of interest.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

  • Abrami Philip C., Bernard Robert M., Borokhovski Evgueni, Wade C. Anne, Surkes Michael A., Tamim Rana, Zhang Dai. Instructional interventions affecting critical thinking skills and dispositions: A Stage 1 meta-analysis. Review of Educational Research. 2008; 78 :1102–34. doi: 10.3102/0034654308326084. [ CrossRef ] [ Google Scholar ]
  • Abrami Philip C., Bernard Robert M., Borokhovski Evgueni, Waddington David I., Wade C. Anne. Strategies for teaching students to think critically: A meta-analysis. Review of Educational Research. 2015; 85 :275–341. doi: 10.3102/0034654314551063. [ CrossRef ] [ Google Scholar ]
  • Burhan Nik Ahmad Sufian, Kurniawan Yohan, Sidek Abdul Halim, Mohamad Mohd Rosli. Crimes and the Bell curve: Th e role of people with high, average, and low intelligence. Intelligence. 2014; 47 :12–22. doi: 10.1016/j.intell.2014.08.005. [ CrossRef ] [ Google Scholar ]
  • Butler Heather A., Pentoney Christopher, Bong Maebelle P. Predicting real-world outcomes: Critical thinking ability is a better predictor of life decisions than intelligence. Thinking Skills and Creativity. 2017; 25 :38–46. doi: 10.1016/j.tsc.2017.06.005. [ CrossRef ] [ Google Scholar ]
  • Cheng Vincent Chi-Chung, Wong Shuk-Ching, Chuang Vivien Wai-Man, So Simon Yung-Chun, Chen Jonathan Hon-Kwan, Sridhar Sidharth, To Kelvin Kai-Wwang, Chan Jasper Fuk-Wu, Hung Ivan Fan-Ngai, Ho Pak-Leung, et al. The role of community-wide wearing of face mask for control of coronavirus disease 2019 (COVID-19) epidemic due to SARS-CoV-2. Journal of Infectious Disease. 2020; 81 :107–14. doi: 10.1016/j.jinf.2020.04.024. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Chu Derek K., Aki Elie A., Duda Stephanie, Solo Karla, Yaacoub Sally, Schunemann Holger J. Physical distancing, face masks, and eye protection to prevent person-to-person transmission of SARS-CoV-2 and COVID-19: A system atic review and meta-analysis. Lancet. 2020; 395 :1973–87. doi: 10.1016/S0140-6736(20)31142-9. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Donovan Sarah J., Guss C. Dominick, Naslund Dag. Improving dynamic decision-making through training and self-re flection. Judgment and Decision Making. 2015; 10 :284–95. [ Google Scholar ]
  • Drozdick Lisa Whipple, Wahlstrom Dustin, Zhu Jianjun, Weiss Lawrence G. The Wechsler Adult Intelligence Scale—Fourth Edition and the Wechsler Memory Scale—Fourth Edition. In: Flanagan Dawn P., Harrison Patti L., editors. Contemporary Intellectual as Sessment: Theories, Tests, and Issues. The Guilford Press; New York: 2012. pp. 197–223. [ Google Scholar ]
  • Gigerenzer Gerd. When all is just a click away: Is critical thinking obsolete in the digital age? In: Sternberg Robert J., Halpern Diane F., editors. Critical Thinking IN Psychology. 2nd ed. Cambridge University Press; Cambridge: 2020. pp. 197–223. [ Google Scholar ]
  • Gottfredson Linda S. Why g matters: The complexity of everyday life. Intelligence. 1997; 24 :79–132. doi: 10.1016/S0160-2896(97)90014-3. [ CrossRef ] [ Google Scholar ]
  • Grossmann Igor, Varnum Michael E. W., Na Jinkyung, Kitayama Shinobu, Nisbett Richard E. A route to well-being: Intelligence ver sus wise reasoning. Journal of Experimental Psychology: General. 2013; 142 :944–53. doi: 10.1037/a0029560. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Halpern Diane F. Halpern Critical Thinking Assessment. Schuhfried Test Publishers; Modling: 2018. [(accessed on 30 March 2021)]. Available online: www.schuhfried.com [ Google Scholar ]
  • Halpern Diane F., Butler Heather A. Is critical thinking a better model of intelligence? In: Sternberg Robert J., editor. The nature of Intelligence. 2nd ed. Cambridge University Press; Cambridge: 2020. pp. 183–96. [ Google Scholar ]
  • Halpern Diane F., Dunn Dana S. Thought and Knowledge: An Introduction to Critical Thinking. 6th ed. Taylor & Francis; New York: Forthcoming. in press. [ Google Scholar ]
  • Halpern Diane F., Millis Keith, Graesser Arthur, Butler Heather, Forsyth Carol, Cai Zhiqiang. Operation ARA: A computerized learn ing game that teaches critical thinking and scientific reasoning. Thinking Skills and Creativity. 2012; 7 :93–100. doi: 10.1016/j.tsc.2012.03.006. [ CrossRef ] [ Google Scholar ]
  • Hart Research Associates [(accessed on 30 March 2021)]; Employers Express Confidence in Colleges and Universities: See College as Worth the Investment, New Research Finds. 2018 Aug 29; Available online: https://hartresearch.com/employers-express-confidence-in-colleges-and-universities-see-college-as-worth-the-investment-new-research-finds/
  • Heijltjes Anita, Gog Tamara van, Lippink Jimmie, Paas Fred. Unraveling the effects of critical thinking instructions, practice, and self-explanation on students’ reasoning performance. Instructional Science. 2015; 43 :487–506. doi: 10.1007/s11251-015-9347-8. [ CrossRef ] [ Google Scholar ]
  • Holmes Natasha G., Wieman Carl E., Bonn DougA. Teaching critical thinking. Proceedings of the National Academy of Sciences. 2015; 112 :11199–204. doi: 10.1073/pnas.1505329112. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Hunter John E., Schmidt Frank L. Intelligence and job performance: Economic and social implications. Psychology, Public Policy, and Law. 1996; 2 :447–72. doi: 10.1037/1076-8971.2.3-4.447. [ CrossRef ] [ Google Scholar ]
  • Kozyreva Anastasia, Lewandowsky Stephan, Hertwig Ralph. Citizens versus the internet: Confronting digital challenges with cognitive tools. [(accessed on 30 March 2021)]; Psychological Science in the Public Interest. 2020 21 doi: 10.1177/1529100620946707. Available online: https://www.psychologi calscience.org/publications/confronting-digital-challenges-with-cognitive-tools.html [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Kretzschmar Andre, Neubert Jonas C., Wusternberg Sascha, Greiff Samuel. Construct validity of complex problem- solv ing: A comprehensive view on different facts of intelligence and school grades. Intelligence. 2016; 54 :55–69. doi: 10.1016/j.intell.2015.11.004. [ CrossRef ] [ Google Scholar ]
  • Lang Jonas W.B., Kell Harrison J. General mental ability and specific abilities: Their relative importance for extrinsic career success. Journal of Applied Psychology. 2020; 105 :1047–61. doi: 10.1037/apl0000472. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Lovelace Berkeley., Jr. Medical Historians Compare the Coronavirus to the 1918 Flu Pandemic: Both Were Highly Political. [(accessed on 30 March 2021)]; CNBC. 2020 Available online: https://www.cnbc.com/2020/09/28/comparing-1918-flu-vs-corona virus.html?fbclid=IwAR1RAVRUOIdN9qqvNnMPimf5Q4XfV-pn_qdC3DwcfnPu9kavwumDI2zq9Xs
  • Marr Rhuaridh. Iranian Cleric Claims COVID-19 Vaccine Can Make People Gay. [(accessed on 30 March 2021)]; Metro Weekly. 2021 Available online: https://www.metroweekly.com/2021/02/iranian-cleric-claims-covid-19-vaccine-can-make-people-gay/
  • McCabe Kira O., Lubinski David, Benbow Camilla P. Who shines most among the brightest?: A 25-year longitudinal study of elite STEM graduate students. Journal of Personality and Social Psychology. 2020; 119 :390–416. doi: 10.1037/pspp0000239. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Mega Emiliano R. COVID Has Killed more than One Million People. How Many more will Die? [(accessed on 30 March 2021)]; Nature. 2020 Available online: https://www.nature.com/articles/d41586-020-02762-y [ PubMed ]
  • Nickerson Raymond S. Developing intelligence through instruction. In: Sternberg Robert J., editor. The Cambridge Handbook of Intelligence. 2nd ed. Cambridge University Press; Cambridge: 2020. pp. 205–37. [ Google Scholar ]
  • OECD . The Survey of Adult Skills: Reader’s Companion. 3rd ed. OECD Publishing; Paris: 2019. OECD Skills Studies. [ CrossRef ] [ Google Scholar ]
  • Smith Matthew. Why won’t Britons Wear Face Masks? [(accessed on 30 March 2021)]; YouGov. 2020 Available online: https://yougov.co.uk/topics/health/articles-reports/2020/07/15/why-wont-britons-wear-face-masks
  • Stanovich Keith E. What Intelligence Tests Miss: The Psychology of Rational Thought. Yale University Press; New Haven: 2009. [ Google Scholar ]
  • Stanovich Keith E., West Richard F. On the failure of cognitive ability to predict my-side bias and one-sided thinking biases. Thinking & Reasoning. 2008; 14 :129–67. doi: 10.1080/13546780701679764. [ CrossRef ] [ Google Scholar ]
  • Stanovich Keith E., West Richard F. What intelligence tests miss. The Psychologist. 2014; 27 :80–83. doi: 10.5840/inquiryctnews201126216. [ CrossRef ] [ Google Scholar ]
  • Sternberg Robert J. A theory of adaptive intelligence and its relation to general intelligence. Journal of Intelligence. 2019; 7 :23. doi: 10.3390/jintelligence7040023. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Tang Julian W. COVID-19: Interpreting scientific evidence—Uncertainty, confusion, and delays. BMC Infectious Diseases. 2020; 20 :653. doi: 10.1186/s12879-020-05387-8. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Wirthwein Linda, Rost Detlef H. Giftedness and subjective well-being: A study with adults. Learning and Individuals Differences. 2011; 21 :182–86. doi: 10.1016/j.lindif.2011.01.001. [ CrossRef ] [ Google Scholar ]
  • Campus Life
  • ...a student.
  • ...a veteran.
  • ...an alum.
  • ...a parent.
  • ...faculty or staff.
  • Class Schedule
  • Crisis Resources
  • People Finder
  • Change Password

UTC RAVE Alert

Critical thinking and problem-solving, jump to: , what is critical thinking, characteristics of critical thinking, why teach critical thinking.

  • Teaching Strategies to Help Promote Critical Thinking Skills

References and Resources

When examining the vast literature on critical thinking, various definitions of critical thinking emerge. Here are some samples:

  • "Critical thinking is the intellectually disciplined process of actively and skillfully conceptualizing, applying, analyzing, synthesizing, and/or evaluating information gathered from, or generated by, observation, experience, reflection, reasoning, or communication, as a guide to belief and action" (Scriven, 1996).
  • "Most formal definitions characterize critical thinking as the intentional application of rational, higher order thinking skills, such as analysis, synthesis, problem recognition and problem solving, inference, and evaluation" (Angelo, 1995, p. 6).
  • "Critical thinking is thinking that assesses itself" (Center for Critical Thinking, 1996b).
  • "Critical thinking is the ability to think about one's thinking in such a way as 1. To recognize its strengths and weaknesses and, as a result, 2. To recast the thinking in improved form" (Center for Critical Thinking, 1996c).

Perhaps the simplest definition is offered by Beyer (1995) : "Critical thinking... means making reasoned judgments" (p. 8). Basically, Beyer sees critical thinking as using criteria to judge the quality of something, from cooking to a conclusion of a research paper. In essence, critical thinking is a disciplined manner of thought that a person uses to assess the validity of something (statements, news stories, arguments, research, etc.).

Back        

Wade (1995) identifies eight characteristics of critical thinking. Critical thinking involves asking questions, defining a problem, examining evidence, analyzing assumptions and biases, avoiding emotional reasoning, avoiding oversimplification, considering other interpretations, and tolerating ambiguity. Dealing with ambiguity is also seen by Strohm & Baukus (1995) as an essential part of critical thinking, "Ambiguity and doubt serve a critical-thinking function and are a necessary and even a productive part of the process" (p. 56).

Another characteristic of critical thinking identified by many sources is metacognition. Metacognition is thinking about one's own thinking. More specifically, "metacognition is being aware of one's thinking as one performs specific tasks and then using this awareness to control what one is doing" (Jones & Ratcliff, 1993, p. 10 ).

In the book, Critical Thinking, Beyer elaborately explains what he sees as essential aspects of critical thinking. These are:

  • Dispositions: Critical thinkers are skeptical, open-minded, value fair-mindedness, respect evidence and reasoning, respect clarity and precision, look at different points of view, and will change positions when reason leads them to do so.
  • Criteria: To think critically, must apply criteria. Need to have conditions that must be met for something to be judged as believable. Although the argument can be made that each subject area has different criteria, some standards apply to all subjects. "... an assertion must... be based on relevant, accurate facts; based on credible sources; precise; unbiased; free from logical fallacies; logically consistent; and strongly reasoned" (p. 12).
  • Argument: Is a statement or proposition with supporting evidence. Critical thinking involves identifying, evaluating, and constructing arguments.
  • Reasoning: The ability to infer a conclusion from one or multiple premises. To do so requires examining logical relationships among statements or data.
  • Point of View: The way one views the world, which shapes one's construction of meaning. In a search for understanding, critical thinkers view phenomena from many different points of view.
  • Procedures for Applying Criteria: Other types of thinking use a general procedure. Critical thinking makes use of many procedures. These procedures include asking questions, making judgments, and identifying assumptions.

Oliver & Utermohlen (1995) see students as too often being passive receptors of information. Through technology, the amount of information available today is massive. This information explosion is likely to continue in the future. Students need a guide to weed through the information and not just passively accept it. Students need to "develop and effectively apply critical thinking skills to their academic studies, to the complex problems that they will face, and to the critical choices they will be forced to make as a result of the information explosion and other rapid technological changes" (Oliver & Utermohlen, p. 1 ).

As mentioned in the section, Characteristics of Critical Thinking , critical thinking involves questioning. It is important to teach students how to ask good questions, to think critically, in order to continue the advancement of the very fields we are teaching. "Every field stays alive only to the extent that fresh questions are generated and taken seriously" (Center for Critical Thinking, 1996a ).

Beyer sees the teaching of critical thinking as important to the very state of our nation. He argues that to live successfully in a democracy, people must be able to think critically in order to make sound decisions about personal and civic affairs. If students learn to think critically, then they can use good thinking as the guide by which they live their lives.

Teaching Strategies to Help Promote Critical Thinking

The 1995, Volume 22, issue 1, of the journal, Teaching of Psychology , is devoted to the teaching critical thinking. Most of the strategies included in this section come from the various articles that compose this issue.

  • CATS (Classroom Assessment Techniques): Angelo stresses the use of ongoing classroom assessment as a way to monitor and facilitate students' critical thinking. An example of a CAT is to ask students to write a "Minute Paper" responding to questions such as "What was the most important thing you learned in today's class? What question related to this session remains uppermost in your mind?" The teacher selects some of the papers and prepares responses for the next class meeting.
  • Cooperative Learning Strategies: Cooper (1995) argues that putting students in group learning situations is the best way to foster critical thinking. "In properly structured cooperative learning environments, students perform more of the active, critical thinking with continuous support and feedback from other students and the teacher" (p. 8).
  • Case Study /Discussion Method: McDade (1995) describes this method as the teacher presenting a case (or story) to the class without a conclusion. Using prepared questions, the teacher then leads students through a discussion, allowing students to construct a conclusion for the case.
  • Using Questions: King (1995) identifies ways of using questions in the classroom:
  • Reciprocal Peer Questioning: Following lecture, the teacher displays a list of question stems (such as, "What are the strengths and weaknesses of...). Students must write questions about the lecture material. In small groups, the students ask each other the questions. Then, the whole class discusses some of the questions from each small group.
  • Reader's Questions: Require students to write questions on assigned reading and turn them in at the beginning of class. Select a few of the questions as the impetus for class discussion.
  • Conference Style Learning: The teacher does not "teach" the class in the sense of lecturing. The teacher is a facilitator of a conference. Students must thoroughly read all required material before class. Assigned readings should be in the zone of proximal development. That is, readings should be able to be understood by students, but also challenging. The class consists of the students asking questions of each other and discussing these questions. The teacher does not remain passive, but rather, helps "direct and mold discussions by posing strategic questions and helping students build on each others' ideas" (Underwood & Wald, 1995, p. 18 ).
  • Use Writing Assignments: Wade sees the use of writing as fundamental to developing critical thinking skills. "With written assignments, an instructor can encourage the development of dialectic reasoning by requiring students to argue both [or more] sides of an issue" (p. 24).
  • Written dialogues: Give students written dialogues to analyze. In small groups, students must identify the different viewpoints of each participant in the dialogue. Must look for biases, presence or exclusion of important evidence, alternative interpretations, misstatement of facts, and errors in reasoning. Each group must decide which view is the most reasonable. After coming to a conclusion, each group acts out their dialogue and explains their analysis of it.
  • Spontaneous Group Dialogue: One group of students are assigned roles to play in a discussion (such as leader, information giver, opinion seeker, and disagreer). Four observer groups are formed with the functions of determining what roles are being played by whom, identifying biases and errors in thinking, evaluating reasoning skills, and examining ethical implications of the content.
  • Ambiguity: Strohm & Baukus advocate producing much ambiguity in the classroom. Don't give students clear cut material. Give them conflicting information that they must think their way through.
  • Angelo, T. A. (1995). Beginning the dialogue: Thoughts on promoting critical thinking: Classroom assessment for critical thinking. Teaching of Psychology, 22(1), 6-7.
  • Beyer, B. K. (1995). Critical thinking. Bloomington, IN: Phi Delta Kappa Educational Foundation.
  • Center for Critical Thinking (1996a). The role of questions in thinking, teaching, and learning. [On-line]. Available HTTP: http://www.criticalthinking.org/University/univlibrary/library.nclk
  • Center for Critical Thinking (1996b). Structures for student self-assessment. [On-line]. Available HTTP: http://www.criticalthinking.org/University/univclass/trc.nclk
  • Center for Critical Thinking (1996c). Three definitions of critical thinking [On-line]. Available HTTP: http://www.criticalthinking.org/University/univlibrary/library.nclk
  • Cooper, J. L. (1995). Cooperative learning and critical thinking. Teaching of Psychology, 22(1), 7-8.
  • Jones, E. A. & Ratcliff, G. (1993). Critical thinking skills for college students. National Center on Postsecondary Teaching, Learning, and Assessment, University Park, PA. (Eric Document Reproduction Services No. ED 358 772)
  • King, A. (1995). Designing the instructional process to enhance critical thinking across the curriculum: Inquiring minds really do want to know: Using questioning to teach critical thinking. Teaching of Psychology, 22 (1) , 13-17.
  • McDade, S. A. (1995). Case study pedagogy to advance critical thinking. Teaching Psychology, 22(1), 9-10.
  • Oliver, H. & Utermohlen, R. (1995). An innovative teaching strategy: Using critical thinking to give students a guide to the future.(Eric Document Reproduction Services No. 389 702)
  • Robertson, J. F. & Rane-Szostak, D. (1996). Using dialogues to develop critical thinking skills: A practical approach. Journal of Adolescent & Adult Literacy, 39(7), 552-556.
  • Scriven, M. & Paul, R. (1996). Defining critical thinking: A draft statement for the National Council for Excellence in Critical Thinking. [On-line]. Available HTTP: http://www.criticalthinking.org/University/univlibrary/library.nclk
  • Strohm, S. M., & Baukus, R. A. (1995). Strategies for fostering critical thinking skills. Journalism and Mass Communication Educator, 50 (1), 55-62.
  • Underwood, M. K., & Wald, R. L. (1995). Conference-style learning: A method for fostering critical thinking with heart. Teaching Psychology, 22(1), 17-21.
  • Wade, C. (1995). Using writing to develop and assess critical thinking. Teaching of Psychology, 22(1), 24-28.

Other Reading

  • Bean, J. C. (1996). Engaging ideas: The professor's guide to integrating writing, critical thinking, & active learning in the classroom. Jossey-Bass.
  • Bernstein, D. A. (1995). A negotiation model for teaching critical thinking. Teaching of Psychology, 22(1), 22-24.
  • Carlson, E. R. (1995). Evaluating the credibility of sources. A missing link in the teaching of critical thinking. Teaching of Psychology, 22(1), 39-41.
  • Facione, P. A., Sanchez, C. A., Facione, N. C., & Gainen, J. (1995). The disposition toward critical thinking. The Journal of General Education, 44(1), 1-25.
  • Halpern, D. F., & Nummedal, S. G. (1995). Closing thoughts about helping students improve how they think. Teaching of Psychology, 22(1), 82-83.
  • Isbell, D. (1995). Teaching writing and research as inseparable: A faculty-librarian teaching team. Reference Services Review, 23(4), 51-62.
  • Jones, J. M. & Safrit, R. D. (1994). Developing critical thinking skills in adult learners through innovative distance learning. Paper presented at the International Conference on the practice of adult education and social development. Jinan, China. (Eric Document Reproduction Services No. ED 373 159)
  • Sanchez, M. A. (1995). Using critical-thinking principles as a guide to college-level instruction. Teaching of Psychology, 22(1), 72-74.
  • Spicer, K. L. & Hanks, W. E. (1995). Multiple measures of critical thinking skills and predisposition in assessment of critical thinking. Paper presented at the annual meeting of the Speech Communication Association, San Antonio, TX. (Eric Document Reproduction Services No. ED 391 185)
  • Terenzini, P. T., Springer, L., Pascarella, E. T., & Nora, A. (1995). Influences affecting the development of students' critical thinking skills. Research in Higher Education, 36(1), 23-39.

On the Internet

  • Carr, K. S. (1990). How can we teach critical thinking. Eric Digest. [On-line]. Available HTTP: http://ericps.ed.uiuc.edu/eece/pubs/digests/1990/carr90.html
  • The Center for Critical Thinking (1996). Home Page. Available HTTP: http://www.criticalthinking.org/University/
  • Ennis, Bob (No date). Critical thinking. [On-line], April 4, 1997. Available HTTP: http://www.cof.orst.edu/cof/teach/for442/ct.htm
  • Montclair State University (1995). Curriculum resource center. Critical thinking resources: An annotated bibliography. [On-line]. Available HTTP: http://www.montclair.edu/Pages/CRC/Bibliographies/CriticalThinking.html
  • No author, No date. Critical Thinking is ... [On-line], April 4, 1997. Available HTTP: http://library.usask.ca/ustudy/critical/
  • Sheridan, Marcia (No date). Internet education topics hotlink page. [On-line], April 4, 1997. Available HTTP: http://sun1.iusb.edu/~msherida/topics/critical.html

Walker Center for Teaching and Learning

  • 433 Library
  • Dept 4354
  • 615 McCallie Ave
  •   423-425-4188

University of Pennsylvania

  • Appointments

Career Fairs

  • Resume Reviews

Penn Career Services

  • Undergraduates
  • PhDs & Postdocs
  • Faculty & Staff
  • Prospective Students
  • Online Students
  • Career Champions
  • I’m Exploring
  • Architecture & Design
  • Education & Academia
  • Engineering
  • Fashion, Retail & Consumer Products
  • Fellowships & Gap Year
  • Fine Arts, Performing Arts, & Music
  • Government, Law & Public Policy
  • Healthcare & Public Health
  • International Relations & NGOs
  • Life & Physical Sciences
  • Marketing, Advertising & Public Relations
  • Media, Journalism & Entertainment
  • Non-Profits
  • Pre-Health, Pre-Law and Pre-Grad
  • Real Estate, Accounting, & Insurance
  • Social Work & Human Services
  • Sports & Hospitality
  • Startups, Entrepreneurship & Freelancing
  • Sustainability, Energy & Conservation
  • Technology, Data & Analytics
  • DACA and Undocumented Students
  • First Generation and Low Income Students
  • International Students
  • LGBTQ+ Students
  • Transfer Students
  • Students of Color
  • Students with Disabilities
  • Explore Careers & Industries
  • Make Connections & Network
  • Search for a Job or Internship
  • Write a Resume/CV
  • Write a Cover Letter
  • Engage with Employers
  • Research Salaries & Negotiate Offers
  • Find Funding
  • Develop Professional and Leadership Skills
  • Apply to Graduate School
  • Apply to Health Professions School
  • Apply to Law School
  • Self-Assessment
  • Experiences
  • Post-Graduate
  • Jobs & Internships
  • Career Fairs
  • For Employers
  • Meet the Team
  • Peer Career Advisors
  • Career Services Policies
  • Walk-Ins & Pop-Ins
  • Strategic Plan 2022-2025

Critical Thinking: A Simple Guide and Why It’s Important

  • Share This: Share Critical Thinking: A Simple Guide and Why It’s Important on Facebook Share Critical Thinking: A Simple Guide and Why It’s Important on LinkedIn Share Critical Thinking: A Simple Guide and Why It’s Important on X

Critical Thinking: A Simple Guide and Why It’s Important was originally published on Ivy Exec .

Strong critical thinking skills are crucial for career success, regardless of educational background. It embodies the ability to engage in astute and effective decision-making, lending invaluable dimensions to professional growth.

At its essence, critical thinking is the ability to analyze, evaluate, and synthesize information in a logical and reasoned manner. It’s not merely about accumulating knowledge but harnessing it effectively to make informed decisions and solve complex problems. In the dynamic landscape of modern careers, honing this skill is paramount.

The Impact of Critical Thinking on Your Career

☑ problem-solving mastery.

Visualize critical thinking as the Sherlock Holmes of your career journey. It facilitates swift problem resolution akin to a detective unraveling a mystery. By methodically analyzing situations and deconstructing complexities, critical thinkers emerge as adept problem solvers, rendering them invaluable assets in the workplace.

☑ Refined Decision-Making

Navigating dilemmas in your career path resembles traversing uncertain terrain. Critical thinking acts as a dependable GPS, steering you toward informed decisions. It involves weighing options, evaluating potential outcomes, and confidently choosing the most favorable path forward.

☑ Enhanced Teamwork Dynamics

Within collaborative settings, critical thinkers stand out as proactive contributors. They engage in scrutinizing ideas, proposing enhancements, and fostering meaningful contributions. Consequently, the team evolves into a dynamic hub of ideas, with the critical thinker recognized as the architect behind its success.

☑ Communication Prowess

Effective communication is the cornerstone of professional interactions. Critical thinking enriches communication skills, enabling the clear and logical articulation of ideas. Whether in emails, presentations, or casual conversations, individuals adept in critical thinking exude clarity, earning appreciation for their ability to convey thoughts seamlessly.

☑ Adaptability and Resilience

Perceptive individuals adept in critical thinking display resilience in the face of unforeseen challenges. Instead of succumbing to panic, they assess situations, recalibrate their approaches, and persist in moving forward despite adversity.

☑ Fostering Innovation

Innovation is the lifeblood of progressive organizations, and critical thinking serves as its catalyst. Proficient critical thinkers possess the ability to identify overlooked opportunities, propose inventive solutions, and streamline processes, thereby positioning their organizations at the forefront of innovation.

☑ Confidence Amplification

Critical thinkers exude confidence derived from honing their analytical skills. This self-assurance radiates during job interviews, presentations, and daily interactions, catching the attention of superiors and propelling career advancement.

So, how can one cultivate and harness this invaluable skill?

✅ developing curiosity and inquisitiveness:.

Embrace a curious mindset by questioning the status quo and exploring topics beyond your immediate scope. Cultivate an inquisitive approach to everyday situations. Encourage a habit of asking “why” and “how” to deepen understanding. Curiosity fuels the desire to seek information and alternative perspectives.

✅ Practice Reflection and Self-Awareness:

Engage in reflective thinking by assessing your thoughts, actions, and decisions. Regularly introspect to understand your biases, assumptions, and cognitive processes. Cultivate self-awareness to recognize personal prejudices or cognitive biases that might influence your thinking. This allows for a more objective analysis of situations.

✅ Strengthening Analytical Skills:

Practice breaking down complex problems into manageable components. Analyze each part systematically to understand the whole picture. Develop skills in data analysis, statistics, and logical reasoning. This includes understanding correlation versus causation, interpreting graphs, and evaluating statistical significance.

✅ Engaging in Active Listening and Observation:

Actively listen to diverse viewpoints without immediately forming judgments. Allow others to express their ideas fully before responding. Observe situations attentively, noticing details that others might overlook. This habit enhances your ability to analyze problems more comprehensively.

✅ Encouraging Intellectual Humility and Open-Mindedness:

Foster intellectual humility by acknowledging that you don’t know everything. Be open to learning from others, regardless of their position or expertise. Cultivate open-mindedness by actively seeking out perspectives different from your own. Engage in discussions with people holding diverse opinions to broaden your understanding.

✅ Practicing Problem-Solving and Decision-Making:

Engage in regular problem-solving exercises that challenge you to think creatively and analytically. This can include puzzles, riddles, or real-world scenarios. When making decisions, consciously evaluate available information, consider various alternatives, and anticipate potential outcomes before reaching a conclusion.

✅ Continuous Learning and Exposure to Varied Content:

Read extensively across diverse subjects and formats, exposing yourself to different viewpoints, cultures, and ways of thinking. Engage in courses, workshops, or seminars that stimulate critical thinking skills. Seek out opportunities for learning that challenge your existing beliefs.

✅ Engage in Constructive Disagreement and Debate:

Encourage healthy debates and discussions where differing opinions are respectfully debated.

This practice fosters the ability to defend your viewpoints logically while also being open to changing your perspective based on valid arguments. Embrace disagreement as an opportunity to learn rather than a conflict to win. Engaging in constructive debate sharpens your ability to evaluate and counter-arguments effectively.

✅ Utilize Problem-Based Learning and Real-World Applications:

Engage in problem-based learning activities that simulate real-world challenges. Work on projects or scenarios that require critical thinking skills to develop practical problem-solving approaches. Apply critical thinking in real-life situations whenever possible.

This could involve analyzing news articles, evaluating product reviews, or dissecting marketing strategies to understand their underlying rationale.

In conclusion, critical thinking is the linchpin of a successful career journey. It empowers individuals to navigate complexities, make informed decisions, and innovate in their respective domains. Embracing and honing this skill isn’t just an advantage; it’s a necessity in a world where adaptability and sound judgment reign supreme.

So, as you traverse your career path, remember that the ability to think critically is not just an asset but the differentiator that propels you toward excellence.

GCFGlobal Logo

  • Get started with computers
  • Learn Microsoft Office
  • Apply for a job
  • Improve my work skills
  • Design nice-looking docs
  • Getting Started
  • Smartphones & Tablets
  • Typing Tutorial
  • Online Learning
  • Basic Internet Skills
  • Online Safety
  • Social Media
  • Zoom Basics
  • Google Docs
  • Google Sheets
  • Career Planning
  • Resume Writing
  • Cover Letters
  • Job Search and Networking
  • Business Communication
  • Entrepreneurship 101
  • Careers without College
  • Job Hunt for Today
  • 3D Printing
  • Freelancing 101
  • Personal Finance
  • Sharing Economy
  • Decision-Making
  • Graphic Design
  • Photography
  • Image Editing
  • Learning WordPress
  • Language Learning
  • Critical Thinking
  • For Educators
  • Translations
  • Staff Picks
  • English expand_more expand_less

Critical Thinking and Decision-Making  - What is Critical Thinking?

Critical thinking and decision-making  -, what is critical thinking, critical thinking and decision-making what is critical thinking.

GCFLearnFree Logo

Critical Thinking and Decision-Making: What is Critical Thinking?

Lesson 1: what is critical thinking, what is critical thinking.

Critical thinking is a term that gets thrown around a lot. You've probably heard it used often throughout the years whether it was in school, at work, or in everyday conversation. But when you stop to think about it, what exactly is critical thinking and how do you do it ?

Watch the video below to learn more about critical thinking.

Simply put, critical thinking is the act of deliberately analyzing information so that you can make better judgements and decisions . It involves using things like logic, reasoning, and creativity, to draw conclusions and generally understand things better.

illustration of the terms logic, reasoning, and creativity

This may sound like a pretty broad definition, and that's because critical thinking is a broad skill that can be applied to so many different situations. You can use it to prepare for a job interview, manage your time better, make decisions about purchasing things, and so much more.

The process

illustration of "thoughts" inside a human brain, with several being connected and "analyzed"

As humans, we are constantly thinking . It's something we can't turn off. But not all of it is critical thinking. No one thinks critically 100% of the time... that would be pretty exhausting! Instead, it's an intentional process , something that we consciously use when we're presented with difficult problems or important decisions.

Improving your critical thinking

illustration of the questions "What do I currently know?" and "How do I know this?"

In order to become a better critical thinker, it's important to ask questions when you're presented with a problem or decision, before jumping to any conclusions. You can start with simple ones like What do I currently know? and How do I know this? These can help to give you a better idea of what you're working with and, in some cases, simplify more complex issues.  

Real-world applications

illustration of a hand holding a smartphone displaying an article that reads, "Study: Cats are better than dogs"

Let's take a look at how we can use critical thinking to evaluate online information . Say a friend of yours posts a news article on social media and you're drawn to its headline. If you were to use your everyday automatic thinking, you might accept it as fact and move on. But if you were thinking critically, you would first analyze the available information and ask some questions :

  • What's the source of this article?
  • Is the headline potentially misleading?
  • What are my friend's general beliefs?
  • Do their beliefs inform why they might have shared this?

illustration of "Super Cat Blog" and "According to survery of cat owners" being highlighted from an article on a smartphone

After analyzing all of this information, you can draw a conclusion about whether or not you think the article is trustworthy.

Critical thinking has a wide range of real-world applications . It can help you to make better decisions, become more hireable, and generally better understand the world around you.

illustration of a lightbulb, a briefcase, and the world

/en/problem-solving-and-decision-making/why-is-it-so-hard-to-make-decisions/content/

Classroom Q&A

With larry ferlazzo.

In this EdWeek blog, an experiment in knowledge-gathering, Ferlazzo will address readers’ questions on classroom management, ELL instruction, lesson planning, and other issues facing teachers. Send your questions to [email protected]. Read more from this blog.

Eight Instructional Strategies for Promoting Critical Thinking

relevance of critical thinking and problem solving

  • Share article

(This is the first post in a three-part series.)

The new question-of-the-week is:

What is critical thinking and how can we integrate it into the classroom?

This three-part series will explore what critical thinking is, if it can be specifically taught and, if so, how can teachers do so in their classrooms.

Today’s guests are Dara Laws Savage, Patrick Brown, Meg Riordan, Ph.D., and Dr. PJ Caposey. Dara, Patrick, and Meg were also guests on my 10-minute BAM! Radio Show . You can also find a list of, and links to, previous shows here.

You might also be interested in The Best Resources On Teaching & Learning Critical Thinking In The Classroom .

Current Events

Dara Laws Savage is an English teacher at the Early College High School at Delaware State University, where she serves as a teacher and instructional coach and lead mentor. Dara has been teaching for 25 years (career preparation, English, photography, yearbook, newspaper, and graphic design) and has presented nationally on project-based learning and technology integration:

There is so much going on right now and there is an overload of information for us to process. Did you ever stop to think how our students are processing current events? They see news feeds, hear news reports, and scan photos and posts, but are they truly thinking about what they are hearing and seeing?

I tell my students that my job is not to give them answers but to teach them how to think about what they read and hear. So what is critical thinking and how can we integrate it into the classroom? There are just as many definitions of critical thinking as there are people trying to define it. However, the Critical Think Consortium focuses on the tools to create a thinking-based classroom rather than a definition: “Shape the climate to support thinking, create opportunities for thinking, build capacity to think, provide guidance to inform thinking.” Using these four criteria and pairing them with current events, teachers easily create learning spaces that thrive on thinking and keep students engaged.

One successful technique I use is the FIRE Write. Students are given a quote, a paragraph, an excerpt, or a photo from the headlines. Students are asked to F ocus and respond to the selection for three minutes. Next, students are asked to I dentify a phrase or section of the photo and write for two minutes. Third, students are asked to R eframe their response around a specific word, phrase, or section within their previous selection. Finally, students E xchange their thoughts with a classmate. Within the exchange, students also talk about how the selection connects to what we are covering in class.

There was a controversial Pepsi ad in 2017 involving Kylie Jenner and a protest with a police presence. The imagery in the photo was strikingly similar to a photo that went viral with a young lady standing opposite a police line. Using that image from a current event engaged my students and gave them the opportunity to critically think about events of the time.

Here are the two photos and a student response:

F - Focus on both photos and respond for three minutes

In the first picture, you see a strong and courageous black female, bravely standing in front of two officers in protest. She is risking her life to do so. Iesha Evans is simply proving to the world she does NOT mean less because she is black … and yet officers are there to stop her. She did not step down. In the picture below, you see Kendall Jenner handing a police officer a Pepsi. Maybe this wouldn’t be a big deal, except this was Pepsi’s weak, pathetic, and outrageous excuse of a commercial that belittles the whole movement of people fighting for their lives.

I - Identify a word or phrase, underline it, then write about it for two minutes

A white, privileged female in place of a fighting black woman was asking for trouble. A struggle we are continuously fighting every day, and they make a mockery of it. “I know what will work! Here Mr. Police Officer! Drink some Pepsi!” As if. Pepsi made a fool of themselves, and now their already dwindling fan base continues to ever shrink smaller.

R - Reframe your thoughts by choosing a different word, then write about that for one minute

You don’t know privilege until it’s gone. You don’t know privilege while it’s there—but you can and will be made accountable and aware. Don’t use it for evil. You are not stupid. Use it to do something. Kendall could’ve NOT done the commercial. Kendall could’ve released another commercial standing behind a black woman. Anything!

Exchange - Remember to discuss how this connects to our school song project and our previous discussions?

This connects two ways - 1) We want to convey a strong message. Be powerful. Show who we are. And Pepsi definitely tried. … Which leads to the second connection. 2) Not mess up and offend anyone, as had the one alma mater had been linked to black minstrels. We want to be amazing, but we have to be smart and careful and make sure we include everyone who goes to our school and everyone who may go to our school.

As a final step, students read and annotate the full article and compare it to their initial response.

Using current events and critical-thinking strategies like FIRE writing helps create a learning space where thinking is the goal rather than a score on a multiple-choice assessment. Critical-thinking skills can cross over to any of students’ other courses and into life outside the classroom. After all, we as teachers want to help the whole student be successful, and critical thinking is an important part of navigating life after they leave our classrooms.

usingdaratwo

‘Before-Explore-Explain’

Patrick Brown is the executive director of STEM and CTE for the Fort Zumwalt school district in Missouri and an experienced educator and author :

Planning for critical thinking focuses on teaching the most crucial science concepts, practices, and logical-thinking skills as well as the best use of instructional time. One way to ensure that lessons maintain a focus on critical thinking is to focus on the instructional sequence used to teach.

Explore-before-explain teaching is all about promoting critical thinking for learners to better prepare students for the reality of their world. What having an explore-before-explain mindset means is that in our planning, we prioritize giving students firsthand experiences with data, allow students to construct evidence-based claims that focus on conceptual understanding, and challenge students to discuss and think about the why behind phenomena.

Just think of the critical thinking that has to occur for students to construct a scientific claim. 1) They need the opportunity to collect data, analyze it, and determine how to make sense of what the data may mean. 2) With data in hand, students can begin thinking about the validity and reliability of their experience and information collected. 3) They can consider what differences, if any, they might have if they completed the investigation again. 4) They can scrutinize outlying data points for they may be an artifact of a true difference that merits further exploration of a misstep in the procedure, measuring device, or measurement. All of these intellectual activities help them form more robust understanding and are evidence of their critical thinking.

In explore-before-explain teaching, all of these hard critical-thinking tasks come before teacher explanations of content. Whether we use discovery experiences, problem-based learning, and or inquiry-based activities, strategies that are geared toward helping students construct understanding promote critical thinking because students learn content by doing the practices valued in the field to generate knowledge.

explorebeforeexplain

An Issue of Equity

Meg Riordan, Ph.D., is the chief learning officer at The Possible Project, an out-of-school program that collaborates with youth to build entrepreneurial skills and mindsets and provides pathways to careers and long-term economic prosperity. She has been in the field of education for over 25 years as a middle and high school teacher, school coach, college professor, regional director of N.Y.C. Outward Bound Schools, and director of external research with EL Education:

Although critical thinking often defies straightforward definition, most in the education field agree it consists of several components: reasoning, problem-solving, and decisionmaking, plus analysis and evaluation of information, such that multiple sides of an issue can be explored. It also includes dispositions and “the willingness to apply critical-thinking principles, rather than fall back on existing unexamined beliefs, or simply believe what you’re told by authority figures.”

Despite variation in definitions, critical thinking is nonetheless promoted as an essential outcome of students’ learning—we want to see students and adults demonstrate it across all fields, professions, and in their personal lives. Yet there is simultaneously a rationing of opportunities in schools for students of color, students from under-resourced communities, and other historically marginalized groups to deeply learn and practice critical thinking.

For example, many of our most underserved students often spend class time filling out worksheets, promoting high compliance but low engagement, inquiry, critical thinking, or creation of new ideas. At a time in our world when college and careers are critical for participation in society and the global, knowledge-based economy, far too many students struggle within classrooms and schools that reinforce low-expectations and inequity.

If educators aim to prepare all students for an ever-evolving marketplace and develop skills that will be valued no matter what tomorrow’s jobs are, then we must move critical thinking to the forefront of classroom experiences. And educators must design learning to cultivate it.

So, what does that really look like?

Unpack and define critical thinking

To understand critical thinking, educators need to first unpack and define its components. What exactly are we looking for when we speak about reasoning or exploring multiple perspectives on an issue? How does problem-solving show up in English, math, science, art, or other disciplines—and how is it assessed? At Two Rivers, an EL Education school, the faculty identified five constructs of critical thinking, defined each, and created rubrics to generate a shared picture of quality for teachers and students. The rubrics were then adapted across grade levels to indicate students’ learning progressions.

At Avenues World School, critical thinking is one of the Avenues World Elements and is an enduring outcome embedded in students’ early experiences through 12th grade. For instance, a kindergarten student may be expected to “identify cause and effect in familiar contexts,” while an 8th grader should demonstrate the ability to “seek out sufficient evidence before accepting a claim as true,” “identify bias in claims and evidence,” and “reconsider strongly held points of view in light of new evidence.”

When faculty and students embrace a common vision of what critical thinking looks and sounds like and how it is assessed, educators can then explicitly design learning experiences that call for students to employ critical-thinking skills. This kind of work must occur across all schools and programs, especially those serving large numbers of students of color. As Linda Darling-Hammond asserts , “Schools that serve large numbers of students of color are least likely to offer the kind of curriculum needed to ... help students attain the [critical-thinking] skills needed in a knowledge work economy. ”

So, what can it look like to create those kinds of learning experiences?

Designing experiences for critical thinking

After defining a shared understanding of “what” critical thinking is and “how” it shows up across multiple disciplines and grade levels, it is essential to create learning experiences that impel students to cultivate, practice, and apply these skills. There are several levers that offer pathways for teachers to promote critical thinking in lessons:

1.Choose Compelling Topics: Keep it relevant

A key Common Core State Standard asks for students to “write arguments to support claims in an analysis of substantive topics or texts using valid reasoning and relevant and sufficient evidence.” That might not sound exciting or culturally relevant. But a learning experience designed for a 12th grade humanities class engaged learners in a compelling topic— policing in America —to analyze and evaluate multiple texts (including primary sources) and share the reasoning for their perspectives through discussion and writing. Students grappled with ideas and their beliefs and employed deep critical-thinking skills to develop arguments for their claims. Embedding critical-thinking skills in curriculum that students care about and connect with can ignite powerful learning experiences.

2. Make Local Connections: Keep it real

At The Possible Project , an out-of-school-time program designed to promote entrepreneurial skills and mindsets, students in a recent summer online program (modified from in-person due to COVID-19) explored the impact of COVID-19 on their communities and local BIPOC-owned businesses. They learned interviewing skills through a partnership with Everyday Boston , conducted virtual interviews with entrepreneurs, evaluated information from their interviews and local data, and examined their previously held beliefs. They created blog posts and videos to reflect on their learning and consider how their mindsets had changed as a result of the experience. In this way, we can design powerful community-based learning and invite students into productive struggle with multiple perspectives.

3. Create Authentic Projects: Keep it rigorous

At Big Picture Learning schools, students engage in internship-based learning experiences as a central part of their schooling. Their school-based adviser and internship-based mentor support them in developing real-world projects that promote deeper learning and critical-thinking skills. Such authentic experiences teach “young people to be thinkers, to be curious, to get from curiosity to creation … and it helps students design a learning experience that answers their questions, [providing an] opportunity to communicate it to a larger audience—a major indicator of postsecondary success.” Even in a remote environment, we can design projects that ask more of students than rote memorization and that spark critical thinking.

Our call to action is this: As educators, we need to make opportunities for critical thinking available not only to the affluent or those fortunate enough to be placed in advanced courses. The tools are available, let’s use them. Let’s interrogate our current curriculum and design learning experiences that engage all students in real, relevant, and rigorous experiences that require critical thinking and prepare them for promising postsecondary pathways.

letsinterrogate

Critical Thinking & Student Engagement

Dr. PJ Caposey is an award-winning educator, keynote speaker, consultant, and author of seven books who currently serves as the superintendent of schools for the award-winning Meridian CUSD 223 in northwest Illinois. You can find PJ on most social-media platforms as MCUSDSupe:

When I start my keynote on student engagement, I invite two people up on stage and give them each five paper balls to shoot at a garbage can also conveniently placed on stage. Contestant One shoots their shot, and the audience gives approval. Four out of 5 is a heckuva score. Then just before Contestant Two shoots, I blindfold them and start moving the garbage can back and forth. I usually try to ensure that they can at least make one of their shots. Nobody is successful in this unfair environment.

I thank them and send them back to their seats and then explain that this little activity was akin to student engagement. While we all know we want student engagement, we are shooting at different targets. More importantly, for teachers, it is near impossible for them to hit a target that is moving and that they cannot see.

Within the world of education and particularly as educational leaders, we have failed to simplify what student engagement looks like, and it is impossible to define or articulate what student engagement looks like if we cannot clearly articulate what critical thinking is and looks like in a classroom. Because, simply, without critical thought, there is no engagement.

The good news here is that critical thought has been defined and placed into taxonomies for decades already. This is not something new and not something that needs to be redefined. I am a Bloom’s person, but there is nothing wrong with DOK or some of the other taxonomies, either. To be precise, I am a huge fan of Daggett’s Rigor and Relevance Framework. I have used that as a core element of my practice for years, and it has shaped who I am as an instructional leader.

So, in order to explain critical thought, a teacher or a leader must familiarize themselves with these tried and true taxonomies. Easy, right? Yes, sort of. The issue is not understanding what critical thought is; it is the ability to integrate it into the classrooms. In order to do so, there are a four key steps every educator must take.

  • Integrating critical thought/rigor into a lesson does not happen by chance, it happens by design. Planning for critical thought and engagement is much different from planning for a traditional lesson. In order to plan for kids to think critically, you have to provide a base of knowledge and excellent prompts to allow them to explore their own thinking in order to analyze, evaluate, or synthesize information.
  • SIDE NOTE – Bloom’s verbs are a great way to start when writing objectives, but true planning will take you deeper than this.

QUESTIONING

  • If the questions and prompts given in a classroom have correct answers or if the teacher ends up answering their own questions, the lesson will lack critical thought and rigor.
  • Script five questions forcing higher-order thought prior to every lesson. Experienced teachers may not feel they need this, but it helps to create an effective habit.
  • If lessons are rigorous and assessments are not, students will do well on their assessments, and that may not be an accurate representation of the knowledge and skills they have mastered. If lessons are easy and assessments are rigorous, the exact opposite will happen. When deciding to increase critical thought, it must happen in all three phases of the game: planning, instruction, and assessment.

TALK TIME / CONTROL

  • To increase rigor, the teacher must DO LESS. This feels counterintuitive but is accurate. Rigorous lessons involving tons of critical thought must allow for students to work on their own, collaborate with peers, and connect their ideas. This cannot happen in a silent room except for the teacher talking. In order to increase rigor, decrease talk time and become comfortable with less control. Asking questions and giving prompts that lead to no true correct answer also means less control. This is a tough ask for some teachers. Explained differently, if you assign one assignment and get 30 very similar products, you have most likely assigned a low-rigor recipe. If you assign one assignment and get multiple varied products, then the students have had a chance to think deeply, and you have successfully integrated critical thought into your classroom.

integratingcaposey

Thanks to Dara, Patrick, Meg, and PJ for their contributions!

Please feel free to leave a comment with your reactions to the topic or directly to anything that has been said in this post.

Consider contributing a question to be answered in a future post. You can send one to me at [email protected] . When you send it in, let me know if I can use your real name if it’s selected or if you’d prefer remaining anonymous and have a pseudonym in mind.

You can also contact me on Twitter at @Larryferlazzo .

Education Week has published a collection of posts from this blog, along with new material, in an e-book form. It’s titled Classroom Management Q&As: Expert Strategies for Teaching .

Just a reminder; you can subscribe and receive updates from this blog via email (The RSS feed for this blog, and for all Ed Week articles, has been changed by the new redesign—new ones won’t be available until February). And if you missed any of the highlights from the first nine years of this blog, you can see a categorized list below.

  • This Year’s Most Popular Q&A Posts
  • Race & Racism in Schools
  • School Closures & the Coronavirus Crisis
  • Classroom-Management Advice
  • Best Ways to Begin the School Year
  • Best Ways to End the School Year
  • Student Motivation & Social-Emotional Learning
  • Implementing the Common Core
  • Facing Gender Challenges in Education
  • Teaching Social Studies
  • Cooperative & Collaborative Learning
  • Using Tech in the Classroom
  • Student Voices
  • Parent Engagement in Schools
  • Teaching English-Language Learners
  • Reading Instruction
  • Writing Instruction
  • Education Policy Issues
  • Differentiating Instruction
  • Math Instruction
  • Science Instruction
  • Advice for New Teachers
  • Author Interviews
  • Entering the Teaching Profession
  • The Inclusive Classroom
  • Learning & the Brain
  • Administrator Leadership
  • Teacher Leadership
  • Relationships in Schools
  • Professional Development
  • Instructional Strategies
  • Best of Classroom Q&A
  • Professional Collaboration
  • Classroom Organization
  • Mistakes in Education
  • Project-Based Learning

I am also creating a Twitter list including all contributors to this column .

The opinions expressed in Classroom Q&A With Larry Ferlazzo are strictly those of the author(s) and do not reflect the opinions or endorsement of Editorial Projects in Education, or any of its publications.

Sign Up for EdWeek Update

Edweek top school jobs.

A girl wearing a hooded sweatshirt backwards which hilariously obscures her face while donning sunglasses.

Sign Up & Sign In

module image 9

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • View all journals
  • Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • Review Article
  • Open access
  • Published: 11 January 2023

The effectiveness of collaborative problem solving in promoting students’ critical thinking: A meta-analysis based on empirical literature

  • Enwei Xu   ORCID: orcid.org/0000-0001-6424-8169 1 ,
  • Wei Wang 1 &
  • Qingxia Wang 1  

Humanities and Social Sciences Communications volume  10 , Article number:  16 ( 2023 ) Cite this article

18k Accesses

21 Citations

3 Altmetric

Metrics details

  • Science, technology and society

Collaborative problem-solving has been widely embraced in the classroom instruction of critical thinking, which is regarded as the core of curriculum reform based on key competencies in the field of education as well as a key competence for learners in the 21st century. However, the effectiveness of collaborative problem-solving in promoting students’ critical thinking remains uncertain. This current research presents the major findings of a meta-analysis of 36 pieces of the literature revealed in worldwide educational periodicals during the 21st century to identify the effectiveness of collaborative problem-solving in promoting students’ critical thinking and to determine, based on evidence, whether and to what extent collaborative problem solving can result in a rise or decrease in critical thinking. The findings show that (1) collaborative problem solving is an effective teaching approach to foster students’ critical thinking, with a significant overall effect size (ES = 0.82, z  = 12.78, P  < 0.01, 95% CI [0.69, 0.95]); (2) in respect to the dimensions of critical thinking, collaborative problem solving can significantly and successfully enhance students’ attitudinal tendencies (ES = 1.17, z  = 7.62, P  < 0.01, 95% CI[0.87, 1.47]); nevertheless, it falls short in terms of improving students’ cognitive skills, having only an upper-middle impact (ES = 0.70, z  = 11.55, P  < 0.01, 95% CI[0.58, 0.82]); and (3) the teaching type (chi 2  = 7.20, P  < 0.05), intervention duration (chi 2  = 12.18, P  < 0.01), subject area (chi 2  = 13.36, P  < 0.05), group size (chi 2  = 8.77, P  < 0.05), and learning scaffold (chi 2  = 9.03, P  < 0.01) all have an impact on critical thinking, and they can be viewed as important moderating factors that affect how critical thinking develops. On the basis of these results, recommendations are made for further study and instruction to better support students’ critical thinking in the context of collaborative problem-solving.

Similar content being viewed by others

relevance of critical thinking and problem solving

A meta-analysis of the effects of design thinking on student learning

relevance of critical thinking and problem solving

Fostering twenty-first century skills among primary school students through math project-based learning

relevance of critical thinking and problem solving

A meta-analysis to gauge the impact of pedagogies employed in mixed-ability high school biology classrooms

Introduction.

Although critical thinking has a long history in research, the concept of critical thinking, which is regarded as an essential competence for learners in the 21st century, has recently attracted more attention from researchers and teaching practitioners (National Research Council, 2012 ). Critical thinking should be the core of curriculum reform based on key competencies in the field of education (Peng and Deng, 2017 ) because students with critical thinking can not only understand the meaning of knowledge but also effectively solve practical problems in real life even after knowledge is forgotten (Kek and Huijser, 2011 ). The definition of critical thinking is not universal (Ennis, 1989 ; Castle, 2009 ; Niu et al., 2013 ). In general, the definition of critical thinking is a self-aware and self-regulated thought process (Facione, 1990 ; Niu et al., 2013 ). It refers to the cognitive skills needed to interpret, analyze, synthesize, reason, and evaluate information as well as the attitudinal tendency to apply these abilities (Halpern, 2001 ). The view that critical thinking can be taught and learned through curriculum teaching has been widely supported by many researchers (e.g., Kuncel, 2011 ; Leng and Lu, 2020 ), leading to educators’ efforts to foster it among students. In the field of teaching practice, there are three types of courses for teaching critical thinking (Ennis, 1989 ). The first is an independent curriculum in which critical thinking is taught and cultivated without involving the knowledge of specific disciplines; the second is an integrated curriculum in which critical thinking is integrated into the teaching of other disciplines as a clear teaching goal; and the third is a mixed curriculum in which critical thinking is taught in parallel to the teaching of other disciplines for mixed teaching training. Furthermore, numerous measuring tools have been developed by researchers and educators to measure critical thinking in the context of teaching practice. These include standardized measurement tools, such as WGCTA, CCTST, CCTT, and CCTDI, which have been verified by repeated experiments and are considered effective and reliable by international scholars (Facione and Facione, 1992 ). In short, descriptions of critical thinking, including its two dimensions of attitudinal tendency and cognitive skills, different types of teaching courses, and standardized measurement tools provide a complex normative framework for understanding, teaching, and evaluating critical thinking.

Cultivating critical thinking in curriculum teaching can start with a problem, and one of the most popular critical thinking instructional approaches is problem-based learning (Liu et al., 2020 ). Duch et al. ( 2001 ) noted that problem-based learning in group collaboration is progressive active learning, which can improve students’ critical thinking and problem-solving skills. Collaborative problem-solving is the organic integration of collaborative learning and problem-based learning, which takes learners as the center of the learning process and uses problems with poor structure in real-world situations as the starting point for the learning process (Liang et al., 2017 ). Students learn the knowledge needed to solve problems in a collaborative group, reach a consensus on problems in the field, and form solutions through social cooperation methods, such as dialogue, interpretation, questioning, debate, negotiation, and reflection, thus promoting the development of learners’ domain knowledge and critical thinking (Cindy, 2004 ; Liang et al., 2017 ).

Collaborative problem-solving has been widely used in the teaching practice of critical thinking, and several studies have attempted to conduct a systematic review and meta-analysis of the empirical literature on critical thinking from various perspectives. However, little attention has been paid to the impact of collaborative problem-solving on critical thinking. Therefore, the best approach for developing and enhancing critical thinking throughout collaborative problem-solving is to examine how to implement critical thinking instruction; however, this issue is still unexplored, which means that many teachers are incapable of better instructing critical thinking (Leng and Lu, 2020 ; Niu et al., 2013 ). For example, Huber ( 2016 ) provided the meta-analysis findings of 71 publications on gaining critical thinking over various time frames in college with the aim of determining whether critical thinking was truly teachable. These authors found that learners significantly improve their critical thinking while in college and that critical thinking differs with factors such as teaching strategies, intervention duration, subject area, and teaching type. The usefulness of collaborative problem-solving in fostering students’ critical thinking, however, was not determined by this study, nor did it reveal whether there existed significant variations among the different elements. A meta-analysis of 31 pieces of educational literature was conducted by Liu et al. ( 2020 ) to assess the impact of problem-solving on college students’ critical thinking. These authors found that problem-solving could promote the development of critical thinking among college students and proposed establishing a reasonable group structure for problem-solving in a follow-up study to improve students’ critical thinking. Additionally, previous empirical studies have reached inconclusive and even contradictory conclusions about whether and to what extent collaborative problem-solving increases or decreases critical thinking levels. As an illustration, Yang et al. ( 2008 ) carried out an experiment on the integrated curriculum teaching of college students based on a web bulletin board with the goal of fostering participants’ critical thinking in the context of collaborative problem-solving. These authors’ research revealed that through sharing, debating, examining, and reflecting on various experiences and ideas, collaborative problem-solving can considerably enhance students’ critical thinking in real-life problem situations. In contrast, collaborative problem-solving had a positive impact on learners’ interaction and could improve learning interest and motivation but could not significantly improve students’ critical thinking when compared to traditional classroom teaching, according to research by Naber and Wyatt ( 2014 ) and Sendag and Odabasi ( 2009 ) on undergraduate and high school students, respectively.

The above studies show that there is inconsistency regarding the effectiveness of collaborative problem-solving in promoting students’ critical thinking. Therefore, it is essential to conduct a thorough and trustworthy review to detect and decide whether and to what degree collaborative problem-solving can result in a rise or decrease in critical thinking. Meta-analysis is a quantitative analysis approach that is utilized to examine quantitative data from various separate studies that are all focused on the same research topic. This approach characterizes the effectiveness of its impact by averaging the effect sizes of numerous qualitative studies in an effort to reduce the uncertainty brought on by independent research and produce more conclusive findings (Lipsey and Wilson, 2001 ).

This paper used a meta-analytic approach and carried out a meta-analysis to examine the effectiveness of collaborative problem-solving in promoting students’ critical thinking in order to make a contribution to both research and practice. The following research questions were addressed by this meta-analysis:

What is the overall effect size of collaborative problem-solving in promoting students’ critical thinking and its impact on the two dimensions of critical thinking (i.e., attitudinal tendency and cognitive skills)?

How are the disparities between the study conclusions impacted by various moderating variables if the impacts of various experimental designs in the included studies are heterogeneous?

This research followed the strict procedures (e.g., database searching, identification, screening, eligibility, merging, duplicate removal, and analysis of included studies) of Cooper’s ( 2010 ) proposed meta-analysis approach for examining quantitative data from various separate studies that are all focused on the same research topic. The relevant empirical research that appeared in worldwide educational periodicals within the 21st century was subjected to this meta-analysis using Rev-Man 5.4. The consistency of the data extracted separately by two researchers was tested using Cohen’s kappa coefficient, and a publication bias test and a heterogeneity test were run on the sample data to ascertain the quality of this meta-analysis.

Data sources and search strategies

There were three stages to the data collection process for this meta-analysis, as shown in Fig. 1 , which shows the number of articles included and eliminated during the selection process based on the statement and study eligibility criteria.

figure 1

This flowchart shows the number of records identified, included and excluded in the article.

First, the databases used to systematically search for relevant articles were the journal papers of the Web of Science Core Collection and the Chinese Core source journal, as well as the Chinese Social Science Citation Index (CSSCI) source journal papers included in CNKI. These databases were selected because they are credible platforms that are sources of scholarly and peer-reviewed information with advanced search tools and contain literature relevant to the subject of our topic from reliable researchers and experts. The search string with the Boolean operator used in the Web of Science was “TS = (((“critical thinking” or “ct” and “pretest” or “posttest”) or (“critical thinking” or “ct” and “control group” or “quasi experiment” or “experiment”)) and (“collaboration” or “collaborative learning” or “CSCL”) and (“problem solving” or “problem-based learning” or “PBL”))”. The research area was “Education Educational Research”, and the search period was “January 1, 2000, to December 30, 2021”. A total of 412 papers were obtained. The search string with the Boolean operator used in the CNKI was “SU = (‘critical thinking’*‘collaboration’ + ‘critical thinking’*‘collaborative learning’ + ‘critical thinking’*‘CSCL’ + ‘critical thinking’*‘problem solving’ + ‘critical thinking’*‘problem-based learning’ + ‘critical thinking’*‘PBL’ + ‘critical thinking’*‘problem oriented’) AND FT = (‘experiment’ + ‘quasi experiment’ + ‘pretest’ + ‘posttest’ + ‘empirical study’)” (translated into Chinese when searching). A total of 56 studies were found throughout the search period of “January 2000 to December 2021”. From the databases, all duplicates and retractions were eliminated before exporting the references into Endnote, a program for managing bibliographic references. In all, 466 studies were found.

Second, the studies that matched the inclusion and exclusion criteria for the meta-analysis were chosen by two researchers after they had reviewed the abstracts and titles of the gathered articles, yielding a total of 126 studies.

Third, two researchers thoroughly reviewed each included article’s whole text in accordance with the inclusion and exclusion criteria. Meanwhile, a snowball search was performed using the references and citations of the included articles to ensure complete coverage of the articles. Ultimately, 36 articles were kept.

Two researchers worked together to carry out this entire process, and a consensus rate of almost 94.7% was reached after discussion and negotiation to clarify any emerging differences.

Eligibility criteria

Since not all the retrieved studies matched the criteria for this meta-analysis, eligibility criteria for both inclusion and exclusion were developed as follows:

The publication language of the included studies was limited to English and Chinese, and the full text could be obtained. Articles that did not meet the publication language and articles not published between 2000 and 2021 were excluded.

The research design of the included studies must be empirical and quantitative studies that can assess the effect of collaborative problem-solving on the development of critical thinking. Articles that could not identify the causal mechanisms by which collaborative problem-solving affects critical thinking, such as review articles and theoretical articles, were excluded.

The research method of the included studies must feature a randomized control experiment or a quasi-experiment, or a natural experiment, which have a higher degree of internal validity with strong experimental designs and can all plausibly provide evidence that critical thinking and collaborative problem-solving are causally related. Articles with non-experimental research methods, such as purely correlational or observational studies, were excluded.

The participants of the included studies were only students in school, including K-12 students and college students. Articles in which the participants were non-school students, such as social workers or adult learners, were excluded.

The research results of the included studies must mention definite signs that may be utilized to gauge critical thinking’s impact (e.g., sample size, mean value, or standard deviation). Articles that lacked specific measurement indicators for critical thinking and could not calculate the effect size were excluded.

Data coding design

In order to perform a meta-analysis, it is necessary to collect the most important information from the articles, codify that information’s properties, and convert descriptive data into quantitative data. Therefore, this study designed a data coding template (see Table 1 ). Ultimately, 16 coding fields were retained.

The designed data-coding template consisted of three pieces of information. Basic information about the papers was included in the descriptive information: the publishing year, author, serial number, and title of the paper.

The variable information for the experimental design had three variables: the independent variable (instruction method), the dependent variable (critical thinking), and the moderating variable (learning stage, teaching type, intervention duration, learning scaffold, group size, measuring tool, and subject area). Depending on the topic of this study, the intervention strategy, as the independent variable, was coded into collaborative and non-collaborative problem-solving. The dependent variable, critical thinking, was coded as a cognitive skill and an attitudinal tendency. And seven moderating variables were created by grouping and combining the experimental design variables discovered within the 36 studies (see Table 1 ), where learning stages were encoded as higher education, high school, middle school, and primary school or lower; teaching types were encoded as mixed courses, integrated courses, and independent courses; intervention durations were encoded as 0–1 weeks, 1–4 weeks, 4–12 weeks, and more than 12 weeks; group sizes were encoded as 2–3 persons, 4–6 persons, 7–10 persons, and more than 10 persons; learning scaffolds were encoded as teacher-supported learning scaffold, technique-supported learning scaffold, and resource-supported learning scaffold; measuring tools were encoded as standardized measurement tools (e.g., WGCTA, CCTT, CCTST, and CCTDI) and self-adapting measurement tools (e.g., modified or made by researchers); and subject areas were encoded according to the specific subjects used in the 36 included studies.

The data information contained three metrics for measuring critical thinking: sample size, average value, and standard deviation. It is vital to remember that studies with various experimental designs frequently adopt various formulas to determine the effect size. And this paper used Morris’ proposed standardized mean difference (SMD) calculation formula ( 2008 , p. 369; see Supplementary Table S3 ).

Procedure for extracting and coding data

According to the data coding template (see Table 1 ), the 36 papers’ information was retrieved by two researchers, who then entered them into Excel (see Supplementary Table S1 ). The results of each study were extracted separately in the data extraction procedure if an article contained numerous studies on critical thinking, or if a study assessed different critical thinking dimensions. For instance, Tiwari et al. ( 2010 ) used four time points, which were viewed as numerous different studies, to examine the outcomes of critical thinking, and Chen ( 2013 ) included the two outcome variables of attitudinal tendency and cognitive skills, which were regarded as two studies. After discussion and negotiation during data extraction, the two researchers’ consistency test coefficients were roughly 93.27%. Supplementary Table S2 details the key characteristics of the 36 included articles with 79 effect quantities, including descriptive information (e.g., the publishing year, author, serial number, and title of the paper), variable information (e.g., independent variables, dependent variables, and moderating variables), and data information (e.g., mean values, standard deviations, and sample size). Following that, testing for publication bias and heterogeneity was done on the sample data using the Rev-Man 5.4 software, and then the test results were used to conduct a meta-analysis.

Publication bias test

When the sample of studies included in a meta-analysis does not accurately reflect the general status of research on the relevant subject, publication bias is said to be exhibited in this research. The reliability and accuracy of the meta-analysis may be impacted by publication bias. Due to this, the meta-analysis needs to check the sample data for publication bias (Stewart et al., 2006 ). A popular method to check for publication bias is the funnel plot; and it is unlikely that there will be publishing bias when the data are equally dispersed on either side of the average effect size and targeted within the higher region. The data are equally dispersed within the higher portion of the efficient zone, consistent with the funnel plot connected with this analysis (see Fig. 2 ), indicating that publication bias is unlikely in this situation.

figure 2

This funnel plot shows the result of publication bias of 79 effect quantities across 36 studies.

Heterogeneity test

To select the appropriate effect models for the meta-analysis, one might use the results of a heterogeneity test on the data effect sizes. In a meta-analysis, it is common practice to gauge the degree of data heterogeneity using the I 2 value, and I 2  ≥ 50% is typically understood to denote medium-high heterogeneity, which calls for the adoption of a random effect model; if not, a fixed effect model ought to be applied (Lipsey and Wilson, 2001 ). The findings of the heterogeneity test in this paper (see Table 2 ) revealed that I 2 was 86% and displayed significant heterogeneity ( P  < 0.01). To ensure accuracy and reliability, the overall effect size ought to be calculated utilizing the random effect model.

The analysis of the overall effect size

This meta-analysis utilized a random effect model to examine 79 effect quantities from 36 studies after eliminating heterogeneity. In accordance with Cohen’s criterion (Cohen, 1992 ), it is abundantly clear from the analysis results, which are shown in the forest plot of the overall effect (see Fig. 3 ), that the cumulative impact size of cooperative problem-solving is 0.82, which is statistically significant ( z  = 12.78, P  < 0.01, 95% CI [0.69, 0.95]), and can encourage learners to practice critical thinking.

figure 3

This forest plot shows the analysis result of the overall effect size across 36 studies.

In addition, this study examined two distinct dimensions of critical thinking to better understand the precise contributions that collaborative problem-solving makes to the growth of critical thinking. The findings (see Table 3 ) indicate that collaborative problem-solving improves cognitive skills (ES = 0.70) and attitudinal tendency (ES = 1.17), with significant intergroup differences (chi 2  = 7.95, P  < 0.01). Although collaborative problem-solving improves both dimensions of critical thinking, it is essential to point out that the improvements in students’ attitudinal tendency are much more pronounced and have a significant comprehensive effect (ES = 1.17, z  = 7.62, P  < 0.01, 95% CI [0.87, 1.47]), whereas gains in learners’ cognitive skill are slightly improved and are just above average. (ES = 0.70, z  = 11.55, P  < 0.01, 95% CI [0.58, 0.82]).

The analysis of moderator effect size

The whole forest plot’s 79 effect quantities underwent a two-tailed test, which revealed significant heterogeneity ( I 2  = 86%, z  = 12.78, P  < 0.01), indicating differences between various effect sizes that may have been influenced by moderating factors other than sampling error. Therefore, exploring possible moderating factors that might produce considerable heterogeneity was done using subgroup analysis, such as the learning stage, learning scaffold, teaching type, group size, duration of the intervention, measuring tool, and the subject area included in the 36 experimental designs, in order to further explore the key factors that influence critical thinking. The findings (see Table 4 ) indicate that various moderating factors have advantageous effects on critical thinking. In this situation, the subject area (chi 2  = 13.36, P  < 0.05), group size (chi 2  = 8.77, P  < 0.05), intervention duration (chi 2  = 12.18, P  < 0.01), learning scaffold (chi 2  = 9.03, P  < 0.01), and teaching type (chi 2  = 7.20, P  < 0.05) are all significant moderators that can be applied to support the cultivation of critical thinking. However, since the learning stage and the measuring tools did not significantly differ among intergroup (chi 2  = 3.15, P  = 0.21 > 0.05, and chi 2  = 0.08, P  = 0.78 > 0.05), we are unable to explain why these two factors are crucial in supporting the cultivation of critical thinking in the context of collaborative problem-solving. These are the precise outcomes, as follows:

Various learning stages influenced critical thinking positively, without significant intergroup differences (chi 2  = 3.15, P  = 0.21 > 0.05). High school was first on the list of effect sizes (ES = 1.36, P  < 0.01), then higher education (ES = 0.78, P  < 0.01), and middle school (ES = 0.73, P  < 0.01). These results show that, despite the learning stage’s beneficial influence on cultivating learners’ critical thinking, we are unable to explain why it is essential for cultivating critical thinking in the context of collaborative problem-solving.

Different teaching types had varying degrees of positive impact on critical thinking, with significant intergroup differences (chi 2  = 7.20, P  < 0.05). The effect size was ranked as follows: mixed courses (ES = 1.34, P  < 0.01), integrated courses (ES = 0.81, P  < 0.01), and independent courses (ES = 0.27, P  < 0.01). These results indicate that the most effective approach to cultivate critical thinking utilizing collaborative problem solving is through the teaching type of mixed courses.

Various intervention durations significantly improved critical thinking, and there were significant intergroup differences (chi 2  = 12.18, P  < 0.01). The effect sizes related to this variable showed a tendency to increase with longer intervention durations. The improvement in critical thinking reached a significant level (ES = 0.85, P  < 0.01) after more than 12 weeks of training. These findings indicate that the intervention duration and critical thinking’s impact are positively correlated, with a longer intervention duration having a greater effect.

Different learning scaffolds influenced critical thinking positively, with significant intergroup differences (chi 2  = 9.03, P  < 0.01). The resource-supported learning scaffold (ES = 0.69, P  < 0.01) acquired a medium-to-higher level of impact, the technique-supported learning scaffold (ES = 0.63, P  < 0.01) also attained a medium-to-higher level of impact, and the teacher-supported learning scaffold (ES = 0.92, P  < 0.01) displayed a high level of significant impact. These results show that the learning scaffold with teacher support has the greatest impact on cultivating critical thinking.

Various group sizes influenced critical thinking positively, and the intergroup differences were statistically significant (chi 2  = 8.77, P  < 0.05). Critical thinking showed a general declining trend with increasing group size. The overall effect size of 2–3 people in this situation was the biggest (ES = 0.99, P  < 0.01), and when the group size was greater than 7 people, the improvement in critical thinking was at the lower-middle level (ES < 0.5, P  < 0.01). These results show that the impact on critical thinking is positively connected with group size, and as group size grows, so does the overall impact.

Various measuring tools influenced critical thinking positively, with significant intergroup differences (chi 2  = 0.08, P  = 0.78 > 0.05). In this situation, the self-adapting measurement tools obtained an upper-medium level of effect (ES = 0.78), whereas the complete effect size of the standardized measurement tools was the largest, achieving a significant level of effect (ES = 0.84, P  < 0.01). These results show that, despite the beneficial influence of the measuring tool on cultivating critical thinking, we are unable to explain why it is crucial in fostering the growth of critical thinking by utilizing the approach of collaborative problem-solving.

Different subject areas had a greater impact on critical thinking, and the intergroup differences were statistically significant (chi 2  = 13.36, P  < 0.05). Mathematics had the greatest overall impact, achieving a significant level of effect (ES = 1.68, P  < 0.01), followed by science (ES = 1.25, P  < 0.01) and medical science (ES = 0.87, P  < 0.01), both of which also achieved a significant level of effect. Programming technology was the least effective (ES = 0.39, P  < 0.01), only having a medium-low degree of effect compared to education (ES = 0.72, P  < 0.01) and other fields (such as language, art, and social sciences) (ES = 0.58, P  < 0.01). These results suggest that scientific fields (e.g., mathematics, science) may be the most effective subject areas for cultivating critical thinking utilizing the approach of collaborative problem-solving.

The effectiveness of collaborative problem solving with regard to teaching critical thinking

According to this meta-analysis, using collaborative problem-solving as an intervention strategy in critical thinking teaching has a considerable amount of impact on cultivating learners’ critical thinking as a whole and has a favorable promotional effect on the two dimensions of critical thinking. According to certain studies, collaborative problem solving, the most frequently used critical thinking teaching strategy in curriculum instruction can considerably enhance students’ critical thinking (e.g., Liang et al., 2017 ; Liu et al., 2020 ; Cindy, 2004 ). This meta-analysis provides convergent data support for the above research views. Thus, the findings of this meta-analysis not only effectively address the first research query regarding the overall effect of cultivating critical thinking and its impact on the two dimensions of critical thinking (i.e., attitudinal tendency and cognitive skills) utilizing the approach of collaborative problem-solving, but also enhance our confidence in cultivating critical thinking by using collaborative problem-solving intervention approach in the context of classroom teaching.

Furthermore, the associated improvements in attitudinal tendency are much stronger, but the corresponding improvements in cognitive skill are only marginally better. According to certain studies, cognitive skill differs from the attitudinal tendency in classroom instruction; the cultivation and development of the former as a key ability is a process of gradual accumulation, while the latter as an attitude is affected by the context of the teaching situation (e.g., a novel and exciting teaching approach, challenging and rewarding tasks) (Halpern, 2001 ; Wei and Hong, 2022 ). Collaborative problem-solving as a teaching approach is exciting and interesting, as well as rewarding and challenging; because it takes the learners as the focus and examines problems with poor structure in real situations, and it can inspire students to fully realize their potential for problem-solving, which will significantly improve their attitudinal tendency toward solving problems (Liu et al., 2020 ). Similar to how collaborative problem-solving influences attitudinal tendency, attitudinal tendency impacts cognitive skill when attempting to solve a problem (Liu et al., 2020 ; Zhang et al., 2022 ), and stronger attitudinal tendencies are associated with improved learning achievement and cognitive ability in students (Sison, 2008 ; Zhang et al., 2022 ). It can be seen that the two specific dimensions of critical thinking as well as critical thinking as a whole are affected by collaborative problem-solving, and this study illuminates the nuanced links between cognitive skills and attitudinal tendencies with regard to these two dimensions of critical thinking. To fully develop students’ capacity for critical thinking, future empirical research should pay closer attention to cognitive skills.

The moderating effects of collaborative problem solving with regard to teaching critical thinking

In order to further explore the key factors that influence critical thinking, exploring possible moderating effects that might produce considerable heterogeneity was done using subgroup analysis. The findings show that the moderating factors, such as the teaching type, learning stage, group size, learning scaffold, duration of the intervention, measuring tool, and the subject area included in the 36 experimental designs, could all support the cultivation of collaborative problem-solving in critical thinking. Among them, the effect size differences between the learning stage and measuring tool are not significant, which does not explain why these two factors are crucial in supporting the cultivation of critical thinking utilizing the approach of collaborative problem-solving.

In terms of the learning stage, various learning stages influenced critical thinking positively without significant intergroup differences, indicating that we are unable to explain why it is crucial in fostering the growth of critical thinking.

Although high education accounts for 70.89% of all empirical studies performed by researchers, high school may be the appropriate learning stage to foster students’ critical thinking by utilizing the approach of collaborative problem-solving since it has the largest overall effect size. This phenomenon may be related to student’s cognitive development, which needs to be further studied in follow-up research.

With regard to teaching type, mixed course teaching may be the best teaching method to cultivate students’ critical thinking. Relevant studies have shown that in the actual teaching process if students are trained in thinking methods alone, the methods they learn are isolated and divorced from subject knowledge, which is not conducive to their transfer of thinking methods; therefore, if students’ thinking is trained only in subject teaching without systematic method training, it is challenging to apply to real-world circumstances (Ruggiero, 2012 ; Hu and Liu, 2015 ). Teaching critical thinking as mixed course teaching in parallel to other subject teachings can achieve the best effect on learners’ critical thinking, and explicit critical thinking instruction is more effective than less explicit critical thinking instruction (Bensley and Spero, 2014 ).

In terms of the intervention duration, with longer intervention times, the overall effect size shows an upward tendency. Thus, the intervention duration and critical thinking’s impact are positively correlated. Critical thinking, as a key competency for students in the 21st century, is difficult to get a meaningful improvement in a brief intervention duration. Instead, it could be developed over a lengthy period of time through consistent teaching and the progressive accumulation of knowledge (Halpern, 2001 ; Hu and Liu, 2015 ). Therefore, future empirical studies ought to take these restrictions into account throughout a longer period of critical thinking instruction.

With regard to group size, a group size of 2–3 persons has the highest effect size, and the comprehensive effect size decreases with increasing group size in general. This outcome is in line with some research findings; as an example, a group composed of two to four members is most appropriate for collaborative learning (Schellens and Valcke, 2006 ). However, the meta-analysis results also indicate that once the group size exceeds 7 people, small groups cannot produce better interaction and performance than large groups. This may be because the learning scaffolds of technique support, resource support, and teacher support improve the frequency and effectiveness of interaction among group members, and a collaborative group with more members may increase the diversity of views, which is helpful to cultivate critical thinking utilizing the approach of collaborative problem-solving.

With regard to the learning scaffold, the three different kinds of learning scaffolds can all enhance critical thinking. Among them, the teacher-supported learning scaffold has the largest overall effect size, demonstrating the interdependence of effective learning scaffolds and collaborative problem-solving. This outcome is in line with some research findings; as an example, a successful strategy is to encourage learners to collaborate, come up with solutions, and develop critical thinking skills by using learning scaffolds (Reiser, 2004 ; Xu et al., 2022 ); learning scaffolds can lower task complexity and unpleasant feelings while also enticing students to engage in learning activities (Wood et al., 2006 ); learning scaffolds are designed to assist students in using learning approaches more successfully to adapt the collaborative problem-solving process, and the teacher-supported learning scaffolds have the greatest influence on critical thinking in this process because they are more targeted, informative, and timely (Xu et al., 2022 ).

With respect to the measuring tool, despite the fact that standardized measurement tools (such as the WGCTA, CCTT, and CCTST) have been acknowledged as trustworthy and effective by worldwide experts, only 54.43% of the research included in this meta-analysis adopted them for assessment, and the results indicated no intergroup differences. These results suggest that not all teaching circumstances are appropriate for measuring critical thinking using standardized measurement tools. “The measuring tools for measuring thinking ability have limits in assessing learners in educational situations and should be adapted appropriately to accurately assess the changes in learners’ critical thinking.”, according to Simpson and Courtney ( 2002 , p. 91). As a result, in order to more fully and precisely gauge how learners’ critical thinking has evolved, we must properly modify standardized measuring tools based on collaborative problem-solving learning contexts.

With regard to the subject area, the comprehensive effect size of science departments (e.g., mathematics, science, medical science) is larger than that of language arts and social sciences. Some recent international education reforms have noted that critical thinking is a basic part of scientific literacy. Students with scientific literacy can prove the rationality of their judgment according to accurate evidence and reasonable standards when they face challenges or poorly structured problems (Kyndt et al., 2013 ), which makes critical thinking crucial for developing scientific understanding and applying this understanding to practical problem solving for problems related to science, technology, and society (Yore et al., 2007 ).

Suggestions for critical thinking teaching

Other than those stated in the discussion above, the following suggestions are offered for critical thinking instruction utilizing the approach of collaborative problem-solving.

First, teachers should put a special emphasis on the two core elements, which are collaboration and problem-solving, to design real problems based on collaborative situations. This meta-analysis provides evidence to support the view that collaborative problem-solving has a strong synergistic effect on promoting students’ critical thinking. Asking questions about real situations and allowing learners to take part in critical discussions on real problems during class instruction are key ways to teach critical thinking rather than simply reading speculative articles without practice (Mulnix, 2012 ). Furthermore, the improvement of students’ critical thinking is realized through cognitive conflict with other learners in the problem situation (Yang et al., 2008 ). Consequently, it is essential for teachers to put a special emphasis on the two core elements, which are collaboration and problem-solving, and design real problems and encourage students to discuss, negotiate, and argue based on collaborative problem-solving situations.

Second, teachers should design and implement mixed courses to cultivate learners’ critical thinking, utilizing the approach of collaborative problem-solving. Critical thinking can be taught through curriculum instruction (Kuncel, 2011 ; Leng and Lu, 2020 ), with the goal of cultivating learners’ critical thinking for flexible transfer and application in real problem-solving situations. This meta-analysis shows that mixed course teaching has a highly substantial impact on the cultivation and promotion of learners’ critical thinking. Therefore, teachers should design and implement mixed course teaching with real collaborative problem-solving situations in combination with the knowledge content of specific disciplines in conventional teaching, teach methods and strategies of critical thinking based on poorly structured problems to help students master critical thinking, and provide practical activities in which students can interact with each other to develop knowledge construction and critical thinking utilizing the approach of collaborative problem-solving.

Third, teachers should be more trained in critical thinking, particularly preservice teachers, and they also should be conscious of the ways in which teachers’ support for learning scaffolds can promote critical thinking. The learning scaffold supported by teachers had the greatest impact on learners’ critical thinking, in addition to being more directive, targeted, and timely (Wood et al., 2006 ). Critical thinking can only be effectively taught when teachers recognize the significance of critical thinking for students’ growth and use the proper approaches while designing instructional activities (Forawi, 2016 ). Therefore, with the intention of enabling teachers to create learning scaffolds to cultivate learners’ critical thinking utilizing the approach of collaborative problem solving, it is essential to concentrate on the teacher-supported learning scaffolds and enhance the instruction for teaching critical thinking to teachers, especially preservice teachers.

Implications and limitations

There are certain limitations in this meta-analysis, but future research can correct them. First, the search languages were restricted to English and Chinese, so it is possible that pertinent studies that were written in other languages were overlooked, resulting in an inadequate number of articles for review. Second, these data provided by the included studies are partially missing, such as whether teachers were trained in the theory and practice of critical thinking, the average age and gender of learners, and the differences in critical thinking among learners of various ages and genders. Third, as is typical for review articles, more studies were released while this meta-analysis was being done; therefore, it had a time limit. With the development of relevant research, future studies focusing on these issues are highly relevant and needed.

Conclusions

The subject of the magnitude of collaborative problem-solving’s impact on fostering students’ critical thinking, which received scant attention from other studies, was successfully addressed by this study. The question of the effectiveness of collaborative problem-solving in promoting students’ critical thinking was addressed in this study, which addressed a topic that had gotten little attention in earlier research. The following conclusions can be made:

Regarding the results obtained, collaborative problem solving is an effective teaching approach to foster learners’ critical thinking, with a significant overall effect size (ES = 0.82, z  = 12.78, P  < 0.01, 95% CI [0.69, 0.95]). With respect to the dimensions of critical thinking, collaborative problem-solving can significantly and effectively improve students’ attitudinal tendency, and the comprehensive effect is significant (ES = 1.17, z  = 7.62, P  < 0.01, 95% CI [0.87, 1.47]); nevertheless, it falls short in terms of improving students’ cognitive skills, having only an upper-middle impact (ES = 0.70, z  = 11.55, P  < 0.01, 95% CI [0.58, 0.82]).

As demonstrated by both the results and the discussion, there are varying degrees of beneficial effects on students’ critical thinking from all seven moderating factors, which were found across 36 studies. In this context, the teaching type (chi 2  = 7.20, P  < 0.05), intervention duration (chi 2  = 12.18, P  < 0.01), subject area (chi 2  = 13.36, P  < 0.05), group size (chi 2  = 8.77, P  < 0.05), and learning scaffold (chi 2  = 9.03, P  < 0.01) all have a positive impact on critical thinking, and they can be viewed as important moderating factors that affect how critical thinking develops. Since the learning stage (chi 2  = 3.15, P  = 0.21 > 0.05) and measuring tools (chi 2  = 0.08, P  = 0.78 > 0.05) did not demonstrate any significant intergroup differences, we are unable to explain why these two factors are crucial in supporting the cultivation of critical thinking in the context of collaborative problem-solving.

Data availability

All data generated or analyzed during this study are included within the article and its supplementary information files, and the supplementary information files are available in the Dataverse repository: https://doi.org/10.7910/DVN/IPFJO6 .

Bensley DA, Spero RA (2014) Improving critical thinking skills and meta-cognitive monitoring through direct infusion. Think Skills Creat 12:55–68. https://doi.org/10.1016/j.tsc.2014.02.001

Article   Google Scholar  

Castle A (2009) Defining and assessing critical thinking skills for student radiographers. Radiography 15(1):70–76. https://doi.org/10.1016/j.radi.2007.10.007

Chen XD (2013) An empirical study on the influence of PBL teaching model on critical thinking ability of non-English majors. J PLA Foreign Lang College 36 (04):68–72

Google Scholar  

Cohen A (1992) Antecedents of organizational commitment across occupational groups: a meta-analysis. J Organ Behav. https://doi.org/10.1002/job.4030130602

Cooper H (2010) Research synthesis and meta-analysis: a step-by-step approach, 4th edn. Sage, London, England

Cindy HS (2004) Problem-based learning: what and how do students learn? Educ Psychol Rev 51(1):31–39

Duch BJ, Gron SD, Allen DE (2001) The power of problem-based learning: a practical “how to” for teaching undergraduate courses in any discipline. Stylus Educ Sci 2:190–198

Ennis RH (1989) Critical thinking and subject specificity: clarification and needed research. Educ Res 18(3):4–10. https://doi.org/10.3102/0013189x018003004

Facione PA (1990) Critical thinking: a statement of expert consensus for purposes of educational assessment and instruction. Research findings and recommendations. Eric document reproduction service. https://eric.ed.gov/?id=ed315423

Facione PA, Facione NC (1992) The California Critical Thinking Dispositions Inventory (CCTDI) and the CCTDI test manual. California Academic Press, Millbrae, CA

Forawi SA (2016) Standard-based science education and critical thinking. Think Skills Creat 20:52–62. https://doi.org/10.1016/j.tsc.2016.02.005

Halpern DF (2001) Assessing the effectiveness of critical thinking instruction. J Gen Educ 50(4):270–286. https://doi.org/10.2307/27797889

Hu WP, Liu J (2015) Cultivation of pupils’ thinking ability: a five-year follow-up study. Psychol Behav Res 13(05):648–654. https://doi.org/10.3969/j.issn.1672-0628.2015.05.010

Huber K (2016) Does college teach critical thinking? A meta-analysis. Rev Educ Res 86(2):431–468. https://doi.org/10.3102/0034654315605917

Kek MYCA, Huijser H (2011) The power of problem-based learning in developing critical thinking skills: preparing students for tomorrow’s digital futures in today’s classrooms. High Educ Res Dev 30(3):329–341. https://doi.org/10.1080/07294360.2010.501074

Kuncel NR (2011) Measurement and meaning of critical thinking (Research report for the NRC 21st Century Skills Workshop). National Research Council, Washington, DC

Kyndt E, Raes E, Lismont B, Timmers F, Cascallar E, Dochy F (2013) A meta-analysis of the effects of face-to-face cooperative learning. Do recent studies falsify or verify earlier findings? Educ Res Rev 10(2):133–149. https://doi.org/10.1016/j.edurev.2013.02.002

Leng J, Lu XX (2020) Is critical thinking really teachable?—A meta-analysis based on 79 experimental or quasi experimental studies. Open Educ Res 26(06):110–118. https://doi.org/10.13966/j.cnki.kfjyyj.2020.06.011

Liang YZ, Zhu K, Zhao CL (2017) An empirical study on the depth of interaction promoted by collaborative problem solving learning activities. J E-educ Res 38(10):87–92. https://doi.org/10.13811/j.cnki.eer.2017.10.014

Lipsey M, Wilson D (2001) Practical meta-analysis. International Educational and Professional, London, pp. 92–160

Liu Z, Wu W, Jiang Q (2020) A study on the influence of problem based learning on college students’ critical thinking-based on a meta-analysis of 31 studies. Explor High Educ 03:43–49

Morris SB (2008) Estimating effect sizes from pretest-posttest-control group designs. Organ Res Methods 11(2):364–386. https://doi.org/10.1177/1094428106291059

Article   ADS   Google Scholar  

Mulnix JW (2012) Thinking critically about critical thinking. Educ Philos Theory 44(5):464–479. https://doi.org/10.1111/j.1469-5812.2010.00673.x

Naber J, Wyatt TH (2014) The effect of reflective writing interventions on the critical thinking skills and dispositions of baccalaureate nursing students. Nurse Educ Today 34(1):67–72. https://doi.org/10.1016/j.nedt.2013.04.002

National Research Council (2012) Education for life and work: developing transferable knowledge and skills in the 21st century. The National Academies Press, Washington, DC

Niu L, Behar HLS, Garvan CW (2013) Do instructional interventions influence college students’ critical thinking skills? A meta-analysis. Educ Res Rev 9(12):114–128. https://doi.org/10.1016/j.edurev.2012.12.002

Peng ZM, Deng L (2017) Towards the core of education reform: cultivating critical thinking skills as the core of skills in the 21st century. Res Educ Dev 24:57–63. https://doi.org/10.14121/j.cnki.1008-3855.2017.24.011

Reiser BJ (2004) Scaffolding complex learning: the mechanisms of structuring and problematizing student work. J Learn Sci 13(3):273–304. https://doi.org/10.1207/s15327809jls1303_2

Ruggiero VR (2012) The art of thinking: a guide to critical and creative thought, 4th edn. Harper Collins College Publishers, New York

Schellens T, Valcke M (2006) Fostering knowledge construction in university students through asynchronous discussion groups. Comput Educ 46(4):349–370. https://doi.org/10.1016/j.compedu.2004.07.010

Sendag S, Odabasi HF (2009) Effects of an online problem based learning course on content knowledge acquisition and critical thinking skills. Comput Educ 53(1):132–141. https://doi.org/10.1016/j.compedu.2009.01.008

Sison R (2008) Investigating Pair Programming in a Software Engineering Course in an Asian Setting. 2008 15th Asia-Pacific Software Engineering Conference, pp. 325–331. https://doi.org/10.1109/APSEC.2008.61

Simpson E, Courtney M (2002) Critical thinking in nursing education: literature review. Mary Courtney 8(2):89–98

Stewart L, Tierney J, Burdett S (2006) Do systematic reviews based on individual patient data offer a means of circumventing biases associated with trial publications? Publication bias in meta-analysis. John Wiley and Sons Inc, New York, pp. 261–286

Tiwari A, Lai P, So M, Yuen K (2010) A comparison of the effects of problem-based learning and lecturing on the development of students’ critical thinking. Med Educ 40(6):547–554. https://doi.org/10.1111/j.1365-2929.2006.02481.x

Wood D, Bruner JS, Ross G (2006) The role of tutoring in problem solving. J Child Psychol Psychiatry 17(2):89–100. https://doi.org/10.1111/j.1469-7610.1976.tb00381.x

Wei T, Hong S (2022) The meaning and realization of teachable critical thinking. Educ Theory Practice 10:51–57

Xu EW, Wang W, Wang QX (2022) A meta-analysis of the effectiveness of programming teaching in promoting K-12 students’ computational thinking. Educ Inf Technol. https://doi.org/10.1007/s10639-022-11445-2

Yang YC, Newby T, Bill R (2008) Facilitating interactions through structured web-based bulletin boards: a quasi-experimental study on promoting learners’ critical thinking skills. Comput Educ 50(4):1572–1585. https://doi.org/10.1016/j.compedu.2007.04.006

Yore LD, Pimm D, Tuan HL (2007) The literacy component of mathematical and scientific literacy. Int J Sci Math Educ 5(4):559–589. https://doi.org/10.1007/s10763-007-9089-4

Zhang T, Zhang S, Gao QQ, Wang JH (2022) Research on the development of learners’ critical thinking in online peer review. Audio Visual Educ Res 6:53–60. https://doi.org/10.13811/j.cnki.eer.2022.06.08

Download references

Acknowledgements

This research was supported by the graduate scientific research and innovation project of Xinjiang Uygur Autonomous Region named “Research on in-depth learning of high school information technology courses for the cultivation of computing thinking” (No. XJ2022G190) and the independent innovation fund project for doctoral students of the College of Educational Science of Xinjiang Normal University named “Research on project-based teaching of high school information technology courses from the perspective of discipline core literacy” (No. XJNUJKYA2003).

Author information

Authors and affiliations.

College of Educational Science, Xinjiang Normal University, 830017, Urumqi, Xinjiang, China

Enwei Xu, Wei Wang & Qingxia Wang

You can also search for this author in PubMed   Google Scholar

Corresponding authors

Correspondence to Enwei Xu or Wei Wang .

Ethics declarations

Competing interests.

The authors declare no competing interests.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors.

Informed consent

Additional information.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary tables, rights and permissions.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ .

Reprints and permissions

About this article

Cite this article.

Xu, E., Wang, W. & Wang, Q. The effectiveness of collaborative problem solving in promoting students’ critical thinking: A meta-analysis based on empirical literature. Humanit Soc Sci Commun 10 , 16 (2023). https://doi.org/10.1057/s41599-023-01508-1

Download citation

Received : 07 August 2022

Accepted : 04 January 2023

Published : 11 January 2023

DOI : https://doi.org/10.1057/s41599-023-01508-1

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

This article is cited by

Impacts of online collaborative learning on students’ intercultural communication apprehension and intercultural communicative competence.

  • Hoa Thi Hoang Chau
  • Hung Phu Bui
  • Quynh Thi Huong Dinh

Education and Information Technologies (2024)

Exploring the effects of digital technology on deep learning: a meta-analysis

The impacts of computer-supported collaborative learning on students’ critical thinking: a meta-analysis.

  • Yoseph Gebrehiwot Tedla
  • Hsiu-Ling Chen

Sustainable electricity generation and farm-grid utilization from photovoltaic aquaculture: a bibliometric analysis

  • A. A. Amusa
  • M. Alhassan

International Journal of Environmental Science and Technology (2024)

Quick links

  • Explore articles by subject
  • Guide to authors
  • Editorial policies

relevance of critical thinking and problem solving

Are Problem Solving and Critical Thinking the Same? Debunking the Common Misconception

relevance of critical thinking and problem solving

Problem solving and critical thinking are often considered synonymous, but they are two separate skills with distinct strategies, purposes, and applications. Understanding the differences between these two concepts is crucial for effectively overcoming challenges and making better decisions in both personal and professional environments.

relevance of critical thinking and problem solving

Critical thinking refers to the process of objectively analyzing and evaluating information, arguments, beliefs, and opinions to form judgments, while problem solving is a solution-oriented process that requires identifying, analyzing, and implementing appropriate strategies to address issues and achieve desired outcomes. Although there is some overlap between these two skills, critical thinking is broader and essential for identifying the root causes of problems, whereas problem solving is more focused on finding solutions to the specific problems identified.

Key Takeaways

Understanding critical thinking.

relevance of critical thinking and problem solving

Characteristics of Critical Thinking

Techniques in critical thinking.

Various techniques can be applied to enhance critical thinking skills, such as:

These techniques, along with a commitment to continuous improvement and feedback, can help individuals develop strong critical thinking skills.

The Process of Critical Thinking

By engaging in this process, individuals can develop a deep understanding of the issue at hand and arrive at informed decisions or judgments. Teaching critical thinking should involve guiding learners through these steps and encouraging them to think clearly and effectively.

Understanding Problem Solving

Stages of problem solving, techniques in problem solving.

Various techniques aid in effective problem-solving, and these methods can be tailored according to the specific challenge faced. Some strategies include:

The Process of Problem Solving

The process of problem solving starts by recognizing a challenge and defining it clearly. Once the issue is identified, individuals can create a plan of action by breaking down the problem into smaller, more manageable parts. This step helps in gathering relevant information and determining the necessary resources.

Comparing Critical Thinking and Problem Solving

Similarities between critical thinking and problem solving.

Both critical thinking and problem solving involve using a range of cognitive abilities to approach and address challenges. They are essential skills for navigating a world filled with complex tasks, arguments, and conflicts. These processes both require analysis, evaluation, reflection, and the application of experience.

Differences between Critical Thinking and Problem Solving

While there are similarities, critical thinking and problem-solving differ in key aspects. Critical thinking is a broader, intentional mode of thinking that involves reflection, evaluation, interpretation, and inference. It examines assumptions, biases, and potential alternative explanations, fostering the ability to tolerate ambiguity. At its core, critical thinking is about questioning and examining various perspectives as a way to recognize and challenge underlying assumptions.

Conversely, problem solving is more focused and solution-oriented. It requires a targeted analysis of a specific situation, considering relevant factors to devise a plan of action to overcome obstacles. Problem-solving skills come into play when individuals must navigate concrete challenges, often using practical, efficient strategies to develop realistic solutions.

Critical Thinking, Problem Solving, and Career Relevance

Critical thinking refers to the ability to analyze information, consider multiple perspectives, and evaluate the validity of an argument or idea. This skill helps individuals examine issues thoroughly, assess the credibility of sources, and arrive at well-reasoned conclusions. In contrast, problem solving is a more focused process that involves identifying obstacles and strategically mapping out solutions to address a specific issue at hand.

Professionals who excel in these competencies often display a higher level of initiative in their career. They can swiftly identify issues, analyze different options, and devise strategies to overcome challenges. This kind of proactive approach can lead to career growth and make their job role more satisfying.

In summary, critical thinking and problem solving are two distinct skills that are crucial for professional success. Developing these competencies can help individuals excel in various careers, demonstrate initiative, and achieve growth within their field.

You may also like

Critical thinking puzzles for adults (with answers), divergent thinking and memory: unleashing your cognitive potential, critical thinking and conflict resolution, 15 famous critical thinkers throughout history: insights and impact, download this free ebook.

Cart

  • SUGGESTED TOPICS
  • The Magazine
  • Newsletters
  • Managing Yourself
  • Managing Teams
  • Work-life Balance
  • The Big Idea
  • Data & Visuals
  • Reading Lists
  • Case Selections
  • HBR Learning
  • Topic Feeds
  • Account Settings
  • Email Preferences

Critical Thinking Is About Asking Better Questions

  • John Coleman

relevance of critical thinking and problem solving

Six practices to sharpen your inquiry.

Critical thinking is the ability to analyze and effectively break down an issue in order to make a decision or find a solution. At the heart of critical thinking is the ability to formulate deep, different, and effective questions. For effective questioning, start by holding your hypotheses loosely. Be willing to fundamentally reconsider your initial conclusions — and do so without defensiveness. Second, listen more than you talk through active listening. Third, leave your queries open-ended, and avoid yes-or-no questions. Fourth, consider the counterintuitive to avoid falling into groupthink. Fifth, take the time to stew in a problem, rather than making decisions unnecessarily quickly. Last, ask thoughtful, even difficult, follow-ups.

Are you tackling a new and difficult problem at work? Recently promoted and trying to both understand your new role and bring a fresh perspective? Or are you new to the workforce and seeking ways to meaningfully contribute alongside your more experienced colleagues? If so, critical thinking — the ability to analyze and effectively break down an issue in order to make a decision or find a solution — will be core to your success. And at the heart of critical thinking is the ability to formulate deep, different, and effective questions.

relevance of critical thinking and problem solving

  • JC John Coleman is the author of the HBR Guide to Crafting Your Purpose . Subscribe to his free newsletter, On Purpose , or contact him at johnwilliamcoleman.com . johnwcoleman

Partner Center

  • Open training
  • Team training

What is Critical Thinking and Why is it Valuable in the Workplace?

  • Articles and Resources
  • > Personal Effectiveness and Preparing for Change
  • > What is Critical Thinking and Why is it Valuable in the Workplace?

There are times at work when you simply have to “do.” A tight deadline, a demanding project outline, or a highly particular superior might mean that it makes sense to complete a task without too much mental tinkering. But work like this can be unsustainable and worse — it won’t leverage your ability to think critically.

There is value in thinking critically in every aspect of your life. From making decisions in your personal life, to interrogating the media you consume, to assessing your work with a critical eye, applying critical thinking is an essential skill everyone should be trying to hone.

At your workplace, critical thinking can distinguish you as a leader, and a valuable mind to bounce ideas off. It can help improve the quality of your work, and the perception those higher up the chain have of you.

Here’s what you need to know about critical thinking in the workplace:

What Exactly is “Critical Thinking”?

  In a nutshell, critical thinking is the ability to think reasonably, detaching yourself from personal bias, emotional responses, and subjective opinions. It involves using the data at hand to make a reasoned choice without falling prey to the temptations of doing things simply because they’ve always been done a certain way.

Critical thinking takes time. It might be quicker simply to take instruction at face value, or rely on the traditions of your team. But without analyzing the reasons behind decisions and tasks, it becomes extremely easy to adopt bad habits. This might be time-wasting meetings, inefficient uses of effort, or poor interactions with team members. Taking the time to ask “why” you’re doing something is the first step to thinking critically.

Sometimes, data is available which allows you to make reasoned decisions based on absolute facts. If you can show that a new best practice can objectively improve current processes with hard data, you’ve used the very basics of critical thinking. That said, actual numbers aren’t always available when making a decision. Real critical thinking involves taking a careful look at situations and making a decision based on what is known, not what is felt.

Why Is Critical Thinking Important in the Workplace?

The short answer to the above question is this: critical thinkers make the best decisions, most often. And in the workplace, where choices about how to complete tasks, communicate information, relate with coworkers, and develop strategy are so common, critical thinkers are extremely valuable.

A savvy hiring manager will make this part of the recruitment process. It’s pretty easy to gauge how someone is inclined to solve a problem — ask them how they would deal with a specific situation, and give them the opportunity to use their critical thinking skills, versus deferring to an emotional, or prescribed reaction. Employing people who can think and act reasonably will pay enormous dividends down the road.

Using your critical thinking skills in the workplace will define you as a problem solver. This is not only useful career-wise (although having upper-level people at your company think highly of you is undoubtedly a benefit) it also establishes you as a leader among your fellow team members. Demonstrating your ability to solve problems and accomplish goals effectively will help instill confidence in you with all your coworkers.

How to Use Critical Thinking in the Workplace

The first step to actually using critical thinking is approaching every situation with an open mind. You need to be receptive to all information available, not just the kind that satisfies your preconceived notions or personal biases. This can be easier said than done, of course — lessons learned and beliefs held are often done so with a reason. But when it comes to critical thinking, it’s important to analyze each situation independently.

Once you’ve analyzed a situation with an open mind, you need to consider how to communicate it properly. It’s all very well and good to approach situations with objective logic, but it doesn’t do you any favours to sound like  Mr. Spock  when you’re conveying your conclusions. Be tactful, patient and humble when you are explaining how and why you’ve come to decisions. Use data if available to support your findings, but understand that not everyone is able to remove emotion from situations.

relevance of critical thinking and problem solving

The final, and perhaps least obvious, application with critical thinking is creativity. Often, getting creative means pushing boundaries and reshaping convention. This means taking a risk — one that can often be worth the reward. Using a critical thinking approach when getting creative can help you mitigate the risk, and better determine what value your creativity can bring. It will help you and your team try new things and reinvent current processes while hopefully not rocking the boat too much.

Learn More About Critical Thinking

Critical thinking is a valuable skill for all aspects of your life. It benefits problem solving, creativity, and teamwork. And it translates particularly well to the workplace, where it can distinguish you as a valuable employee and leader.

Taking the extra time to examine things objectively, make decisions based on logic, and communicate it tactfully will help you, those you work with, and your work goals prosper. To learn more about how to do that, have a look at our  Critical Thinking and Problem Solving for Effective Decision-Making   workshop and register today!

Let us help you create your training solution

Hello we'd love to hear from you.

Complete the form below or reach us at: [email protected] , or 613-234-2020

Contact details

To help you.

  • I wish to subscribe to PMC Training content.

Welcome to our new website!

We appreciate your patience as we add the finishing touches. In the meantime, go and explore!

Cookie Usage Disclaimer: This website uses cookies to enhance your browsing experience. By continuing to use this site, you consent to our use of cookies. For more information, please review our Privacy Policy .

  • Product overview
  • All features
  • Latest feature release
  • App integrations

CAPABILITIES

  • project icon Project management
  • Project views
  • Custom fields
  • Status updates
  • goal icon Goals and reporting
  • Reporting dashboards
  • workflow icon Workflows and automation
  • portfolio icon Resource management
  • Capacity planning
  • Time tracking
  • my-task icon Admin and security
  • Admin console
  • asana-intelligence icon Asana AI
  • list icon Personal
  • premium icon Starter
  • briefcase icon Advanced
  • Goal management
  • Organizational planning
  • Campaign management
  • Creative production
  • Content calendars
  • Marketing strategic planning
  • Resource planning
  • Project intake
  • Product launches
  • Employee onboarding
  • View all uses arrow-right icon
  • Project plans
  • Team goals & objectives
  • Team continuity
  • Meeting agenda
  • View all templates arrow-right icon
  • Work management resources Discover best practices, watch webinars, get insights
  • Customer stories See how the world's best organizations drive work innovation with Asana
  • Help Center Get lots of tips, tricks, and advice to get the most from Asana
  • Asana Academy Sign up for interactive courses and webinars to learn Asana
  • Developers Learn more about building apps on the Asana platform
  • Community programs Connect with and learn from Asana customers around the world
  • Events Find out about upcoming events near you
  • Partners Learn more about our partner programs
  • Asana for nonprofits Get more information on our nonprofit discount program, and apply.

Featured Reads

relevance of critical thinking and problem solving

  • Collaboration |
  • How to build your critical thinking ski ...

How to build your critical thinking skills in 7 steps (with examples)

Julia Martins contributor headshot

Critical thinking is, well, critical. By building these skills, you improve your ability to analyze information and come to the best decision possible. In this article, we cover the basics of critical thinking, as well as the seven steps you can use to implement the full critical thinking process.

Critical thinking comes from asking the right questions to come to the best conclusion possible. Strong critical thinkers analyze information from a variety of viewpoints in order to identify the best course of action.

Don’t worry if you don’t think you have strong critical thinking abilities. In this article, we’ll help you build a foundation for critical thinking so you can absorb, analyze, and make informed decisions. 

What is critical thinking? 

Critical thinking is the ability to collect and analyze information to come to a conclusion. Being able to think critically is important in virtually every industry and applicable across a wide range of positions. That’s because critical thinking isn’t subject-specific—rather, it’s your ability to parse through information, data, statistics, and other details in order to identify a satisfactory solution. 

Definitions of critical thinking

Various scholars have provided definitions of critical thinking, each emphasizing different aspects of this complex cognitive process:

Michael Scriven , an American philosopher, defines critical thinking as "the intellectually disciplined process of actively and skillfully conceptualizing, applying, analyzing, synthesizing, and/or evaluating information gathered from, or generated by, observation, experience, reflection, reasoning, or communication as a guide to belief and action."

Robert Ennis , professor emeritus at the University of Illinois, describes critical thinking as "reasonable, reflective thinking focused on deciding what to believe or do."

Diane Halpern , a cognitive psychologist and former president of the American Psychological Association, defines it as "the use of cognitive skills or strategies that increase the probability of a desirable outcome."

Decision-making tools for agile businesses

In this ebook, learn how to equip employees to make better decisions—so your business can pivot, adapt, and tackle challenges more effectively than your competition.

Make good choices, fast: How decision-making processes can help businesses stay agile ebook banner image

Top 8 critical thinking skills

Critical thinking is essential for success in everyday life, higher education, and professional settings. The handbook "Foundation for Critical Thinking" defines it as a process of conceptualization, analysis, synthesis, and evaluation of information.

In no particular order, here are eight key critical thinking abilities that can help you excel in any situation:

1. Analytical thinking

Analytical thinking involves evaluating data from multiple sources in order to come to the best conclusions. Analytical thinking allows people to reject cognitive biases and strive to gather and analyze intricate subject matter while solving complex problems. Analytical thinkers who thrive at critical thinking can:

Identify patterns and trends in the data

Break down complex issues into manageable components

Recognize cause-and-effect relationships

Evaluate the strength of arguments and evidence

Example: A data analyst breaks down complex sales figures to identify trends and patterns that inform the company's marketing strategy.

2. Open-mindedness

Open-mindedness is the willingness to consider new ideas, arguments, and information without prejudice. This critical thinking skill helps you analyze and process information to come to an unbiased conclusion. Part of the critical thinking process is letting your personal biases go, taking information at face value and coming to a conclusion based on multiple points of view .

Open-minded critical thinkers demonstrate:

Willingness to consider alternative viewpoints

Ability to suspend judgment until sufficient evidence is gathered

Receptiveness to constructive criticism and feedback

Flexibility in updating beliefs based on new information

Example: During a product development meeting, a team leader actively considers unconventional ideas from junior members, leading to an innovative solution.

3. Problem-solving

Effective problem solving is a cornerstone of critical thinking. It requires the ability to identify issues, generate possible solutions, evaluate alternatives, and implement the best course of action. This critical thinking skill is particularly valuable in fields like project management and entrepreneurship.

Key aspects of problem-solving include:

Clearly defining the problem

Gathering relevant information

Brainstorming potential solutions

Evaluating the pros and cons of each option

Implementing and monitoring the chosen solution

Reflecting on the outcome and adjusting as necessary

Example: A high school principal uses problem-solving skills to address declining student engagement by surveying learners, consulting with higher education experts, and implementing a new curriculum that balances academic rigor with practical, real-world applications.

4. Reasoned judgment

Reasoned judgment is a key component of higher order thinking that involves making thoughtful decisions based on logical analysis of evidence and thorough consideration of alternatives. This critical thinking skill is important in both academic and professional settings. Key aspects reasoned judgment include:

Objectively gathering and analyzing information

Evaluating the credibility and relevance of evidence

Considering multiple perspectives before drawing conclusions

Making decisions based on logical inference and sound reasoning

Example: A high school science teacher uses reasoned judgment to design an experiment, carefully observing and analyzing results before drawing conclusions about the hypothesis.

5. Reflective thinking

Reflective thinking is the process of analyzing one's own thought processes, actions, and outcomes to gain deeper understanding and improve future performance. Good critical thinking requires analyzing and synthesizing information to form a coherent understanding of a problem. It's an essential critical thinking skill for continuous learning and improvement.

Key aspects of reflective thinking include:

Critically examining one's own assumptions and cognitive biases

Considering diverse viewpoints and perspectives

Synthesizing information from various experiences and sources

Applying insights to improve future decision-making and actions

Continuously evaluating and adjusting one's thinking processes

Example: A community organizer reflects on the outcomes of a recent public event, considering what worked well and what could be improved for future initiatives.

6. Communication

Strong communication skills help critical thinkers articulate ideas clearly and persuasively. Communication in the workplace is crucial for effective teamwork, leadership, and knowledge dissemination. Key aspects of communication in critical thinking include:

Clearly expressing complex ideas

Active listening and comprehension

Adapting communication styles to different audiences

Constructing and delivering persuasive arguments

Example: A manager effectively explains a new company policy to her team, addressing their concerns and ensuring everyone understands its implications.

7. Research

Critical thinkers with strong research skills gather, evaluate, and synthesize information from various sources of information. This is particularly important in academic settings and in professional fields that require continuous learning. Effective research involves:

Identifying reliable and relevant sources of information

Evaluating the credibility and bias of sources

Synthesizing information from multiple sources

Recognizing gaps in existing knowledge

Example: A journalist verifies information from multiple credible sources before publishing an article on a controversial topic.

8. Decision-making

Effective decision making is the culmination of various critical thinking skills that allow an individual to draw logical conclusions and generalizations. It involves weighing options, considering consequences, and choosing the best course of action. Key aspects of decision-making include:

Defining clear criteria for evaluation

Gathering and analyzing relevant information

Considering short-term and long-term consequences

Managing uncertainty and risk

Balancing logic and intuition

Example: A homeowner weighs the costs, benefits, and long-term implications before deciding to invest in solar panels for their house.

7 steps to improve critical thinking

Critical thinking is a skill that you can build by following these seven steps. The seven steps to critical thinking help you ensure you’re approaching a problem from the right angle, considering every alternative, and coming to an unbiased conclusion.

First things first: When to use the 7 step critical thinking process

There’s a lot that goes into the full critical thinking process, and not every decision needs to be this thought out. Sometimes, it’s enough to put aside bias and approach a process logically. In other, more complex cases, the best way to identify the ideal outcome is to go through the entire critical thinking process. 

The seven-step critical thinking process is useful for complex decisions in areas you are less familiar with. Alternatively, the seven critical thinking steps can help you look at a problem you’re familiar with from a different angle, without any bias. 

If you need to make a less complex decision, consider another problem solving strategy instead. Decision matrices are a great way to identify the best option between different choices. Check out our article on 7 steps to creating a decision matrix .

1. Identify the problem or question

Before you put those critical thinking skills to work, you first need to identify the problem you’re solving. This step includes taking a look at the problem from a few different perspectives and asking questions like: 

What’s happening? 

Why is this happening? 

What assumptions am I making? 

At first glance, how do I think we can solve this problem? 

A big part of developing your critical thinking skills is learning how to come to unbiased conclusions. In order to do that, you first need to acknowledge the biases that you currently have. Does someone on your team think they know the answer? Are you making assumptions that aren’t necessarily true? Identifying these details helps you later on in the process. 

2. Gather relevant information

At this point, you likely have a general idea of the problem—but in order to come up with the best solution, you need to dig deeper. 

During the research process, collect information relating to the problem, including data, statistics, historical project information, team input, and more. Make sure you gather information from a variety of sources, especially if those sources go against your personal ideas about what the problem is or how to solve it.

Gathering varied information is essential for your ability to apply the critical thinking process. If you don’t get enough information, your ability to make a final decision will be skewed. Remember that critical thinking is about helping you identify the objective best conclusion. You aren’t going with your gut—you’re doing research to find the best option

3. Analyze and evaluate data

Just as it’s important to gather a variety of information, it is also important to determine how relevant the different information sources are. After all, just because there is data doesn’t mean it’s relevant. 

Once you’ve gathered all of the information, sift through the noise and identify what information is relevant and what information isn’t. Synthesizing all of this information and establishing significance helps you weigh different data sources and come to the best conclusion later on in the critical thinking process. 

To determine data relevance, ask yourself:

How reliable is this information? 

How significant is this information? 

Is this information outdated? Is it specialized in a specific field? 

4. Consider alternative points of view

One of the most useful parts of the critical thinking process is coming to a decision without bias. In order to do so, you need to take a step back from the process and challenge the assumptions you’re making. 

We all have bias—and that isn’t necessarily a bad thing. Unconscious biases (also known as cognitive biases) often serve as mental shortcuts to simplify problem solving and aid decision making. But even when biases aren’t inherently bad, you must be aware of your biases in order to put them aside when necessary. 

Before coming to a solution, ask yourself:

Am I making any assumptions about this information? 

Are there additional variables I haven’t considered? 

Have I evaluated the information from every perspective? 

Are there any viewpoints I missed?

5. Draw logical conclusions

Finally, you’re ready to come to a conclusion. To identify the best solution, draw connections between causes and effects. Use the facts you’ve gathered to evaluate the most objective conclusion. 

Keep in mind that there may be more than one solution. Often, the problems you’re facing are complex and intricate. The critical thinking process doesn’t necessarily lead to a cut-and-dry solution—instead, the process helps you understand the different variables at play so you can make an informed decision. 

6. Develop and communication solutions

Communication is a key skill for critical thinkers. It isn’t enough to think for yourself—you also need to share your conclusion with other project stakeholders. If there are multiple solutions, present them all. There may be a case where you implement one solution, then test to see if it works before implementing another solution. 

This process of communicating and sharing ideas is key in promoting critical thinking within a team or organization. By encouraging open dialogue and collaborative problem-solving, you create an environment that fosters the development of critical thinking skills in others.

7. Reflect and learn from the process

The seven-step critical thinking process yields a result—and you then need to put that solution into place. After you’ve implemented your decision, evaluate whether or not it was effective. Did it solve the initial problem? What lessons—whether positive or negative—can you learn from this experience to improve your critical thinking for next time? 

By engaging in this metacognitive reflective thinking process, you're essentially teaching critical thinking to yourself, refining your methodology with each iteration. This reflective practice is fundamental in developing a more robust and adaptable approach to problem-solving.

Depending on how your team shares information, consider documenting lessons learned in a central source of truth. That way, team members that are making similar or related decisions in the future can understand why you made the decision you made and what the outcome was.

Example of critical thinking in the workplace

Imagine you work in user experience design (UX). Your team is focused on pricing and packaging and ensuring customers have a clear understanding of the different services your company offers. Here’s how to apply the critical thinking process in the workplace in seven steps: 

Step 1: Start by identifying the problem

Your current pricing page isn’t performing as well as you want. You’ve heard from customers that your services aren’t clear, and that the page doesn’t answer the questions they have. This page is really important for your company, since it’s where your customers sign up for your service. You and your team have a few theories about why your current page isn’t performing well, but you decide to apply the critical thinking process to ensure you come to the best decision for the page. 

Gather information about how the problem started

Part of identifying the problem includes understanding how the problem started. The pricing and packaging page is important—so when your team initially designed the page, they certainly put a lot of thought into it. Before you begin researching how to improve the page, ask yourself: 

Why did you design the pricing page the way you did? 

Which stakeholders need to be involved in the decision making process? 

Where are users getting stuck on the page?

Are any features currently working?

Step 2: Then gather information and research

In addition to understanding the history of the pricing and packaging page, it’s important to understand what works well. Part of this research means taking a look at what your competitor’s pricing pages look like. 

Ask yourself: 

How have our competitors set up their pricing pages?

Are there any pricing page best practices? 

How does color, positioning, and animation impact navigation? 

Are there any standard page layouts customers expect to see? 

Step 3: Organize and analyze information

You’ve gathered all of the information you need—now you need to organize and analyze it. What trends, if any, are you noticing? Is there any particularly relevant or important information that you have to consider? 

Step 4: Consider alternative viewpoints to reduce bias

In the case of critical thinking, it’s important to address and set bias aside as much as possible. Ask yourself: 

Is there anything I’m missing? 

Have I connected with the right stakeholders? 

Are there any other viewpoints I should consider? 

Step 5: Determine the most logical solution for your team

You now have all of the information you need to design the best pricing page. Depending on the complexity of the design, you may want to design a few options to present to a small group of customers or A/B test on the live website.

Step 6: Communicate your solution to stakeholders

Critical thinking can help you in every element of your life, but in the workplace, you must also involve key project stakeholders . Stakeholders help you determine next steps, like whether you’ll A/B test the page first. Depending on the complexity of the issue, consider hosting a meeting or sharing a status report to get everyone on the same page. 

Step 7: Reflect on the results

No process is complete without evaluating the results. Once the new page has been live for some time, evaluate whether it did better than the previous page. What worked? What didn’t? This also helps you make better critical decisions later on.

Tools and techniques to improve critical thinking skills

As the importance of critical thinking continues to grow in academic and professional settings, numerous tools and resources have been developed to help individuals enhance their critical thinking skills. Here are some notable contributions from experts and institutions in the field:

Mind mapping for better analysis

Mind mapping is a visual technique that helps organize and structure information. It's particularly useful for synthesizing complex ideas and identifying connections between different concepts. The benefits of mind mapping include:

Enhancing creativity by encouraging non-linear thinking

Improving memory and retention of information

Facilitating brainstorming and idea generation

Providing a clear overview of complex topics

To create a mind map:

Start with a central idea or concept.

Branch out with related sub topics or ideas.

Use colors, symbols, and images to enhance visual appeal and memorability.

Draw connections between related ideas across different branches.

Mind mapping can be particularly effective in project planning , content creation, and studying complex subjects.

The Socratic Method for deeper understanding

The Socratic Method, named after the ancient Greek philosopher Socrates, involves asking probing questions to stimulate critical thinking and illuminate ideas. This technique is widely used in higher education to teach critical thinking. Key aspects of the Socratic Method include:

Asking open-ended questions that encourage deeper reflection

Challenging assumptions and preconceived notions

Exploring the implications and consequences of ideas

Fostering intellectual curiosity and continuous inquiry

The Socratic Method can be applied in various settings:

In education, to encourage students to think deeply about subject matter

In business, it is important to challenge team members to consider multiple points of view.

In personal development, to examine one's own beliefs and decisions

Example: A high school teacher might use the Socratic Method to guide students through a complex ethical dilemma, asking questions like "What principles are at stake here?" and "How might this decision affect different stakeholders?"

SWOT analysis for comprehensive evaluation

SWOT (Strengths, Weaknesses, Opportunities, Threats) analysis is a strategic planning tool that can be applied to critical thinking. It helps in evaluating situations from multiple angles, promoting a more thorough understanding of complex issues. The components of SWOT analysis are:

Strengths: internal positive attributes or assets

Weaknesses: internal negative attributes or limitations

Opportunities: External factors that could be beneficial

Threats: External factors that could be harmful

To conduct a SWOT analysis:

Clearly define the subject of analysis (e.g., a project, organization, or decision).

Brainstorm and list items for each category.

Analyze the interactions between different factors.

Use the analysis to inform strategy or decision-making.

Example: A startup might use SWOT analysis to evaluate its position before seeking investment, identifying its innovative technology as a strength, limited capital as a weakness, growing market demand as an opportunity, and established competitors as a threat.

Critical thinking resources

The Foundation for Critical Thinking : Based in California, this organization offers a wide range of resources, including books, articles, and workshops on critical thinking.

The National Council for Excellence in Critical Thinking : This council provides guidelines and standards for critical thinking instruction and assessment.

University of Louisville : Their Critical Thinking Initiative offers various resources and tools for developing critical thinking skills.

The New York Times Learning Network provides lesson plans and activities to help develop critical thinking skills through current events and news analysis.

Critical thinking frameworks and tools

Paul-Elder Critical Thinking Framework : Developed by Dr. Richard Paul and Dr. Linda Elder, this framework provides a comprehensive approach to developing critical thinking skills.

Bloom's Taxonomy : While not exclusively for critical thinking, this classification system is widely used in education to promote higher-order thinking skills.

The California Critical Thinking Disposition Inventory (CCTDI) : This assessment tool measures the disposition to engage in problems and make decisions using critical thinking.

The Ennis-Weir Critical Thinking Essay Test : Developed by Robert Ennis, this test assesses a person's ability to appraise an argument and to formulate a written argument.

By incorporating these tools and techniques into regular practice, individuals can significantly enhance their critical thinking capabilities, leading to more effective problem-solving, decision-making, and overall cognitive performance.

Critically successful 

Critical thinking takes time to build, but with effort and patience you can apply an unbiased, analytical mind to any situation. Critical thinking makes up one of many soft skills that makes you an effective team member, manager, and worker. If you’re looking to hone your skills further, read our article on the 25 project management skills you need to succeed .

Related resources

relevance of critical thinking and problem solving

10 tips to improve nonverbal communication

relevance of critical thinking and problem solving

Scaling clinical trial management software with PM solutions

relevance of critical thinking and problem solving

4 ways to establish roles and responsibilities for team success

relevance of critical thinking and problem solving

6 ways to develop adaptability in the workplace and embrace change

How Critical Thinking Help in Problem Solving

By: Author Nina Norman

Posted on Published: June 24, 2021  - Last updated: October 9, 2022

Categories Thinking

Home » How Critical Thinking Help in Problem Solving

Critical thinking allows you to better navigate complex situations. It is essentially your ability to reason and question ideas, arguments, and findings. This article explores critical thinking, the importance of taking an analytical and objective approach to problem-solving, and ultimately how to think smarter.

How Critical Thinking Help in Problem Solving

What you’ll learn:

  • On overview of critical thinking and how it assists in navigating complex situations and solving problems.
  • The importance of keeping an open mind and focusing on the facts.

Content Summary

What is Critical Thinking? What are the Benefits? Characteristics of Critical Thinkers Foresight Socratic Questioning How to think Critically Evaluation Tips to takeaway Note

What is Critical Thinking?

Critical thinking is the process of analyzing, evaluating, and rationalizing information objectively. There are three types of critical thinking: reasoning, making judgments, and problem-solving, all of which require you to question, challenge, and draw conclusions.

Question : Critical thinking requires you to identify different arguments, evaluate different points of view, and ask questions to determine their strength and validity.

‘The important thing is not to stop questioning’ – Albert Einstein

Challenge : Critical thinking is a method of thinking in which you don’t just accept information at face value, but instead challenge it. This requires you to be somewhat skeptical but also open-minded to new information and findings which challenge your own preconceived ideas and assumptions.

‘It is the mark of an educated mind to be able to entertain a thought without accepting it’ – Aristotle

Draw Conclusions : Critical thinking helps you to conclude from information, deciding what’s useful and what’s not, enabling you to solve problems, make confident decisions, and provide structured reasoning and support for your argument. Remember, a good critical thinker will weigh up all of the options before taking action.

‘You have a brain and mind of your own. Use it, and reach your own decisions’ – Napoleon Hill

What are the Benefits?

Critical thinking is essentially an exercise for the mind and when we choose to think critically we experience several benefits.

Smarter Thinking

Critical thinking is essentially about thinking smarter. In a world where we are overloaded with information, much of it conflicting, it can be difficult to work out what’s true, important, and relevant. However, by thinking critically you can gain a better understanding of the information you’re presented with.

Critical thinkers are always curious and actively seek out new information and knowledge. They apply critical thinking to even the simplest of issues and tasks, making them more efficient at solving problems and reaching positive outcomes.

Time-Saving

Knowing how to filter out the irrelevant information from the relevant is a key time-saver, helping you to prioritize your time and resources.

With time and practice, critical thinkers become masters of efficiency, as their clear and reasonable way of thinking enables them to make informed decisions faster.

Improved Credibility

Critical thinkers are respected amongst their colleagues and peers as they do their homework and know their stuff! They can be relied upon to provide well-informed points to support their decisions as well as solid evidence to back them up, thus improving their credibility within the organization.

Independence

Critical thinking fosters independence as it encourages independent learning and thought, providing individuals with the skills they need to tackle complex issues and make well-informed and confident decisions, independently.

Characteristics of Critical Thinkers

So who are critical thinkers, and what characteristics do they share?

Open-Minded : Critical thinkers maintain an open mind and are open to all points of view, even those with which they disagree. They can separate facts from opinions, examine issues from all sides, make logical connections between ideas and make rational decisions based on their findings, whilst remaining free from personal judgment or bias. Critical thinkers are flexible in their thinking and remain open to the possibility of changing their views on an issue when logic and strong evidence prevails.

Analytical : Critical thinkers are analytical in their approach, breaking down information into manageable sections to analyze, interpret and evaluate. Once the information has been dissected, they apply sound logic and reasoning to solve the problem or reach a conclusion.

Systematic : Critical thinkers will systematically examine information without jumping to conclusions.

Inquisitive : Critical thinkers are always curious. They ask questions, are keen to know more, and actively seek out new information.

Sensible : Critical thinkers are cautious when making judgments and think carefully before taking action. They think independently and don’t just accept or follow ideas because others do.

Truth-Seeking : Critical thinkers are always looking for the truth and realize that even the wisest people can get things wrong!

Confident in Reasoning : Critical thinkers have faith in the power of logic and sound reasoning, feeling confident that rational and logical thinking will lead to the best solution.

One of the most important aspects of critical thinking is foresight, the ability to think ahead and anticipate what could happen or be needed in the future. This means looking to and thinking about the future.

Foresight can be developed through existing knowledge, similar past experiences, or simply intuition. It can’t predict the future, nor is it a road map of what will happen, but it does help you to identify circumstances that could impact the future.

By using foresight you can identify the problem, weigh up the pros and cons, and foresee the likely outcomes of different options, to make a well-informed decision.

Socratic Questioning

Critical thinking can be traced back to the vision of the philosopher Socrates, who established the importance of asking deep questions before accepting ideas as worthy of belief… which led to the term Socratic Questioning.

What is Socratic Questioning?

Socratic questioning is the process of asking questions that lead to multiple directions. It can be used for several different purposes, for example, to explore complex ideas, solve problems or analyze concepts. Socrates believed that individuals should strive to learn what they don’t know through effective questioning and critical thinking.

What does it involve?

Socratic questioning involves thinking with clarity and logic, asking probing questions, challenging information and its accuracy, and seeking evidence to help you make well-reasoned conclusions.

Why does it?

The underlying principle of ‘Socratic Questioning’ is to learn through the use of critical thinking, reasoning, and logic, and to think critically, you must ask questions that encourage thought. Critical thinking is driven by questions, but remember, the quality of the questions you ask will determine the quality of thought and ultimately the conclusions drawn. For best results, ask open questions such as what, why, where, which, when, and how?

How to think Critically

Critical thinking is one of today’s key employability skills and therefore an important one to have. So how can you think critically in your day-to-day life?

Keep your mind open

It’s important to keep an open mind as you analyze and evaluate information. Being able to step back from a situation will help you to see the bigger picture.

Adopt a growth mindset by approaching situations with an open and curious mind and avoid jumping to conclusions. Critical thinking and a growth mindset go hand-in-hand, it just takes practice.

Don’t be afraid to ask questions

To better understand a situation, it’s important to ask questions and probe for more information. Using open questions can help you to dig deeper, but remember, it’s not an interrogation… so probe politely and respectfully.

Observe, Listen and Analyse

When you carefully observe and record details, you will be able to collect information and gain better insight and a deeper understanding of each situation. It’s also important to focus and actively listen to what’s being said to ensure you have all the facts before making any conclusions.

Analyzing is about breaking information down into parts and evaluating how well those parts function together and separately. This begins with objectivity and relies on observation, gathering, and evaluating evidence so you arrive at a better-informed conclusion.

Is it relevant?

In many circumstances, you’ll be presented with information that seems valuable at first glance but turns out to be a minor detail in a much bigger picture. So, take time to consider how relevant the information actually is… is it really useful or is it just distracting from a more important point?

Keep the balance

It’s important to remain as objective as possible, looking at the information and focusing on the facts. Being objective can be challenging but stepping back from a situation can help you to see the bigger picture more clearly.

People are often driven by spontaneous, unconscious, and emotional behavior, and whilst they can think rationally, they mostly behave habitually. However, when you can understand your irrationalities and can explain why you behave the way you do, you become more predictable and consistent, which can make you more rational. Being aware of your inner biases is essential to overcome them.

Take a breath

Emotion is the enemy of reason… it’s therefore important to keep your emotions in check, basing your conclusions on facts, not feelings. A good critical thinker knows the difference between a rational thought based on careful consideration and an emotional response based on personal bias.

Create the time and space to think and don’t be pushed into making a decision or coming up with a conclusion without having had enough time to apply critical thinking to be sure you have reached the best solution.

Challenge the status quo

Critical thinking may well mean questioning long-established practices and refusing to accept traditional approaches simply because that’s the way it’s always been done. Although your willingness to challenge may seem controversial, it’s an essential part of the process.

Critical thinking involves _________, evaluating and rationalising information __________.

Correct Answer: analysing and objectively Answer Description: Critical thinking involves analyzing, evaluating, and rationalizing information objectively.

When analyzing information what should you do?

A. Focus on the facts B. Remain objective C. Work out what’s relevant Correct Answer: A. Focus on the facts B. Remain objective C. Work out what’s relevant Answer Description: When analyzing information work out what’s relevant, focus on the facts, and remain objective.

Is it ok to challenge information?

A. Yes, of course B. No, take it at face value Correct Answer: A. Yes, of course Answer Description: You should be willing to challenge information. While it may seem controversial, it’s essential to the creative and innovative mindset of a critical thinker.

“Emotion is the enemy of reason.” Is this statement true or false?

A. True B. False Correct Answer: A. True Answer Description: Emotion is the enemy of reason. It’s important to keep your emotions in check and reach a conclusion based on facts, not feelings. A good critical thinker has the self-awareness to know the difference between a rational thought based on careful consideration and an emotional response based on personal bias.

One of the most important aspects of critical thinking is…

A. Hindsight B. Foresight C. Insight Correct Answer: B. Foresight Answer Description: One of the most important aspects of critical thinking is the ability to think ahead and anticipate what could happen or be needed in the future. By using foresight, you can identify the problem, weigh up the pros and cons and predict the likely outcomes of the various options, to make a well-informed decision.

Tips to takeaway

  • Keep an open mind.
  • Focus on the facts.
  • Challenge the status quo.

A key skill that enables you to think clearly and distill complexity, critical thinking is the process of analyzing, evaluating, and rationalizing information objectively.

In an ever-changing environment where many people experience information overload, critical thinkers can better navigate complex situations by questioning and challenging information, drawing their own conclusions, and make confident decisions.

So, what are the benefits of critical thinking?

Well, practicing critical thinking enables you to assess and consider different approaches to most effectively solve problems.

Critical thinkers will rigorously question ideas rather than simply accepting them at face value. As problems become more complicated, critical thinking can help you to weigh up the pros and cons to reach an objective conclusion.

As such, thinking critically can actually be a significant time-saver as you learn to successfully filter out irrelevant information and identify what’s important.

This, in turn, can make critical thinkers more effective communicators, able to competently express consistent and relevant points which support their theory or idea.

What’s more, demonstrating your ability to make well-informed arguments to support your decisions will increase your overall credibility and instill confidence in others.

So, how can you become a critical thinker?

Well, to delve deeper and discover more, it’s important to first have an open and inquisitive mind, being willing to ask questions such as what, why, where, which, when, and how?

When asking questions, be mindful of your tone to ensure your conversation doesn’t become an interrogation! Sometimes, it can help to explain why you’re asking questions and what you’re hoping to achieve.

Be willing to challenge existing ideas and concepts as this is the key to maintaining the creative and innovative mindset of a critical thinker.

When faced with a problem, critical thinkers must remain as objective as possible when looking at information and be sure to focus on the facts. Try to see the bigger picture when analyzing information and take time to look at things from every angle.

When you’ve gathered all the facts, stop and consider how relevant the information actually is. Is it actually useful or could it be distracting from a more pertinent point? Critical thinking takes all information into account but sifts through to focus on and explore what is most relevant to the problem at hand.

As a critical thinker, it’s important to remember that people are often driven by emotional, spontaneous, and unconscious behavior. As such, it’s important to be aware of your own inner biases that could affect your decision-making and point of view when evaluating facts.

It can be difficult to apply cool logic and think critically when you’re tired, stressed, or angry so try to keep your emotions in check when approaching problems to ensure your mindset is open and rational.

If you do find yourself overcome with emotion or feeling pushed into making a decision, give yourself the time and space to think and gain perspective of the situation before proceeding.

In summary…

Critical thinking is the application of logic to make better decisions and is a highly valuable skill in the workplace, as you analyze and evaluate information, focus on the facts, ask questions and remain objective.

Why are critical thinking and problem solving essential in today’s education?

Critical thinking means being able to present evidence for our ideas , analysing the way we think instead of simply learning facts without ever questioning them. When it comes to some school subjects, many people are convinced that critical thinking is not necessary, as the students should simply rely on what they are told. There are many reasons, though, why believing that problem solving and critical thinking are useful in every school field .  

1 – Students are being prepared for jobs that don’t exist yet

The workplace is changing fast, and school needs to adapt to it. This means accepting we don’t know how the jobs of the future will look like . How do you train an entire generation to be prepared to an unknown job market? Critical thinking and problem solving are considered key skills for this uncertain future , especially considering how remote work seems to become more and more popular as the years go by. In the future, workers will be likely selected based on their ability to be independent from micro-managing and able to work with less supervision and even away from the office.  

2 – Critical thinking improves students’ flexibility and learning skills

Today’s students are likely not to work using the same tools they are using to study. We don’t know how technology will change by the time they will graduate , and learning critical thinking will prepare them to learn and adapt faster and keep up to date with relevant changes in their fields of study, whatever they may be.  

3 – Critical thinking is the essence of democracy

Landon E. Beyer said “ to live successfully in a democracy, people must be able to think critically in order to make sound decisions about personal and civic affairs. If students learn to think critically, then they can use good thinking as the guide by which they live their lives .” Politics affects our lives no matter how involved in it we are, and critical thinking will allow students to ensure their decisions are based on facts and logic.

4 – Critical thinking makes Education less passive and more interactive

Teaching students how to approach critically any subject makes it more relevant for them. Sometimes, especially in young students, poor performance can be explained with a feeling of detachment from the subject and its importance in their lives. Making them feel as they are active participants could help solving this problem .

5 – Critical thinking helps students better express their ideas

Critical thinking skills are not limited to a subject, and they can be applied to anything, from politics to physics . The ability of thinking logically and systematically has a huge impact not only on how we understand ideas, but on how we express them. Whether we choose to be a history professor or a scientist, being able to explain what we want and what are goals in the most effective way is an invaluable skill, in the workplace as well as in life.

6 – Critical thinking and problem solving help making the next generation more adaptable to changes

The key word to describe our future is “ uncertain ”, and our ability to adapt will be in some cases the only skill we can use. Keeping an open mind, being able to self-direct, self-discipline and self-monitor , is what will allow this generation to succeed no matter what happens next .

Critical thinking definition

relevance of critical thinking and problem solving

Critical thinking, as described by Oxford Languages, is the objective analysis and evaluation of an issue in order to form a judgement.

Active and skillful approach, evaluation, assessment, synthesis, and/or evaluation of information obtained from, or made by, observation, knowledge, reflection, acumen or conversation, as a guide to belief and action, requires the critical thinking process, which is why it's often used in education and academics.

Some even may view it as a backbone of modern thought.

However, it's a skill, and skills must be trained and encouraged to be used at its full potential.

People turn up to various approaches in improving their critical thinking, like:

  • Developing technical and problem-solving skills
  • Engaging in more active listening
  • Actively questioning their assumptions and beliefs
  • Seeking out more diversity of thought
  • Opening up their curiosity in an intellectual way etc.

Is critical thinking useful in writing?

Critical thinking can help in planning your paper and making it more concise, but it's not obvious at first. We carefully pinpointed some the questions you should ask yourself when boosting critical thinking in writing:

  • What information should be included?
  • Which information resources should the author look to?
  • What degree of technical knowledge should the report assume its audience has?
  • What is the most effective way to show information?
  • How should the report be organized?
  • How should it be designed?
  • What tone and level of language difficulty should the document have?

Usage of critical thinking comes down not only to the outline of your paper, it also begs the question: How can we use critical thinking solving problems in our writing's topic?

Let's say, you have a Powerpoint on how critical thinking can reduce poverty in the United States. You'll primarily have to define critical thinking for the viewers, as well as use a lot of critical thinking questions and synonyms to get them to be familiar with your methods and start the thinking process behind it.

Are there any services that can help me use more critical thinking?

We understand that it's difficult to learn how to use critical thinking more effectively in just one article, but our service is here to help.

We are a team specializing in writing essays and other assignments for college students and all other types of customers who need a helping hand in its making. We cover a great range of topics, offer perfect quality work, always deliver on time and aim to leave our customers completely satisfied with what they ordered.

The ordering process is fully online, and it goes as follows:

  • Select the topic and the deadline of your essay.
  • Provide us with any details, requirements, statements that should be emphasized or particular parts of the essay writing process you struggle with.
  • Leave the email address, where your completed order will be sent to.
  • Select your prefered payment type, sit back and relax!

With lots of experience on the market, professionally degreed essay writers , online 24/7 customer support and incredibly low prices, you won't find a service offering a better deal than ours.

logo

Schedule Meeting

relevance of critical thinking and problem solving

iLearn Blog

  • Why Critical Thinking and Problem Solving Is So Important

Why Critical Thinking and Problem Solving is so important October 2, 2019

Why Critical Thinking and Problem Solving is so important

Critical thinking and problem solving is a key skill for all employees to have in any type of organisation and in any type of role. We use critical thinking and problem solving techniques every day at work and in our personal lives without even realising it!

Not only are we constantly problem solving, we are also constantly using critical thinking processes to improve our progress in solving problems more efficiently and more effectively, in our search for better solutions and innovations.

Critical thinking processes lead to improved knowledge as the process involves the close analysis and evaluation of information leading to informed decisions rather than irrational or uneducated decisions being made.

Even though all individuals are different and think in completely different ways, there are ways we can all improve our critical thinking processes that will then improve our problem solving abilities.

By understanding how our thought process works, we can begin to compare the way we think as an individual to other ways of thinking and different schools of thought. This will expose us to new ways of thinking beyond our usual process and inevitably we will begin to adapt our thought processes to incorporate new methods that we may not have considered before. In doing so, the thought process can become highly creative and produce very effective solutions that were not possible before.

Understanding different ways of thinking will also help an individual to understand how others around us think making it easier to find common solutions to group problems and also to better understand and accept decisions that may be different from our own and that we don’t necessarily agree with.

In conclusion it is evident that critical thinking and problem solving are key skills to learn as the efficiency, accuracy and effectiveness of an individual’s problem solving ability can have a huge impact on their professional and even personal life. Understanding different thinking and different approaches to problem solving is also very beneficial when working in a team and can greatly improve an individual’s relationships with team mates at work as you will be able to understand and appreciate different perspectives.

If you need to or would like to improve on your critical thinking and problem solving skills, London Training for Excellence has the perfect course for you!

To find out more about this course follow the link to the course below or contact [email protected] for more information.

Find Out More With Our

Image

Training courses

Related articles.

How to Boost Your Interpersonal Communication Skills?

Our Clients

foundation wind energy icon

  • Training Courses
  • Engineering, Maintenance and Production
  • Human Resources and Training
  • Information Technology (IT)
  • Law and Insurance
  • Marketing Sales and Customer Services
  • Leadership Management
  • All Courses
  • Project Management

Learning Solution

  • About Our Solutions
  • In-House Learning
  • Short Courses
  • Book A Trainer
  • Bespoke Learning
  • Executive Coaching
  • Online Courses
  • About London TFE
  • Terms and Conditions
  • Where We Operate
  • Associations
  • Privacy Policy
  • 2023 Directory

Footer1

© 2024 London Training for Excellence is a trading name of Laykas Group LTD. Laykas Group LTD is a company registered in England and Wales, Company number 08459761. VAT Registered: GB 197499824 Londontfe is a registered trademark of Laykas Group LTD

Processing

Hello. I'm looking for

relevance of critical thinking and problem solving

  • conferences

popup

  • Conferences

Pardon Our Interruption

As you were browsing something about your browser made us think you were a bot. There are a few reasons this might happen:

  • You've disabled JavaScript in your web browser.
  • You're a power user moving through this website with super-human speed.
  • You've disabled cookies in your web browser.
  • A third-party browser plugin, such as Ghostery or NoScript, is preventing JavaScript from running. Additional information is available in this support article .

To regain access, please make sure that cookies and JavaScript are enabled before reloading the page.

relevance of critical thinking and problem solving

EPRA International Journal of Multidisciplinary Research (IJMR)

  • Vol. 10 Issue. 8 (August-2024) EPRA International Journal of Multidisciplinary Research (IJMR)

USING THEMATIC APPROACH IN THE LEARNERS' CRITICAL THINKING ABILITIES AND PROBLEM-SOLVING SKILLS

Mary grace barbacena arcega.

: 10
: 8
: August
: 2024

ABOUT EPRA JOURNALS

Quick links.

  • Submit Your Paper
  • Track Your Paper Status
  • Certificate Download

FOR AUTHORS

  • Impact Factor
  • Plagiarism Policy
  • Retraction Policy
  • Publication Policy
  • Terms & Conditions
  • Refund Policy
  • Privacy Policy
  • Cancellation Policy
  • Shipping Policy

IMAGES

  1. Critical Thinking & Problem Solving [Outline]

    relevance of critical thinking and problem solving

  2. The benefits of critical thinking for students and how to develop it

    relevance of critical thinking and problem solving

  3. 10 Essential Critical Thinking Skills (And How to Improve Them

    relevance of critical thinking and problem solving

  4. Problem solving and critical thinking

    relevance of critical thinking and problem solving

  5. why is critical thinking important in problem solving

    relevance of critical thinking and problem solving

  6. what is problem solving and critical thinking

    relevance of critical thinking and problem solving

COMMENTS

  1. What Are Critical Thinking Skills and Why Are They Important?

    Problem-solving: Problem-solving is perhaps the most important skill that critical thinkers can possess. The ability to solve issues and bounce back from conflict is what helps you succeed, be a leader, and effect change. ... Critical thinking, in part, is the cognitive process of reading the situation: the words coming out of their mouth ...

  2. The Importance Of Critical Thinking, and how to improve it

    Critical thinking can help you better understand yourself, and in turn, help you avoid any kind of negative or limiting beliefs, and focus more on your strengths. Being able to share your thoughts can increase your quality of life. 4. Form Well-Informed Opinions.

  3. The Power Of Critical Thinking: Enhancing Decision-Making And Problem

    Critical thinking enhances decision-making, problem-solving and communication abilities by fostering logical reasoning, analytical skills and an open mindset. It enables individuals to overcome ...

  4. Bridging critical thinking and transformative learning: The role of

    In recent decades, approaches to critical thinking have generally taken a practical turn, pivoting away from more abstract accounts - such as emphasizing the logical relations that hold between statements (Ennis, 1964) - and moving toward an emphasis on belief and action.According to the definition that Robert Ennis (2018) has been advocating for the last few decades, critical thinking is ...

  5. Critical Thinking: A Model of Intelligence for Solving Real-World

    4. Critical Thinking as an Applied Model for Intelligence. One definition of intelligence that directly addresses the question about intelligence and real-world problem solving comes from Nickerson (2020, p. 205): "the ability to learn, to reason well, to solve novel problems, and to deal effectively with novel problems—often unpredictable—that confront one in daily life."

  6. Critical Thinking and Problem-Solving

    Critical thinking involves asking questions, defining a problem, examining evidence, analyzing assumptions and biases, avoiding emotional reasoning, avoiding oversimplification, considering other interpretations, and tolerating ambiguity. Dealing with ambiguity is also seen by Strohm & Baukus (1995) as an essential part of critical thinking ...

  7. Critical Thinking: A Simple Guide and Why It's Important

    ☑ Problem-Solving Mastery. Visualize critical thinking as the Sherlock Holmes of your career journey. It facilitates swift problem resolution akin to a detective unraveling a mystery. By methodically analyzing situations and deconstructing complexities, critical thinkers emerge as adept problem solvers, rendering them invaluable assets in the ...

  8. Critical Thinking and Decision-Making

    Simply put, critical thinking is the act of deliberately analyzing information so that you can make better judgements and decisions. It involves using things like logic, reasoning, and creativity, to draw conclusions and generally understand things better. This may sound like a pretty broad definition, and that's because critical thinking is a ...

  9. Eight Instructional Strategies for Promoting Critical Thinking

    Students grappled with ideas and their beliefs and employed deep critical-thinking skills to develop arguments for their claims. Embedding critical-thinking skills in curriculum that students care ...

  10. The effectiveness of collaborative problem solving in promoting

    Collaborative problem-solving has been widely embraced in the classroom instruction of critical thinking, which is regarded as the core of curriculum reform based on key competencies in the field ...

  11. Why are critical thinking and problem-solving skills important?

    According to a British Council report, one of the main reasons these skills are so important is economic: critical thinking and problem-solving help people make better decisions about their jobs and livelihood. For example, 78 per cent of people living in poverty are in rural areas and are farmers.

  12. 6 Benefits of Critical Thinking and Why They Matter

    Critical thinking capacity does all that and more. 4. It's a multi-faceted practice. Critical thinking is known for encompassing a wide array of disciplines, and cultivating a broad range of cognitive talents. One could indeed say that it's a cross-curricular activity for the mind, and the mind must be exercised just like a muscle to stay ...

  13. Are Problem Solving and Critical Thinking the Same? Debunking the

    Critical Thinking, Problem Solving, and Career Relevance. Critical thinking and problem solving are two essential skills that individuals need to excel in their careers. Although these skills may seem similar, there are distinct differences between them. Developing both expertise in critical thinking and problem-solving competencies is vital ...

  14. Critical Thinking: What It Is and Why It's Important

    Communication skills: When it comes to critical thinking, it's important to be able to communicate ideas and strategies that help you do your job better or make your team stronger. Problem-solving skills: After identifying an issue, critical thinkers come up with solutions and outcomes. This process is commonly known as problem-solving on a resume.

  15. Critical Thinking vs. Problem-Solving: What's the Difference?

    Critical thinking. This is a mode of thinking, compared to problem-solving, which is a set of solution-oriented strategies. Since critical thinking strengthens your reasoning, it makes it easier to learn new skills, including problem-solving. Working on your critical thinking can also help you understand yourself better, including your value ...

  16. Critical Thinking Is About Asking Better Questions

    Critical thinking is the ability to analyze and effectively break down an issue in order to make a decision or find a solution. At the heart of critical thinking is the ability to formulate deep ...

  17. What is Critical Thinking and Why is it Valuable in the Workplace

    Critical thinking is a valuable skill for all aspects of your life. It benefits problem solving, creativity, and teamwork. And it translates particularly well to the workplace, where it can distinguish you as a valuable employee and leader. ... To learn more about how to do that, have a look at our Critical Thinking and Problem Solving for ...

  18. Build Critical Thinking Skills in 7 Steps with Examples [2024] • Asana

    This process of communicating and sharing ideas is key in promoting critical thinking within a team or organization. By encouraging open dialogue and collaborative problem-solving, you create an environment that fosters the development of critical thinking skills in others. 7. Reflect and learn from the process.

  19. How Critical Thinking Help in Problem Solving

    Critical thinking is the process of analyzing, evaluating, and rationalizing information objectively. There are three types of critical thinking: reasoning, making judgments, and problem-solving, all of which require you to question, challenge, and draw conclusions. Question: Critical thinking requires you to identify different arguments ...

  20. PDF Problem Solving and Critical Thinking

    Problem Solving and Critical Thinking Everyone experiences problems from time to time. Some of our problems are big and complicated, while others may be more easily solved. There is no shortage of challenges and issues that can arise on the job. Whether in an office or on a construction site, experiencing difficulties with the tasks at hand or ...

  21. Enhancing Critical Thinking Skills: A Comprehensive Guide

    Judgment and Decision Making and Problem-solving are two of the most prominent skills that one should possess to work through the process of critical thinking (University of Tennessee, 2022). Being creative and open allows a person to create an appropriate system to address a problem, figure out the central issue, and later produce solutions ...

  22. Why are critical thinking and problem solving essential in today's

    6 - Critical thinking and problem solving help making the next generation more adaptable to changes. The key word to describe our future is " uncertain ", and our ability to adapt will be in some cases the only skill we can use. Keeping an open mind, being able to self-direct, self-discipline and self-monitor, is what will allow this ...

  23. Using Critical Thinking in Essays and other Assignments

    Critical thinking, as described by Oxford Languages, is the objective analysis and evaluation of an issue in order to form a judgement. Active and skillful approach, evaluation, assessment, synthesis, and/or evaluation of information obtained from, or made by, observation, knowledge, reflection, acumen or conversation, as a guide to belief and ...

  24. Why Critical Thinking and Problem Solving is so important

    In conclusion it is evident that critical thinking and problem solving are key skills to learn as the efficiency, accuracy and effectiveness of an individual's problem solving ability can have a huge impact on their professional and even personal life. ... The importance of developing technology management in the workplace. Read Article. 22nd ...

  25. Explained: Importance of critical thinking, problem-solving skills in

    Critical thinking and problem-solving skills are two of the most sought-after skills. Hence, schools should emphasise the upskilling of students as a part of the academic curriculum.

  26. Enhancing Critical Thinking in Law Enforcement Officers: Skills

    2 Critical Thinking and Problem Solving Critical thinking and problem solving are related but distinct skills. Critical thinking involves questioning, evaluating, and reasoning with information and arguments and problem solving is using knowledge, facts, and data to find and implement solutions. Critical thinking is a lifelong practice to improve one's thinking, while problem solving is a set ...

  27. Critical Thinking: Enhance HR Problem Solving Skills

    The final step in utilizing critical thinking for HR problem-solving is to reflect on the process and outcomes. Take time to consider what worked well and what could be improved for future problem ...

  28. Critical Thinking: Key to Executive Problem-Solving Success

    Enhancing your problem-solving skills through critical thinking is not just beneficial; it's essential. Critical thinking is the disciplined process of actively analyzing, synthesizing, and ...

  29. Boost Problem-Solving with Critical Thinking Internships

    One of the most valuable aspects of internships is the feedback loop from supervisors and peers. This continuous exchange of ideas and critiques is a goldmine for critical thinking development.

  30. Using Thematic Approach in The Learners' Critical Thinking Abilities

    This study focuses on determining the significant effect on teacher's utilization of Thematic Approach on the learner's critical thinking abilities and problem-solving skills. It seeks to determine the level of Thematic approach, learners' critical thinking abilities and problem-solving skills. The significant difference in the learners' problem-solving skills before and after using ...