• Anonymity can help individuals with stigmatizing conditions connect with others
• Young adults with mental illness commonly form online relationships
• Social media use in individuals with serious mental illness associated with greater community and civic engagement
• Individuals with depressive symptoms prefer communicating on social media than in-person
• Online conversations do not require iimnediate responses or non-verbal cues
Social media platforms offer near continuous opportunities to connect and interact with others, regardless of time of day or geographic location. This on demand ease of communication may be especially important for facilitating social interaction among individuals with mental disorders experiencing difficulties interacting in face-to-face settings. For example, impaired social functioning is a common deficit in schizophrenia spectrum disorders, and social media may facilitate communication and interacting with others for these individuals ( Torous & Keshavan, 2016 ). This was suggested in one study where participants with schizophrenia indicated that social media helped them to interact and socialize more easily ( Miller et al., 2015 ). Like other online communication, the ability to connect with others anonymously may be an important feature of social media, especially for individuals living with highly stigmatizing health conditions ( Berger, Wagner, & Baker, 2005 ), such as serious mental disorders ( Highton-Williamson, Priebe, & Giacco, 2015 ).
Studies have found that individuals with serious mental disorders ( Spinzy, Nitzan, Becker, Bloch, & Fennig, 2012 ) as well as young adults with mental illness ( Gowen, Deschaine, Gruttadara, & Markey, 2012 ) appear to form online relationships and connect with others on social media as often as social media users from the general population. This is an important observation because individuals living with serious mental disorders typically have few social contacts in the offline world, and also experience high rates of loneliness ( Badcock et al., 2015 ; Giacco, Palumbo, Strappelli, Catapano, & Priebe, 2016 ). Among individuals receiving publicly funded mental health services who use social media, nearly half (47%) reported using these platforms at least weekly to feel less alone ( Brusilovskiy, Townley, Snethen, & Salzer, 2016 ). In another study of young adults with serious mental illness, most indicated that they used social media to help feel less isolated ( Gowen et al., 2012 ). Interestingly, more frequent use of social media among a sample of individuals with serious mental illness was associated with greater community participation, measured as participation in shopping, work, religious activities or visiting friends and family, as well as greater civic engagement, reflected as voting in local elections ( Brusilovskiy et al., 2016 ).
Emerging research also shows that young people with moderate to severe depressive symptoms appear to prefer communicating on social media rather than in-person ( Rideout & Fox, 2018 ), while other studies have found that some individuals may prefer to seek help for mental health concerns online rather than through in-person encounters ( Batterham & Calear, 2017 ). In a qualitative study, participants with schizophrenia described greater anonymity, the ability to discover that other people have experienced similar health challenges, and reducing fears through greater access to information as important motivations for using the Internet to seek mental health information ( Schrank, Sibitz, Unger, & Amering, 2010 ). Because social media does not require the immediate responses necessary in face-to-face communication, it may overcome deficits with social interaction due to psychotic symptoms that typically adversely affect face-to-face conversations ( Docherty et al., 1996 ). Online social interactions may not require the use of non-verbal cues, particularly in the initial stages of interaction ( Kiesler, Siegel, & McGuire, 1984 ), with interactions being more fluid, and within the control of users, thereby overcoming possible social anxieties linked to in-person interaction ( Indian & Grieve, 2014 ). Furthermore, many individuals with serious mental disorders can experience symptoms including passive social withdrawal, blunted affect and attentional impairment, as well as active social avoidance due to hallucinations or other concerns ( Hansen, Torgalsbøen, Melle, & Bell, 2009 ); thus, potentially reinforcing the relative advantage, as perceived by users, of using social media over in person conversations.
There is growing recognition about the role that social media channels could play in enabling peer support ( Bucci et al., 2019 ; Naslund, Aschbrenner, et al., 2016b ), referred to as a system of mutual giving and receiving where individuals who have endured the difficulties of mental illness can offer hope, friendship, and support to others facing similar challenges ( Davidson, Chinman, Sells, & Rowe, 2006 ; Mead, Hilton, & Curtis, 2001 ). Initial studies exploring use of online self-help forums among individuals with serious mental illnesses have found that individuals with schizophrenia appeared to use these forums for self-disclosure, and sharing personal experiences, in addition to providing or requesting information, describing symptoms, or discussing medication ( Haker, Lauber, & Rössler, 2005 ), while users with bipolar disorder reported using these forums to ask for help from others about their illness ( Vayreda & Antaki, 2009 ). More recently, in a review of online social networking in people with psychosis, Highton-Williamson et al (2015) highlight that an important purpose of such online connections was to establish new friendships, pursue romantic relationships, maintain existing relationships or reconnect with people, and seek online peer support from others with lived experience ( Highton-Williamson et al., 2015 ).
Online peer support among individuals with mental illness has been further elaborated in various studies. In a content analysis of comments posted to YouTube by individuals who self-identified as having a serious mental illness, there appeared to be opportunities to feel less alone, provide hope, find support and learn through mutual reciprocity, and share coping strategies for day-to-day challenges of living with a mental illness ( Naslund, Grande, Aschbrenner, & Elwyn, 2014 ). In another study, Chang (2009) delineated various communication patterns in an online psychosis peer-support group ( Chang, 2009 ). Specifically, different forms of support emerged, including ‘informational support’ about medication use or contacting mental health providers, ‘esteem support’ involving positive comments for encouragement, ‘network support’ for sharing similar experiences, and ‘emotional support’ to express understanding of a peer’s situation and offer hope or confidence ( Chang, 2009 ). Bauer et al. (2013) reported that the main interest in online self-help forums for patients with bipolar disorder was to share emotions with others, allow exchange of information, and benefit by being part of an online social group ( Bauer, Bauer, Spiessl, & Kagerbauer, 2013 ).
For individuals who openly discuss mental health problems on Twitter, a study by Berry et al. (2017) found that this served as an important opportunity to seek support and to hear about the experiences of others ( Berry et al., 2017 ). In a survey of social media users with mental illness, respondents reported that sharing personal experiences about living with mental illness and opportunities to learn about strategies for coping with mental illness from others were important reasons for using social media ( Naslund et al., 2017 ). A computational study of mental health awareness campaigns on Twitter provides further support with inspirational posts and tips being the most shared ( Saha et al., 2019 ). Taken together, these studies offer insights about the potential for social media to facilitate access to an informal peer support network, though more research is necessary to examine how these online interactions may impact intentions to seek care, illness self-management, and clinically meaningful outcomes in offline contexts.
Many individuals living with mental disorders have expressed interest in using social media platforms for seeking mental health information ( Lal, Nguyen, & Theriault, 2018 ), connecting with mental health providers ( M. L. Birnbaum et al., 2017 ), and accessing evidence-based mental health services delivered over social media specifically for coping with mental health symptoms or for promoting overall health and wellbeing ( Naslund et al., 2017 ). With the widespread use of social media among individuals living with mental illness combined with the potential to facilitate social interaction and connect with supportive peers, as summarized above, it may be possible to leverage the popular features of social media to enhance existing mental health programs and services. A recent review by Biagianti et al (2018) found that peer-to-peer support appeared to offer feasible and acceptable ways to augment digital mental health interventions for individuals with psychotic disorders by specifically improving engagement, compliance, and adherence to the interventions, and may also improve perceived social support ( Biagianti, Quraishi, & Schlosser, 2018 ).
Among digital programs that have incorporated peer-to-peer social networking consistent with popular features on social media platforms, a pilot study of the HORYZONS online psychosocial intervention demonstrated significant reductions in depression among patients with first episode psychosis ( Alvarez-Jimenez et al., 2013 ). Importantly, the majority of participants (95%) in this study engaged with the peer-to-peer networking feature of the program, with many reporting increases in perceived social connectedness and empowerment in their recovery process ( Alvarez-Jimenez et al., 2013 ). This moderated online social therapy program is now being evaluated as part of a large randomized controlled trial for maintaining treatment effects from first episode psychosis services ( Alvarez-Jimenez et al., 2019 ).
Other early efforts have demonstrated that use of digital environments with the interactive peer-to-peer features of social media can enhance social functioning and wellbeing in young people at high risk of psychosis ( Alvarez-Jimenez et al., 2018 ). There has also been a recent emergence of several mobile apps to support symptom monitoring and relapse prevention in psychotic disorders. Among these apps, the development of PRIME (Personalized Real-time Intervention for Motivational Enhancement) has involved working closely with young people with schizophrenia to ensure that the design of the app has the look and feel of mainstream social media platforms, as opposed to existing clinical tools ( Schlosser et al., 2016 ). This unique approach to the design of the app is aimed at promoting engagement, and ensuring that the app can effectively improve motivation and functioning through goal setting and promoting better quality of life of users with schizophrenia ( Schlosser et al., 2018 ).
Social media platforms could also be used to promote engagement and participation in in-person services delivered through community mental health settings. For example, the peer-based lifestyle intervention called PeerFIT targets weight loss and improved fitness among individuals living with serious mental illness through a combination of in-person lifestyle classes, exercise groups, and use of digital technologies ( Aschbrenner, Naslund, Shevenell, Kinney, & Bartels, 2016 ; Aschbrenner, Naslund, Shevenell, Mueser, & Bartels, 2016 ). The intervention holds tremendous promise as lack of support is one of the largest barriers toward exercise in patients with serious mental illness ( Firth et al., 2016 ) and it is now possible to use social media to counter such. Specifically, in PeerFIT, a private Facebook group is closely integrated into the program to offer a closed platform where participants can connect with the lifestyle coaches, access intervention content, and support or encourage each other as they work towards their lifestyle goals ( Aschbrenner, Naslund, & Bartels, 2016 ; Naslund, Aschbrenner, Marsch, & Bartels, 2016a ). To date, this program has demonstrate preliminary effectiveness for meaningfully reducing cardiovascular risk factors that contribute to early mortality in this patient group ( Aschbrenner, Naslund, Shevenell, Kinney, et al., 2016 ), while the Facebook component appears to have increased engagement in the program, while allowing participants who were unable to attend in-person sessions due to other health concerns or competing demands to remain connected with the program ( Naslund, Aschbrenner, Marsch, McHugo, & Bartels, 2018 ). This lifestyle intervention is currently being evaluated in a randomized controlled trial enrolling young adults with serious mental illness from a variety of real world community mental health services settings ( Aschbrenner, Naslund, Gorin, et al., 2018 ).
These examples highlight the promise of incorporating the features of popular social media into existing programs, which may offer opportunities to safely promote engagement and program retention, while achieving improved clinical outcomes. This is an emerging area of research, as evidenced by several important effectiveness trials underway ( Alvarez-Jimenez et al., 2019 ; Aschbrenner, Naslund, Gorin, et al., 2018 ), including efforts to leverage online social networking to support family caregivers of individuals receiving first episode psychosis services ( Gleeson et al., 2017 ).
The science on the role of social media for engaging persons with mental disorders needs a cautionary note on the effects of social media usage on mental health and well being, particularly in adolescents and young adults. While the risks and harms of social media are frequently covered in the popular press and mainstream news reports, careful consideration of the research in this area is necessary. In a review of 43 studies in young people, many benefits of social media were cited, including increased self-esteem, and opportunities for self-disclosure ( Best, Manktelow, & Taylor, 2014 ). Yet, reported negative effects were an increased exposure to harm, social isolation, depressive symptoms and bullying ( Best et al., 2014 ). In the sections that follow (see Table 1 for a summary), we consider three major categories of risk related to use of social media and mental health. These include: 1) Impact on symptoms; 2) Facing hostile interactions; and 3) Consequences for daily life.
Studies consistently highlight that use of social media, especially heavy use and prolonged time spent on social media platforms, appears to contribute to increased risk for a variety of mental health symptoms and poor wellbeing, especially among young people ( Andreassen et al., 2016 ; Kross et al., 2013 ; Woods & Scott, 2016 ). This may partly be driven by the detrimental effects of screen time on mental health, including increased severity of anxiety and depressive symptoms, which have been well documented ( Stiglic & Viner, 2019 ). Recent studies have reported negative effects of social media use on mental health of young people, including social comparison pressure with others and greater feeling of social isolation after being rejected by others on social media ( Rideout & Fox, 2018 ). In a study of young adults, it was found that negative comparisons with others on Facebook contributed to risk of rumination and subsequent increases in depression symptoms ( Feinstein et al., 2013 ). Still, the cross sectional nature of many screen time and mental health studies makes it challenging to reach causal inferences ( Orben & Przybylski, 2019 ).
Quantity of social media use is also an important factor, as highlighted in a survey of young adults ages 19 to 32, where more frequent visits to social media platforms each week were correlated with greater depressive symptoms ( Lin et al., 2016 ). More time spent using social media is also associated with greater symptoms of anxiety ( Vannucci, Flannery, & Ohannessian, 2017 ). The actual number of platforms accessed also appears to contribute to risk as reflected in another national survey of young adults where use of a large number of social media platforms was associated with negative impact on mental health ( Primack et al., 2017 ). Among survey respondents using between 7 and 11 different social media platforms compared to respondents using only 2 or fewer platforms, there was a 3 times greater odds of having high levels of depressive symptoms and a 3.2 times greater odds of having high levels of anxiety symptoms ( Primack et al., 2017 ).
Many researchers have postulated that worsening mental health attributed to social media use may be because social media replaces face-to-face interactions for young people ( Twenge & Campbell, 2018 ), and may contribute to greater loneliness ( Bucci et al., 2019 ), and negative effects on other aspects of health and wellbeing ( Woods & Scott, 2016 ). One nationally representative survey of US adolescents found that among respondents who reported more time accessing media such as social media platforms or smartphone devices, there was significantly greater depressive symptoms and increased risk of suicide when compared to adolescents who reported spending more time on non-screen activities, such as in-person social interaction or sports and recreation activities ( Twenge, Joiner, Rogers, & Martin, 2018 ). For individuals living with more severe mental illnesses, the effects of social media on psychiatric symptoms have received less attention. One study found that participation in chat rooms may contribute to worsening symptoms in young people with psychotic disorders ( Mittal, Tessner, & Walker, 2007 ), while another study of patients with psychosis found that social media use appeared to predict low mood ( Berry, Emsley, Lobban, & Bucci, 2018 ). These studies highlight a clear relationship between social media use and mental health that may not be present in general population studies ( Orben & Przybylski, 2019 ), and emphasize the need to explore how social media may contribute to symptom severity and whether protective factors may be identified to mitigate these risks.
Popular social media platforms can create potential situations where individuals may be victimized by negative comments or posts. Cyberbullying represents a form of online aggression directed towards specific individuals, such as peers or acquaintances, which is perceived to be most harmful when compared to random hostile comments posted online ( Hamm et al., 2015 ). Importantly, cyberbullying on social media consistently shows harmful impact on mental health in the form of increased depressive symptoms as well as worsening of anxiety symptoms, as evidenced in a review of 36 studies among children and young people ( Hamm et al., 2015 ). Furthermore, cyberbullying disproportionately impacts females as reflected in a national survey of adolescents in the United States, where females were twice as likely to be victims of cyberbullying compared to males ( Alhajji, Bass, & Dai, 2019 ). Most studies report cross-sectional associations between cyberbullying and symptoms of depression or anxiety ( Hamm et al., 2015 ), though one longitudinal study in Switzerland found that cyberbullying contributed to significantly greater depression over time ( Machmutow, Perren, Sticca, & Alsaker, 2012 ).
For youth ages 10 to 17 who reported major depressive symptomatology, there was over 3 times greater odds of facing online harassment in the last year compared to youth who reported mild or no depressive symptoms ( Ybarra, 2004 ). Similarly, in a 2018 national survey of young people, respondents ages 14 to 22 with moderate to severe depressive symptoms were more likely to have had negative experiences when using social media, and in particular, were more likely to report having faced hostile comments, or being “trolled”, from others when compared to respondents without depressive symptoms (31% vs. 14%) ( Rideout & Fox, 2018 ). As these studies depict risks for victimization on social media and the correlation with poor mental health, it is possible that individuals living with mental illness may also experience greater hostility online compared to individuals without mental illness. This would be consistent with research showing greater risk of hostility, including increased violence and discrimination, directed towards individuals living with mental illness in in-person contexts, especially targeted at those with severe mental illnesses ( Goodman et al., 1999 ).
A computational study of mental health awareness campaigns on Twitter reported that while stigmatizing content was rare, it was actually the most spread (re-tweeted) demonstrating that harmful content can travel quickly on social media ( Saha et al., 2019 ). Another study was able to map the spread of social media posts about the Blue Whale Challenge, an alleged game promoting suicide, over Twitter, YouTube, Reddit, Tumblr and other forums across 127 countries ( Sumner et al., 2019 ). These findings show that it is critical to monitor the actual content of social media posts, such as determining whether content is hostile or promotes harm to self or others. This is pertinent because existing research looking at duration of exposure cannot account for the impact of specific types of content on mental health and is insufficient to fully understand the effects of using these platforms on mental health.
The ways in which individuals use social media can also impact their offline relationships and everyday activities. To date, reports have described risks of social media use pertaining to privacy, confidentiality, and unintended consequences of disclosing personal health information online ( Torous & Keshavan, 2016 ). Additionally, concerns have been raised about poor quality or misleading health information shared on social media, and that social media users may not be aware of misleading information or conflicts of interest especially when the platforms promote popular content regardless of whether it is from a trustworthy source ( Moorhead et al., 2013 ; Ventola, 2014 ). For persons living with mental illness there may be additional risks from using social media. A recent study that specifically explored the perspectives of social media users with serious mental illnesses, including participants with schizophrenia spectrum disorders, bipolar disorder, or major depression, found that over one third of participants expressed concerns about privacy when using social media ( Naslund & Aschbrenner, 2019 ). The reported risks of social media use were directly related to many aspects of everyday life, including concerns about threats to employment, fear of stigma and being judged, impact on personal relationships, and facing hostility or being hurt ( Naslund & Aschbrenner, 2019 ). While few studies have specifically explored the dangers of social media use from the perspectives of individuals living with mental illness, it is important to recognize that use of these platforms may contribute to risks that extend beyond worsening symptoms and that can affect different aspects of daily life.
In this commentary we considered ways in which social media may yield benefits for individuals living with mental illness, while contrasting these with the possible harms. Studies reporting on the threats of social media for individuals with mental illness are mostly cross-sectional, making it difficult to draw conclusions about direction of causation. However, the risks are potentially serious. These risks should be carefully considered in discussions pertaining to use of social media and the broader use of digital mental health technologies, as avenues for mental health promotion, or for supporting access to evidence-based programs or mental health services. At this point, it would be premature to view the benefits of social media as outweighing the possible harms, when it is clear from the studies summarized here that social media use can have negative effects on mental health symptoms, can potentially expose individuals to hurtful content and hostile interactions, and can result in serious consequences for daily life, including threats to employment and personal relationships. Despite these risks, it is also necessary to recognize that individuals with mental illness will continue to use social media given the ease of accessing these platforms and the immense popularity of online social networking. With this in mind, it may be ideal to raise awareness about these possible risks so that individuals can implement necessary safeguards, while also highlighting that there could also be benefits. For individuals with mental illness who use social media, being aware of the risks is an essential first step, and then highlighting ways that use of these popular platforms could also contribute to some benefits, ranging from finding meaningful interactions with others, engaging with peer support networks, and accessing information and services.
To capitalize on the widespread use of social media, and to achieve the promise that these platforms may hold for supporting the delivery of targeted mental health interventions, there is need for continued research to better understand how individuals living with mental illness use social media. Such efforts could inform safety measures and also encourage use of social media in ways that maximize potential benefits while minimizing risk of harm. It will be important to recognize how gender and race contribute to differences in use of social media for seeking mental health information or accessing interventions, as well as differences in how social media might impact mental wellbeing. For example, a national survey of 14- to 22-year olds in the United States found that female respondents were more likely to search online for information about depression or anxiety, and to try to connect with other people online who share similar mental health concerns, when compared to male respondents ( Rideout & Fox, 2018 ). In the same survey, there did not appear to be any differences between racial or ethnic groups in social media use for seeking mental health information ( Rideout & Fox, 2018 ). Social media use also appears to have a differential impact on mental health and emotional wellbeing between females and males ( Booker, Kelly, & Sacker, 2018 ), highlighting the need to explore unique experiences between gender groups to inform tailored programs and services. Research shows that lesbian, gay, bisexual or transgender individuals frequently use social media for searching for health information and may be more likely compared to heterosexual individuals to share their own personal health experiences with others online ( Rideout & Fox, 2018 ). Less is known about use of social media for seeking support for mental health concerns among gender minorities, though this is an important area for further investigation as these individuals are more likely to experience mental health problems and more likely to experience online victimization when compared to heterosexual individuals ( Mereish, Sheskier, Hawthorne, & Goldbach, 2019 ).
Similarly, efforts are needed to explore the relationship between social media use and mental health among ethnic and racial minorities. A recent study found that exposure to traumatic online content on social media showing violence or hateful posts directed at racial minorities contributed to increases in psychological distress, PTSD symptoms, and depression among African American and Latinx adolescents in the United States ( Tynes, Willis, Stewart, & Hamilton, 2019 ). These concerns are contrasted by growing interest in the potential for new technologies including social media to expand the reach of services to underrepresented minority groups ( Schueller, Hunter, Figueroa, & Aguilera, 2019 ). Therefore, greater attention is needed to understanding the perspectives of ethnic and racial minorities to inform effective and safe use of social media for mental health promotion efforts.
Research has found that individuals living with mental illness have expressed interest in accessing mental health services through social media platforms. A survey of social media users with mental illness found that most respondents were interested in accessing programs for mental health on social media targeting symptom management, health promotion, and support for communicating with health care providers and interacting with the health system ( Naslund et al., 2017 ). Importantly, individuals with serious mental illness have also emphasized that any mental health intervention on social media would need to be moderated by someone with adequate training and credentials, would need to have ground rules and ways to promote safety and minimize risks, and importantly, would need to be free and easy to access.
An important strength with this commentary is that it combines a range of studies broadly covering the topic of social media and mental health. We have provided a summary of recent evidence in a rapidly advancing field with the goal of presenting unique ways that social media could offer benefits for individuals with mental illness, while also acknowledging the potentially serious risks and the need for further investigation. There are also several limitations with this commentary that warrant consideration. Importantly, as we aimed to address this broad objective, we did not conduct a systematic review of the literature. Therefore, the studies reported here are not exhaustive, and there may be additional relevant studies that were not included. Additionally, we only summarized published studies, and as a result, any reports from the private sector or websites from different organizations using social media or other apps containing social media-like features would have been omitted. Though it is difficult to rigorously summarize work from the private sector, sometimes referred to as “gray literature”, because many of these projects are unpublished and are likely selective in their reporting of findings given the target audience may be shareholders or consumers.
Another notable limitation is that we did not assess risk of bias in the studies summarized in this commentary. We found many studies that highlighted risks associated with social media use for individuals living with mental illness; however, few studies of programs or interventions reported negative findings, suggesting the possibility that negative findings may go unpublished. This concern highlights the need for a future more rigorous review of the literature with careful consideration of bias and an accompanying quality assessment. Most of the studies that we described were from the United States, as well as from other higher income settings such as Australia or the United Kingdom. Despite the global reach of social media platforms, there is a dearth of research on the impact of these platforms on the mental health of individuals in diverse settings, as well as the ways in which social media could support mental health services in lower income countries where there is virtually no access to mental health providers. Future research is necessary to explore the opportunities and risks for social media to support mental health promotion in low-income and middle-income countries, especially as these countries face a disproportionate share of the global burden of mental disorders, yet account for the majority of social media users worldwide ( Naslund et al., 2019 ).
As we consider future research directions, the near ubiquitous social media use also yields new opportunities to study the onset and manifestation of mental health symptoms and illness severity earlier than traditional clinical assessments. There is an emerging field of research referred to as ‘digital phenotyping’ aimed at capturing how individuals interact with their digital devices, including social media platforms, in order to study patterns of illness and identify optimal time points for intervention ( Jain, Powers, Hawkins, & Brownstein, 2015 ; Onnela & Rauch, 2016 ). Given that most people access social media via mobile devices, digital phenotyping and social media are closely related ( Torous et al., 2019 ). To date, the emergence of machine learning, a powerful computational method involving statistical and mathematical algorithms ( Shatte, Hutchinson, & Teague, 2019 ), has made it possible to study large quantities of data captured from popular social media platforms such as Twitter or Instagram to illuminate various features of mental health ( Manikonda & De Choudhury, 2017 ; Reece et al., 2017 ). Specifically, conversations on Twitter have been analyzed to characterize the onset of depression ( De Choudhury, Gamon, Counts, & Horvitz, 2013 ) as well as detecting users’ mood and affective states ( De Choudhury, Gamon, & Counts, 2012 ), while photos posted to Instagram can yield insights for predicting depression ( Reece & Danforth, 2017 ). The intersection of social media and digital phenotyping will likely add new levels of context to social media use in the near future.
Several studies have also demonstrated that when compared to a control group, Twitter users with a self-disclosed diagnosis of schizophrenia show unique online communication patterns ( Michael L Birnbaum, Ernala, Rizvi, De Choudhury, & Kane, 2017 ), including more frequent discussion of tobacco use ( Hswen et al., 2017 ), symptoms of depression and anxiety ( Hswen, Naslund, Brownstein, & Hawkins, 2018b ), and suicide ( Hswen, Naslund, Brownstein, & Hawkins, 2018a ). Another study found that online disclosures about mental illness appeared beneficial as reflected by fewer posts about symptoms following self-disclosure (Ernala, Rizvi, Birnbaum, Kane, & De Choudhury, 2017). Each of these examples offers early insights into the potential to leverage widely available online data for better understanding the onset and course of mental illness. It is possible that social media data could be used to supplement additional digital data, such as continuous monitoring using smartphone apps or smart watches, to generate a more comprehensive ‘digital phenotype’ to predict relapse and identify high-risk health behaviors among individuals living with mental illness ( Torous et al., 2019 ).
With research increasingly showing the valuable insights that social media data can yield about mental health states, greater attention to the ethical concerns with using individual data in this way is necessary ( Chancellor, Birnbaum, Caine, Silenzio, & De Choudhury, 2019 ). For instance, data is typically captured from social media platforms without the consent or awareness of users ( Bidargaddi et al., 2017 ), which is especially crucial when the data relates to a socially stigmatizing health condition such as mental illness ( Guntuku, Yaden, Kern, Ungar, & Eichstaedt, 2017 ). Precautions are needed to ensure that data is not made identifiable in ways that were not originally intended by the user who posted the content, as this could place an individual at risk of harm or divulge sensitive health information ( Webb et al., 2017 ; Williams, Burnap, & Sloan, 2017 ). Promising approaches for minimizing these risks include supporting the participation of individuals with expertise in privacy, clinicians, as well as the target individuals with mental illness throughout the collection of data, development of predictive algorithms, and interpretation of findings ( Chancellor et al., 2019 ).
In recognizing that many individuals living with mental illness use social media to search for information about their mental health, it is possible that they may also want to ask their clinicians about what they find online to check if the information is reliable and trustworthy. Alternatively, many individuals may feel embarrassed or reluctant to talk to their clinicians about using social media to find mental health information out of concerns of being judged or dismissed. Therefore, mental health clinicians may be ideally positioned to talk with their patients about using social media, and offer recommendations to promote safe use of these sites, while also respecting their patients’ autonomy and personal motivations for using these popular platforms. Given the gap in clinical knowledge about the impact of social media on mental health, clinicians should be aware of the many potential risks so that they can inform their patients, while remaining open to the possibility that their patients may also experience benefits through use of these platforms. As awareness of these risks grows, it may be possible that new protections will be put in place by industry or through new policies that will make the social media environment safer. It is hard to estimate a number needed to treat or harm today given the nascent state of research, which means the patient and clinician need to weigh the choice on a personal level. Thus offering education and information is an important first step in that process. As patients increasingly show interest in accessing mental health information or services through social media, it will be necessary for health systems to recognize social media as a potential avenue for reaching or offering support to patients. This aligns with growing emphasis on the need for greater integration of digital psychiatry, including apps, smartphones, or wearable devices, into patient care and clinical services through institution-wide initiatives and training clinical providers ( Hilty, Chan, Torous, Luo, & Boland, 2019 ). Within a learning healthcare environment where research and care are tightly intertwined and feedback between both is rapid, the integration of digital technologies into services may create new opportunities for advancing use of social media for mental health.
As highlighted in this commentary, social media has become an important part of the lives of many individuals living with mental disorders. Many of these individuals use social media to share their lived experiences with mental illness, to seek support from others, and to search for information about treatment recommendations, accessing mental health services, and coping with symptoms ( Bucci et al., 2019 ; Highton-Williamson et al., 2015 ; Naslund, Aschbrenner, et al., 2016b ). As the field of digital mental health advances, the wide reach, ease of access, and popularity of social media platforms could be used to allow individuals in need of mental health services or facing challenges of mental illness to access evidence-based treatment and support. To achieve this end and to explore whether social media platforms can advance efforts to close the gap in available mental health services in the United States and globally, it will be essential for researchers to work closely with clinicians and with those affected by mental illness to ensure that possible benefits of using social media are carefully weighed against anticipated risks.
Dr. Naslund is supported by a grant from the National Institute of Mental Health (U19MH113211). Dr. Aschbrenner is supported by a grant from the National Institute of Mental Health (1R01MH110965-01).
Publisher's Disclaimer: This Author Accepted Manuscript is a PDF file of a an unedited peer-reviewed manuscript that has been accepted for publication but has not been copyedited or corrected. The official version of record that is published in the journal is kept up to date and so may therefore differ from this version.
Conflict of Interest
The authors have nothing to disclose.
You are accessing a machine-readable page. In order to be human-readable, please install an RSS reader.
All articles published by MDPI are made immediately available worldwide under an open access license. No special permission is required to reuse all or part of the article published by MDPI, including figures and tables. For articles published under an open access Creative Common CC BY license, any part of the article may be reused without permission provided that the original article is clearly cited. For more information, please refer to https://www.mdpi.com/openaccess .
Feature papers represent the most advanced research with significant potential for high impact in the field. A Feature Paper should be a substantial original Article that involves several techniques or approaches, provides an outlook for future research directions and describes possible research applications.
Feature papers are submitted upon individual invitation or recommendation by the scientific editors and must receive positive feedback from the reviewers.
Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.
Original Submission Date Received: .
Find support for a specific problem in the support section of our website.
Please let us know what you think of our products and services.
Visit our dedicated information section to learn more about MDPI.
The role of social network analysis in social media research.
2. the significance of this study, 3. works related to social media usage, 4. the related works of social network analysis, 5. possible hypotheses regarding structural features of social media usage, 6. conclusions, author contributions, conflicts of interest.
Click here to enlarge figure
Parameter | Structural Features | Estimate (Standard Error) |
---|---|---|
θ (Edge) | −3.12 (1.36) | |
σ2 (Two Stars) | 0.06 (1.84) | |
σ3 (Tree Stars) | −0.02 (0.13) | |
τ (Triangle) | 1.06 (8.4) |
The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
Nie, Z.; Waheed, M.; Kasimon, D.; Wan Abas, W.A.B. The Role of Social Network Analysis in Social Media Research. Appl. Sci. 2023 , 13 , 9486. https://doi.org/10.3390/app13179486
Nie Z, Waheed M, Kasimon D, Wan Abas WAB. The Role of Social Network Analysis in Social Media Research. Applied Sciences . 2023; 13(17):9486. https://doi.org/10.3390/app13179486
Nie, Zhou, Moniza Waheed, Diyana Kasimon, and Wan Anita Binti Wan Abas. 2023. "The Role of Social Network Analysis in Social Media Research" Applied Sciences 13, no. 17: 9486. https://doi.org/10.3390/app13179486
Article access statistics, further information, mdpi initiatives, follow mdpi.
Subscribe to receive issue release notifications and newsletters from MDPI journals
The effect of social media on the development of students’ affective variables.
The use of social media is incomparably on the rise among students, influenced by the globalized forms of communication and the post-pandemic rush to use multiple social media platforms for education in different fields of study. Though social media has created tremendous chances for sharing ideas and emotions, the kind of social support it provides might fail to meet students’ emotional needs, or the alleged positive effects might be short-lasting. In recent years, several studies have been conducted to explore the potential effects of social media on students’ affective traits, such as stress, anxiety, depression, and so on. The present paper reviews the findings of the exemplary published works of research to shed light on the positive and negative potential effects of the massive use of social media on students’ emotional well-being. This review can be insightful for teachers who tend to take the potential psychological effects of social media for granted. They may want to know more about the actual effects of the over-reliance on and the excessive (and actually obsessive) use of social media on students’ developing certain images of self and certain emotions which are not necessarily positive. There will be implications for pre- and in-service teacher training and professional development programs and all those involved in student affairs.
Social media has turned into an essential element of individuals’ lives including students in today’s world of communication. Its use is growing significantly more than ever before especially in the post-pandemic era, marked by a great revolution happening to the educational systems. Recent investigations of using social media show that approximately 3 billion individuals worldwide are now communicating via social media ( Iwamoto and Chun, 2020 ). This growing population of social media users is spending more and more time on social network groupings, as facts and figures show that individuals spend 2 h a day, on average, on a variety of social media applications, exchanging pictures and messages, updating status, tweeting, favoring, and commenting on many updated socially shared information ( Abbott, 2017 ).
Researchers have begun to investigate the psychological effects of using social media on students’ lives. Chukwuere and Chukwuere (2017) maintained that social media platforms can be considered the most important source of changing individuals’ mood, because when someone is passively using a social media platform seemingly with no special purpose, s/he can finally feel that his/her mood has changed as a function of the nature of content overviewed. Therefore, positive and negative moods can easily be transferred among the population using social media networks ( Chukwuere and Chukwuere, 2017 ). This may become increasingly important as students are seen to be using social media platforms more than before and social networking is becoming an integral aspect of their lives. As described by Iwamoto and Chun (2020) , when students are affected by social media posts, especially due to the increasing reliance on social media use in life, they may be encouraged to begin comparing themselves to others or develop great unrealistic expectations of themselves or others, which can have several affective consequences.
Considering the increasing influence of social media on education, the present paper aims to focus on the affective variables such as depression, stress, and anxiety, and how social media can possibly increase or decrease these emotions in student life. The exemplary works of research on this topic in recent years will be reviewed here, hoping to shed light on the positive and negative effects of these ever-growing influential platforms on the psychology of students.
Though social media, as the name suggests, is expected to keep people connected, probably this social connection is only superficial, and not adequately deep and meaningful to help individuals feel emotionally attached to others. The psychological effects of social media on student life need to be studied in more depth to see whether social media really acts as a social support for students and whether students can use social media to cope with negative emotions and develop positive feelings or not. In other words, knowledge of the potential effects of the growing use of social media on students’ emotional well-being can bridge the gap between the alleged promises of social media and what it actually has to offer to students in terms of self-concept, self-respect, social role, and coping strategies (for stress, anxiety, etc.).
Before getting down to the effects of social media on students’ emotional well-being, some exemplary works of research in recent years on the topic among general populations are reviewed. For one, Aalbers et al. (2018) reported that individuals who spent more time passively working with social media suffered from more intense levels of hopelessness, loneliness, depression, and perceived inferiority. For another, Tang et al. (2013) observed that the procedures of sharing information, commenting, showing likes and dislikes, posting messages, and doing other common activities on social media are correlated with higher stress. Similarly, Ley et al. (2014) described that people who spend 2 h, on average, on social media applications will face many tragic news, posts, and stories which can raise the total intensity of their stress. This stress-provoking effect of social media has been also pinpointed by Weng and Menczer (2015) , who contended that social media becomes a main source of stress because people often share all kinds of posts, comments, and stories ranging from politics and economics, to personal and social affairs. According to Iwamoto and Chun (2020) , anxiety and depression are the negative emotions that an individual may develop when some source of stress is present. In other words, when social media sources become stress-inducing, there are high chances that anxiety and depression also develop.
Charoensukmongkol (2018) reckoned that the mental health and well-being of the global population can be at a great risk through the uncontrolled massive use of social media. These researchers also showed that social media sources can exert negative affective impacts on teenagers, as they can induce more envy and social comparison. According to Fleck and Johnson-Migalski (2015) , though social media, at first, plays the role of a stress-coping strategy, when individuals continue to see stressful conditions (probably experienced and shared by others in media), they begin to develop stress through the passage of time. Chukwuere and Chukwuere (2017) maintained that social media platforms continue to be the major source of changing mood among general populations. For example, someone might be passively using a social media sphere, and s/he may finally find him/herself with a changed mood depending on the nature of the content faced. Then, this good or bad mood is easily shared with others in a flash through the social media. Finally, as Alahmar (2016) described, social media exposes people especially the young generation to new exciting activities and events that may attract them and keep them engaged in different media contexts for hours just passing their time. It usually leads to reduced productivity, reduced academic achievement, and addiction to constant media use ( Alahmar, 2016 ).
The number of studies on the potential psychological effects of social media on people in general is higher than those selectively addressed here. For further insights into this issue, some other suggested works of research include Chang (2012) , Sriwilai and Charoensukmongkol (2016) , and Zareen et al. (2016) . Now, we move to the studies that more specifically explored the effects of social media on students’ affective states.
Vygotsky’s mediational theory (see Fernyhough, 2008 ) can be regarded as a main theoretical background for the support of social media on learners’ affective states. Based on this theory, social media can play the role of a mediational means between learners and the real environment. Learners’ understanding of this environment can be mediated by the image shaped via social media. This image can be either close to or different from the reality. In the case of the former, learners can develop their self-image and self-esteem. In the case of the latter, learners might develop unrealistic expectations of themselves by comparing themselves to others. As it will be reviewed below among the affective variables increased or decreased in students under the influence of the massive use of social media are anxiety, stress, depression, distress, rumination, and self-esteem. These effects have been explored more among school students in the age range of 13–18 than university students (above 18), but some studies were investigated among college students as well. Exemplary works of research on these affective variables are reviewed here.
In a cross-sectional study, O’Dea and Campbell (2011) explored the impact of online interactions of social networks on the psychological distress of adolescent students. These researchers found a negative correlation between the time spent on social networking and mental distress. Dumitrache et al. (2012) explored the relations between depression and the identity associated with the use of the popular social media, the Facebook. This study showed significant associations between depression and the number of identity-related information pieces shared on this social network. Neira and Barber (2014) explored the relationship between students’ social media use and depressed mood at teenage. No significant correlation was found between these two variables. In the same year, Tsitsika et al. (2014) explored the associations between excessive use of social media and internalizing emotions. These researchers found a positive correlation between more than 2-h a day use of social media and anxiety and depression.
Hanprathet et al. (2015) reported a statistically significant positive correlation between addiction to Facebook and depression among about a thousand high school students in wealthy populations of Thailand and warned against this psychological threat. Sampasa-Kanyinga and Lewis (2015) examined the relationship between social media use and psychological distress. These researchers found that the use of social media for more than 2 h a day was correlated with a higher intensity of psychological distress. Banjanin et al. (2015) tested the relationship between too much use of social networking and depression, yet found no statistically significant correlation between these two variables. Frison and Eggermont (2016) examined the relationships between different forms of Facebook use, perceived social support of social media, and male and female students’ depressed mood. These researchers found a positive association between the passive use of the Facebook and depression and also between the active use of the social media and depression. Furthermore, the perceived social support of the social media was found to mediate this association. Besides, gender was found as the other factor to mediate this relationship.
Vernon et al. (2017) explored change in negative investment in social networking in relation to change in depression and externalizing behavior. These researchers found that increased investment in social media predicted higher depression in adolescent students, which was a function of the effect of higher levels of disrupted sleep. Barry et al. (2017) explored the associations between the use of social media by adolescents and their psychosocial adjustment. Social media activity showed to be positively and moderately associated with depression and anxiety. Another investigation was focused on secondary school students in China conducted by Li et al. (2017) . The findings showed a mediating role of insomnia on the significant correlation between depression and addiction to social media. In the same year, Yan et al. (2017) aimed to explore the time spent on social networks and its correlation with anxiety among middle school students. They found a significant positive correlation between more than 2-h use of social networks and the intensity of anxiety.
Also in China, Wang et al. (2018) showed that addiction to social networking sites was correlated positively with depression, and this correlation was mediated by rumination. These researchers also found that this mediating effect was moderated by self-esteem. It means that the effect of addiction on depression was compounded by low self-esteem through rumination. In another work of research, Drouin et al. (2018) showed that though social media is expected to act as a form of social support for the majority of university students, it can adversely affect students’ mental well-being, especially for those who already have high levels of anxiety and depression. In their research, the social media resources were found to be stress-inducing for half of the participants, all university students. The higher education population was also studied by Iwamoto and Chun (2020) . These researchers investigated the emotional effects of social media in higher education and found that the socially supportive role of social media was overshadowed in the long run in university students’ lives and, instead, fed into their perceived depression, anxiety, and stress.
Keles et al. (2020) provided a systematic review of the effect of social media on young and teenage students’ depression, psychological distress, and anxiety. They found that depression acted as the most frequent affective variable measured. The most salient risk factors of psychological distress, anxiety, and depression based on the systematic review were activities such as repeated checking for messages, personal investment, the time spent on social media, and problematic or addictive use. Similarly, Mathewson (2020) investigated the effect of using social media on college students’ mental health. The participants stated the experience of anxiety, depression, and suicidality (thoughts of suicide or attempts to suicide). The findings showed that the types and frequency of using social media and the students’ perceived mental health were significantly correlated with each other.
The body of research on the effect of social media on students’ affective and emotional states has led to mixed results. The existing literature shows that there are some positive and some negative affective impacts. Yet, it seems that the latter is pre-dominant. Mathewson (2020) attributed these divergent positive and negative effects to the different theoretical frameworks adopted in different studies and also the different contexts (different countries with whole different educational systems). According to Fredrickson’s broaden-and-build theory of positive emotions ( Fredrickson, 2001 ), the mental repertoires of learners can be built and broadened by how they feel. For instance, some external stimuli might provoke negative emotions such as anxiety and depression in learners. Having experienced these negative emotions, students might repeatedly check their messages on social media or get addicted to them. As a result, their cognitive repertoire and mental capacity might become limited and they might lose their concentration during their learning process. On the other hand, it should be noted that by feeling positive, learners might take full advantage of the affordances of the social media and; thus, be able to follow their learning goals strategically. This point should be highlighted that the link between the use of social media and affective states is bi-directional. Therefore, strategic use of social media or its addictive use by students can direct them toward either positive experiences like enjoyment or negative ones such as anxiety and depression. Also, these mixed positive and negative effects are similar to the findings of several other relevant studies on general populations’ psychological and emotional health. A number of studies (with general research populations not necessarily students) showed that social networks have facilitated the way of staying in touch with family and friends living far away as well as an increased social support ( Zhang, 2017 ). Given the positive and negative emotional effects of social media, social media can either scaffold the emotional repertoire of students, which can develop positive emotions in learners, or induce negative provokers in them, based on which learners might feel negative emotions such as anxiety and depression. However, admittedly, social media has also generated a domain that encourages the act of comparing lives, and striving for approval; therefore, it establishes and internalizes unrealistic perceptions ( Virden et al., 2014 ; Radovic et al., 2017 ).
It should be mentioned that the susceptibility of affective variables to social media should be interpreted from a dynamic lens. This means that the ecology of the social media can make changes in the emotional experiences of learners. More specifically, students’ affective variables might self-organize into different states under the influence of social media. As for the positive correlation found in many studies between the use of social media and such negative effects as anxiety, depression, and stress, it can be hypothesized that this correlation is induced by the continuous comparison the individual makes and the perception that others are doing better than him/her influenced by the posts that appear on social media. Using social media can play a major role in university students’ psychological well-being than expected. Though most of these studies were correlational, and correlation is not the same as causation, as the studies show that the number of participants experiencing these negative emotions under the influence of social media is significantly high, more extensive research is highly suggested to explore causal effects ( Mathewson, 2020 ).
As the review of exemplary studies showed, some believed that social media increased comparisons that students made between themselves and others. This finding ratifies the relevance of the Interpretation Comparison Model ( Stapel and Koomen, 2000 ; Stapel, 2007 ) and Festinger’s (1954) Social Comparison Theory. Concerning the negative effects of social media on students’ psychology, it can be argued that individuals may fail to understand that the content presented in social media is usually changed to only represent the attractive aspects of people’s lives, showing an unrealistic image of things. We can add that this argument also supports the relevance of the Social Comparison Theory and the Interpretation Comparison Model ( Stapel and Koomen, 2000 ; Stapel, 2007 ), because social media sets standards that students think they should compare themselves with. A constant observation of how other students or peers are showing their instances of achievement leads to higher self-evaluation ( Stapel and Koomen, 2000 ). It is conjectured that the ubiquitous role of social media in student life establishes unrealistic expectations and promotes continuous comparison as also pinpointed in the Interpretation Comparison Model ( Stapel and Koomen, 2000 ; Stapel, 2007 ).
The use of social media is ever increasing among students, both at school and university, which is partly because of the promises of technological advances in communication services and partly because of the increased use of social networks for educational purposes in recent years after the pandemic. This consistent use of social media is not expected to leave students’ psychological, affective and emotional states untouched. Thus, it is necessary to know how the growing usage of social networks is associated with students’ affective health on different aspects. Therefore, we found it useful to summarize the research findings in recent years in this respect. If those somehow in charge of student affairs in educational settings are aware of the potential positive or negative effects of social media usage on students, they can better understand the complexities of students’ needs and are better capable of meeting them.
Psychological counseling programs can be initiated at schools or universities to check upon the latest state of students’ mental and emotional health influenced by the pervasive use of social media. The counselors can be made aware of the potential adverse effects of social networking and can adapt the content of their inquiries accordingly. Knowledge of the potential reasons for student anxiety, depression, and stress can help school or university counselors to find individualized coping strategies when they diagnose any symptom of distress in students influenced by an excessive use of social networking.
Admittedly, it is neither possible to discard the use of social media in today’s academic life, nor to keep students’ use of social networks fully controlled. Certainly, the educational space in today’s world cannot do without the social media, which has turned into an integral part of everybody’s life. Yet, probably students need to be instructed on how to take advantage of the media and to be the least affected negatively by its occasional superficial and unrepresentative content. Compensatory programs might be needed at schools or universities to encourage students to avoid making unrealistic and impartial comparisons of themselves and the flamboyant images of others displayed on social media. Students can be taught to develop self-appreciation and self-care while continuing to use the media to their benefit.
The teachers’ role as well as the curriculum developers’ role are becoming more important than ever, as they can significantly help to moderate the adverse effects of the pervasive social media use on students’ mental and emotional health. The kind of groupings formed for instructional purposes, for example, in social media can be done with greater care by teachers to make sure that the members of the groups are homogeneous and the tasks and activities shared in the groups are quite relevant and realistic. The teachers cannot always be in a full control of students’ use of social media, and the other fact is that students do not always and only use social media for educational purposes. They spend more time on social media for communicating with friends or strangers or possibly they just passively receive the content produced out of any educational scope just for entertainment. This uncontrolled and unrealistic content may give them a false image of life events and can threaten their mental and emotional health. Thus, teachers can try to make students aware of the potential hazards of investing too much of their time on following pages or people that publish false and misleading information about their personal or social identities. As students, logically expected, spend more time with their teachers than counselors, they may be better and more receptive to the advice given by the former than the latter.
Teachers may not be in full control of their students’ use of social media, but they have always played an active role in motivating or demotivating students to take particular measures in their academic lives. If teachers are informed of the recent research findings about the potential effects of massively using social media on students, they may find ways to reduce students’ distraction or confusion in class due to the excessive or over-reliant use of these networks. Educators may more often be mesmerized by the promises of technology-, computer- and mobile-assisted learning. They may tend to encourage the use of social media hoping to benefit students’ social and interpersonal skills, self-confidence, stress-managing and the like. Yet, they may be unaware of the potential adverse effects on students’ emotional well-being and, thus, may find the review of the recent relevant research findings insightful. Also, teachers can mediate between learners and social media to manipulate the time learners spend on social media. Research has mainly indicated that students’ emotional experiences are mainly dependent on teachers’ pedagogical approach. They should refrain learners from excessive use of, or overreliance on, social media. Raising learners’ awareness of this fact that individuals should develop their own path of development for learning, and not build their development based on unrealistic comparison of their competences with those of others, can help them consider positive values for their activities on social media and, thus, experience positive emotions.
At higher education, students’ needs are more life-like. For example, their employment-seeking spirits might lead them to create accounts in many social networks, hoping for a better future. However, membership in many of these networks may end in the mere waste of the time that could otherwise be spent on actual on-campus cooperative projects. Universities can provide more on-campus resources both for research and work experience purposes from which the students can benefit more than the cyberspace that can be tricky on many occasions. Two main theories underlying some negative emotions like boredom and anxiety are over-stimulation and under-stimulation. Thus, what learners feel out of their involvement in social media might be directed toward negative emotions due to the stimulating environment of social media. This stimulating environment makes learners rely too much, and spend too much time, on social media or use them obsessively. As a result, they might feel anxious or depressed. Given the ubiquity of social media, these negative emotions can be replaced with positive emotions if learners become aware of the psychological effects of social media. Regarding the affordances of social media for learners, they can take advantage of the potential affordances of these media such as improving their literacy, broadening their communication skills, or enhancing their distance learning opportunities.
A review of the research findings on the relationship between social media and students’ affective traits revealed both positive and negative findings. Yet, the instances of the latter were more salient and the negative psychological symptoms such as depression, anxiety, and stress have been far from negligible. These findings were discussed in relation to some more relevant theories such as the social comparison theory, which predicted that most of the potential issues with the young generation’s excessive use of social media were induced by the unfair comparisons they made between their own lives and the unrealistic portrayal of others’ on social media. Teachers, education policymakers, curriculum developers, and all those in charge of the student affairs at schools and universities should be made aware of the psychological effects of the pervasive use of social media on students, and the potential threats.
It should be reminded that the alleged socially supportive and communicative promises of the prevalent use of social networking in student life might not be fully realized in practice. Students may lose self-appreciation and gratitude when they compare their current state of life with the snapshots of others’ or peers’. A depressed or stressed-out mood can follow. Students at schools or universities need to learn self-worth to resist the adverse effects of the superficial support they receive from social media. Along this way, they should be assisted by the family and those in charge at schools or universities, most importantly the teachers. As already suggested, counseling programs might help with raising students’ awareness of the potential psychological threats of social media to their health. Considering the ubiquity of social media in everybody’ life including student life worldwide, it seems that more coping and compensatory strategies should be contrived to moderate the adverse psychological effects of the pervasive use of social media on students. Also, the affective influences of social media should not be generalized but they need to be interpreted from an ecological or contextual perspective. This means that learners might have different emotions at different times or different contexts while being involved in social media. More specifically, given the stative approach to learners’ emotions, what learners emotionally experience in their application of social media can be bound to their intra-personal and interpersonal experiences. This means that the same learner at different time points might go through different emotions Also, learners’ emotional states as a result of their engagement in social media cannot be necessarily generalized to all learners in a class.
As the majority of studies on the psychological effects of social media on student life have been conducted on school students than in higher education, it seems it is too soon to make any conclusive remark on this population exclusively. Probably, in future, further studies of the psychological complexities of students at higher education and a better knowledge of their needs can pave the way for making more insightful conclusions about the effects of social media on their affective states.
The majority of studies on the potential effects of social media usage on students’ psychological well-being are either quantitative or qualitative in type, each with many limitations. Presumably, mixed approaches in near future can better provide a comprehensive assessment of these potential associations. Moreover, most studies on this topic have been cross-sectional in type. There is a significant dearth of longitudinal investigation on the effect of social media on developing positive or negative emotions in students. This seems to be essential as different affective factors such as anxiety, stress, self-esteem, and the like have a developmental nature. Traditional research methods with single-shot designs for data collection fail to capture the nuances of changes in these affective variables. It can be expected that more longitudinal studies in future can show how the continuous use of social media can affect the fluctuations of any of these affective variables during the different academic courses students pass at school or university.
As already raised in some works of research reviewed, the different patterns of impacts of social media on student life depend largely on the educational context. Thus, the same research designs with the same academic grade students and even the same age groups can lead to different findings concerning the effects of social media on student psychology in different countries. In other words, the potential positive and negative effects of popular social media like Facebook, Snapchat, Twitter, etc., on students’ affective conditions can differ across different educational settings in different host countries. Thus, significantly more research is needed in different contexts and cultures to compare the results.
There is also a need for further research on the higher education students and how their affective conditions are positively and negatively affected by the prevalent use of social media. University students’ psychological needs might be different from other academic grades and, thus, the patterns of changes that the overall use of social networking can create in their emotions can be also different. Their main reasons for using social media might be different from school students as well, which need to be investigated more thoroughly. The sorts of interventions needed to moderate the potential negative effects of social networking on them can be different too, all requiring a new line of research in education domain.
Finally, there are hopes that considering the ever-increasing popularity of social networking in education, the potential psychological effects of social media on teachers be explored as well. Though teacher psychology has only recently been considered for research, the literature has provided profound insights into teachers developing stress, motivation, self-esteem, and many other emotions. In today’s world driven by global communications in the cyberspace, teachers like everyone else are affecting and being affected by social networking. The comparison theory can hold true for teachers too. Thus, similar threats (of social media) to self-esteem and self-worth can be there for teachers too besides students, which are worth investigating qualitatively and quantitatively.
Probably a new line of research can be initiated to explore the co-development of teacher and learner psychological traits under the influence of social media use in longitudinal studies. These will certainly entail sophisticated research methods to be capable of unraveling the nuances of variation in these traits and their mutual effects, for example, stress, motivation, and self-esteem. If these are incorporated within mixed-approach works of research, more comprehensive and better insightful findings can be expected to emerge. Correlational studies need to be followed by causal studies in educational settings. As many conditions of the educational settings do not allow for having control groups or randomization, probably, experimental studies do not help with this. Innovative research methods, case studies or else, can be used to further explore the causal relations among the different features of social media use and the development of different affective variables in teachers or learners. Examples of such innovative research methods can be process tracing, qualitative comparative analysis, and longitudinal latent factor modeling (for a more comprehensive view, see Hiver and Al-Hoorie, 2019 ).
Both authors listed have made a substantial, direct, and intellectual contribution to the work, and approved it for publication.
This study was sponsored by Wuxi Philosophy and Social Sciences bidding project—“Special Project for Safeguarding the Rights and Interests of Workers in the New Form of Employment” (Grant No. WXSK22-GH-13). This study was sponsored by the Key Project of Party Building and Ideological and Political Education Research of Nanjing University of Posts and Telecommunications—“Research on the Guidance and Countermeasures of Network Public Opinion in Colleges and Universities in the Modern Times” (Grant No. XC 2021002).
Author XX was employed by China Mobile Group Jiangsu Co., Ltd.
The remaining author declares that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.
Aalbers, G., McNally, R. J., Heeren, A., de Wit, S., and Fried, E. I. (2018). Social media and depression symptoms: A network perspective. J. Exp. Psychol. Gen. 148, 1454–1462. doi: 10.1037/xge0000528
PubMed Abstract | CrossRef Full Text | Google Scholar
Abbott, J. (2017). Introduction: Assessing the social and political impact of the internet and new social media in Asia. J. Contemp. Asia 43, 579–590. doi: 10.1080/00472336.2013.785698
CrossRef Full Text | Google Scholar
Alahmar, A. T. (2016). The impact of social media on the academic performance of second year medical students at College of Medicine, University of Babylon, Iraq. J. Med. Allied Sci. 6, 77–83. doi: 10.5455/jmas.236927
Banjanin, N., Banjanin, N., Dimitrijevic, I., and Pantic, I. (2015). Relationship between internet use and depression: Focus on physiological mood oscillations, social networking and online addictive behavior. Comp. Hum. Behav. 43, 308–312. doi: 10.1016/j.chb.2014.11.013
Barry, C. T., Sidoti, C. L., Briggs, S. M., Reiter, S. R., and Lindsey, R. A. (2017). Adolescent social media use and mental health from adolescent and parent perspectives. J. Adolesc. 61, 1–11. doi: 10.1016/j.adolescence.2017.08.005
Chang, Y. (2012). The relationship between maladaptive perfectionism with burnout: Testing mediating effect of emotion-focused coping. Pers. Individ. Differ. 53, 635–639. doi: 10.1016/j.paid.2012.05.002
Charoensukmongkol, P. (2018). The impact of social media on social comparison and envy in teenagers: The moderating role of the parent comparing children and in-group competition among friends. J. Child Fam. Stud. 27, 69–79. doi: 10.1007/s10826-017-0872-8
Chukwuere, J. E., and Chukwuere, P. C. (2017). The impact of social media on social lifestyle: A case study of university female students. Gender Behav. 15, 9966–9981.
Google Scholar
Drouin, M., Reining, L., Flanagan, M., Carpenter, M., and Toscos, T. (2018). College students in distress: Can social media be a source of social support? Coll. Stud. J. 52, 494–504.
Dumitrache, S. D., Mitrofan, L., and Petrov, Z. (2012). Self-image and depressive tendencies among adolescent Facebook users. Rev. Psihol. 58, 285–295.
PubMed Abstract | Google Scholar
Fernyhough, C. (2008). Getting Vygotskian about theory of mind: Mediation, dialogue, and the development of social understanding. Dev. Rev. 28, 225–262. doi: 10.1016/j.dr.2007.03.001
Festinger, L. (1954). A Theory of social comparison processes. Hum. Relat. 7, 117–140. doi: 10.1177/001872675400700202
Fleck, J., and Johnson-Migalski, L. (2015). The impact of social media on personal and professional lives: An Adlerian perspective. J. Individ. Psychol. 71, 135–142. doi: 10.1353/jip.2015.0013
Fredrickson, B. L. (2001). The role of positive emotions in positive psychology: The broaden-and-build theory of positive emotions. Am. Psychol. 56, 218–226. doi: 10.1037/0003-066X.56.3.218
Frison, E., and Eggermont, S. (2016). Exploring the relationships between different types of Facebook use, perceived online social support, and adolescents’ depressed mood. Soc. Sci. Compu. Rev. 34, 153–171. doi: 10.1177/0894439314567449
Hanprathet, N., Manwong, M., Khumsri, J., Yingyeun, R., and Phanasathit, M. (2015). Facebook addiction and its relationship with mental health among Thai high school students. J. Med. Assoc. Thailand 98, S81–S90.
Hiver, P., and Al-Hoorie, A. H. (2019). Research Methods for Complexity Theory in Applied Linguistics. Bristol: Multilingual Matters. doi: 10.21832/HIVER5747
Iwamoto, D., and Chun, H. (2020). The emotional impact of social media in higher education. Int. J. High. Educ. 9, 239–247. doi: 10.5430/ijhe.v9n2p239
Keles, B., McCrae, N., and Grealish, A. (2020). A systematic review: The influence of social media on depression, anxiety and psychological distress in adolescents. Int. J. Adolesc. Youth 25, 79–93. doi: 10.1080/02673843.2019.1590851
Ley, B., Ogonowski, C., Hess, J., Reichling, T., Wan, L., and Wulf, V. (2014). Impacts of new technologies on media usage and social behavior in domestic environments. Behav. Inform. Technol. 33, 815–828. doi: 10.1080/0144929X.2013.832383
Li, J.-B., Lau, J. T. F., Mo, P. K. H., Su, X.-F., Tang, J., Qin, Z.-G., et al. (2017). Insomnia partially mediated the association between problematic Internet use and depression among secondary school students in China. J. Behav. Addict. 6, 554–563. doi: 10.1556/2006.6.2017.085
Mathewson, M. (2020). The impact of social media usage on students’ mental health. J. Stud. Affairs 29, 146–160.
Neira, B. C. J., and Barber, B. L. (2014). Social networking site use: Linked to adolescents’ social self-concept, self-esteem, and depressed mood. Aus. J. Psychol. 66, 56–64. doi: 10.1111/ajpy.12034
O’Dea, B., and Campbell, A. (2011). Online social networking amongst teens: Friend or foe? Ann. Rev. CyberTher. Telemed. 9, 108–112.
Radovic, A., Gmelin, T., Stein, B. D., and Miller, E. (2017). Depressed adolescents positive and negative use of social media. J. Adolesc. 55, 5–15. doi: 10.1016/j.adolescence.2016.12.002
Sampasa-Kanyinga, H., and Lewis, R. F. (2015). Frequent use of social networking sites is associated with poor psychological functioning among children and adolescents. Cyberpsychol. Behav. Soc. Network. 18, 380–385. doi: 10.1089/cyber.2015.0055
Sriwilai, K., and Charoensukmongkol, P. (2016). Face it, don’t Facebook it: Impacts of social media addiction on mindfulness, coping strategies and the consequence on emotional exhaustion. Stress Health 32, 427–434. doi: 10.1002/smi.2637
Stapel, D. A. (2007). “In the mind of the beholder: The interpretation comparison model of accessibility effects,” in Assimilation and Contrast in Social Psychology , eds D. A. Stapel and J. Suls (London: Psychology Press), 143–164.
Stapel, D. A., and Koomen, W. (2000). Distinctiveness of others, mutability of selves: Their impact on self-evaluations. J. Pers. Soc. Psychol. 79, 1068–1087. doi: 10.1037//0022-3514.79.6.1068
Tang, F., Wang, X., and Norman, C. S. (2013). An investigation of the impact of media capabilities and extraversion on social presence and user satisfaction. Behav. Inform. Technol. 32, 1060–1073. doi: 10.1080/0144929X.2013.830335
Tsitsika, A. K., Tzavela, E. C., Janikian, M., Ólafsson, K., Iordache, A., Schoenmakers, T. M., et al. (2014). Online social networking in adolescence: Patterns of use in six European countries and links with psychosocial functioning. J. Adolesc. Health 55, 141–147. doi: 10.1016/j.jadohealth.2013.11.010
Vernon, L., Modecki, K. L., and Barber, B. L. (2017). Tracking effects of problematic social networking on adolescent psychopathology: The mediating role of sleep disruptions. J. Clin. Child Adolesc. Psychol. 46, 269–283. doi: 10.1080/15374416.2016.1188702
Virden, A., Trujillo, A., and Predeger, E. (2014). Young adult females’ perceptions of high-risk social media behaviors: A focus-group approach. J. Commun. Health Nurs. 31, 133–144. doi: 10.1080/07370016.2014.926677
Wang, P., Wang, X., Wu, Y., Xie, X., Wang, X., Zhao, F., et al. (2018). Social networking sites addiction and adolescent depression: A moderated mediation model of rumination and self-esteem. Pers. Individ. Differ. 127, 162–167. doi: 10.1016/j.paid.2018.02.008
Weng, L., and Menczer, F. (2015). Topicality and impact in social media: Diverse messages, focused messengers. PLoS One 10:e0118410. doi: 10.1371/journal.pone.0118410
Yan, H., Zhang, R., Oniffrey, T. M., Chen, G., Wang, Y., Wu, Y., et al. (2017). Associations among screen time and unhealthy behaviors, academic performance, and well-being in Chinese adolescents. Int. J. Environ. Res. Public Health 14:596. doi: 10.3390/ijerph14060596
Zareen, N., Karim, N., and Khan, U. A. (2016). Psycho-emotional impact of social media emojis. ISRA Med. J. 8, 257–262.
Zhang, R. (2017). The stress-buffering effect of self-disclosure on Facebook: An examination of stressful life events, social support, and mental health among college students. Comp. Hum. Behav. 75, 527–537. doi: 10.1016/j.chb.2017.05.043
Keywords : affective variables, education, emotions, social media, post-pandemic, emotional needs
Citation: Chen M and Xiao X (2022) The effect of social media on the development of students’ affective variables. Front. Psychol. 13:1010766. doi: 10.3389/fpsyg.2022.1010766
Received: 03 August 2022; Accepted: 25 August 2022; Published: 15 September 2022.
Reviewed by:
Copyright © 2022 Chen and Xiao. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY) . The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
*Correspondence: Miao Chen, [email protected] ; Xin Xiao, [email protected]
Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.
Smart Learning Environments volume 7 , Article number: 9 ( 2020 ) Cite this article
390k Accesses
197 Citations
19 Altmetric
Metrics details
This study is an attempt to examine the application and usefulness of social media and mobile devices in transferring the resources and interaction with academicians in higher education institutions across the boundary wall, a hitherto unexplained area of research. This empirical study is based on the survey of 360 students of a university in eastern India, cognising students’ perception on social media and mobile devices through collaborative learning, interactivity with peers, teachers and its significant impact on students’ academic performance. A latent variance-based structural equation model approach was followed for measurement and instrument validation. The study revealed that online social media used for collaborative learning had a significant impact on interactivity with peers, teachers and online knowledge sharing behaviour.
Additionally, interactivity with teachers, peers, and online knowledge sharing behaviour has seen a significant impact on students’ engagement which consequently has a significant impact on students’ academic performance. Grounded to this finding, it would be valuable to mention that use of online social media for collaborative learning facilitate students to be more creative, dynamic and research-oriented. It is purely a domain of knowledge.
The explosion of Information and Communication Technology (ICT) has led to an increase in the volume and smoothness in transferring course contents, which further stimulates the appeasement of Digital Learning Communities (DLCs). The millennium and naughtiness age bracket were Information Technology (IT) centric on web space where individual and geopolitical disperse learners accomplished their e-learning goals. The Educause Center for Applied Research [ECAR] ( 2012 ) surveyed students in higher education mentioned that students are pouring the acceptance of mobile computing devices (cellphones, smartphones, and tablet) in Higher Education Institutions (HEIs), roughly 67% surveyed students accepted that mobile devices and social media play a vital role in their academic performance and career enhancement. Mobile devices and social media provide excellent educational e-learning opportunities to the students for academic collaboration, accessing in course contents, and tutors despite the physical boundary (Gikas & Grant, 2013 ). Electronic communication technologies accelerate the pace of their encroachment of every aspect of life, the educational institutions incessantly long decades to struggle in seeing the role of such devices in sharing the contents, usefulness and interactivity style. Adoption and application of mobile devices and social media can provide ample futuristic learning opportunities to the students in accessing course contents as well as interaction with peers and experts (Cavus & Ibrahim, 2008 , 2009 ; Kukulska-Hulme & Shield, 2008 ; Nihalani & Mayrath, 2010 ; Richardson & Lenarcic, 2008 , Shih, 2007 ). Recently Pew Research Center reported that 55% American teenage age bracket of 15–17 years using online social networking sites, i.e. Myspace and Facebook (Reuben, 2008 ). Social media, the fast triggering the mean of virtual communication, internet-based technologies changed the life pattern of young youth.
Use of social media and mobile devices presents both advantages as well as challenges, mostly its benefits seen in terms of accessing course contents, video clip, transfer of the instructional notes etc. Overall students feel that social media and mobile devices are the cheap and convenient tools of obtaining relevant information. Studies in western countries have confronted that online social media use for collaborative learning has a significant contribution to students’ academic performance and satisfaction (Zhu, 2012 ). The purpose of this research project was to explore how learning and teaching activities in higher education institutions were affected by the integration and application of mobile devices in sharing the resource materials, interaction with colleagues and students’ academic performance. The broad goal of this research was to contemporise the in-depth perspectives of students’ perception of mobile devices and social media in learning and teaching activities. However, this research paper paid attention to only students’ experiences, and their understanding of mobile devices and social media fetched changes and its competency in academic performance. The fundamental research question of this research was, what are the opinions of students on social media and mobile devices when it is integrating into higher education for accessing, interacting with peers.
A researcher of the University of Central Florida reported that electronic devices and social media create an opportunity to the students for collaborative learning and also allowed the students in sharing the resource materials to the colleagues (Gikas & Grant, 2013 ). The result of the eight Egyptian universities confirmed that social media have the significant impact on higher education institutions especially in term of learning tools and teaching aids, faculty members’ use of social media seen at a minimum level due to several barriers (internet accessibility, mobile devices etc.).
Social media and mobile devices allow the students to create, edit and share the course contents in textual, video or audio forms. These technological innovations give birth to a new kind of learning cultures, learning based on the principles of collective exploration and interaction (Selwyn, 2012 ). Social media the phenomena originated in 2005 after the Web2.0 existence into the reality, defined more clearly as “a group of Internet-based applications that build on the ideological and technological foundation of web 2.0 and allow creation and exchange of user-generated contents (Kaplan & Haenlein, 2010 ). Mobile devices and social media provide opportunities to the students for accessing resources, materials, course contents, interaction with mentor and colleagues (Cavus & Ibrahim, 2008 , 2009 ; Richardson & Lenarcic, 2008 ).
Social media platform in academic institutions allows students to interact with their mentors, access their course contents, customisation and build students communities (Greenhow, 2011a , 2011b ). 90% school going students currently utilise the internet consistently, with more than 75% teenagers using online networking sites for e-learning (DeBell & Chapman, 2006 ; Lenhart, Arafeh, & Smith, 2008 ; Lenhart, Madden, & Hitlin, 2005 ). The result of the focus group interview of the students in 3 different universities in the United States confirmed that use of social media created opportunities to the learners for collaborative learning, creating and engaging the students in various extra curriculum activities (Gikas & Grant, 2013 ).
The technological innovation and increased use of the internet for e-learning by the students in higher education institutions has brought revolutionary changes in communication pattern. A report on 3000 college students in the United States revealed that 90% using Facebook while 37% using Twitter to share the resource materials as cited in (Elkaseh, Wong, & Fung, 2016 ). A study highlighted that the usage of social networking sites in educational institutions has a practical outcome on students’ learning outcomes (Jackson, 2011 ). The empirical investigation over 252 undergraduate students of business and management showed that time spent on twitter and involvement in managing social lives and sharing information, course-related influences their performance (Evans, 2014 ).
Many kinds of research confronted on the applicability of social media and mobile devices in higher education for interaction with colleagues.90% of faculty members use some social media in courses they were usually teaching or professional purposes out of the campus life. Facebook and YouTube are the most visited sites for the professional outcomes, around 2/3rd of the all-faculty use some medium fora class session, and 30% posted contents for students engagement in reading, view materials (Moran, Seaman, & Tinti-Kane, 2011 ). Use of social media and mobile devices in higher education is relatively new phenomena, completely hitherto area of research. Research on the students of faculty of Economics at University of Mortar, Bosnia, and Herzegovina reported that social media is already used for the sharing the materials and exchanges of information and students are ready for active use of social networking site (slide share etc.) for educational purposes mainly e-learning and communication (Mirela Mabić, 2014 ).
The report published by the U.S. higher education department stated that the majority of the faculty members engaged in different form of the social media for professional purposes, use of social media for teaching international business, sharing contents with the far way students, the use of social media and mobile devices for sharing and the interactive nature of online and mobile technologies build a better learning environment at international level. Responses on 308 graduate and postgraduate students in Saudi Arabia University exhibited that positive correlation between chatting, online discussion and file sharing and knowledge sharing, and entertainment and enjoyment with students learning (Eid & Al-Jabri, 2016 ). The quantitative study on 168 faculty members using partial least square (PLS-SEM) at Carnegie classified Doctoral Research University in the USA confirmed that perceived usefulness, external pressure and compatibility of task-technology have positive effect on social media use, the higher the degree of the perceived risk of social media, the less likely to use the technological tools for classroom instruction, the study further revealed that use of social media for collaborative learning has a positive effect on students learning outcome and satisfaction (Cao, Ajjan, & Hong, 2013 ). Therefore, the authors have hypothesized:
H1: Use of social media for collaborative learning is positively associated with interactivity with teachers.
Additionally, Madden and Zickuhr ( 2011 ) concluded that 83% of internet user within the age bracket of 18–29 years adopting social media for interaction with colleagues. Kabilan, Ahmad, and Abidin ( 2010 ) made an empirical investigation on 300 students at University Sains Malaysia and concluded that 74% students found to be the same view that social media infuses constructive attitude towards learning English (Fig. 1 ).
Research Model
Reuben ( 2008 ) concluded in his study on social media usage among professional institutions revealed that Facebook and YouTube used over half of 148 higher education institutions. Nevertheless, a recent survey of 456 accredited United States institutions highlighted 100% using some form of social media, notably Facebook 98% and Twitter 84% for e-learning purposes, interaction with mentors (Barnes & Lescault, 2011 ).
Information and communication technology (ICT), such as web-based application and social networking sites enhances the collaboration and construction of knowledge byway of instruction with outside experts (Zhu, 2012 ). A positive statistically significant relationship was found between student’s use of a variety of social media tools and the colleague’s fellow as well as the overall quality of experiences (Rutherford, 2010 ). The potential use of social media leads to collaborative learning environments which allow students to share education-related materials and contents (Fisher & Baird, 2006 ). The report of 233 students in the United States higher educations confirmed that more recluse students interact through social media, which assist them in collaborative learning and boosting their self-confidence (Voorn & Kommers, 2013 ). Thus hypotheses as
H2: Use of social media for collaborative learning is positively associated with interactivity with peers.
Students’ engagement in social media and its types represent their physical and mental involvement and time spent boost to the enhancement of educational Excellency, time spent on interaction with peers, teachers for collaborative learning (Kuh, 2007 ). Students’ engagement enhanced when interacting with peers and teacher was in the same direction, shares of ideas (Chickering & Gamson, 1987 ). Engagement is an active state that is influenced by interaction or lack thereof (Leece, 2011 ). With the advancement in information technology, the virtual world becomes the storehouse of the information. Liccardi et al. ( 2007 ) concluded that 30% students were noted to be active on social media for interaction with their colleagues, tutors, and friends while more than 52% used some social media forms for video sharing, blogs, chatting, and wiki during their class time. E-learning becomes now sharp and powerful tools in information technology and makes a substantial impact on the student’s academic performance. Sharing your knowledge will make you better. Social network ties were shown to be the best predictors of online knowledge sharing intention, which in turn associated with knowledge sharing behaviour (Chen, Chen, & Kinshuk, 2009 ). Social media provides the robust personalised, interactive learning environment and enhances in self-motivation as cited in (Al-Mukhaini, Al-Qayoudhi, & Al-Badi, 2014 ). Therefore, it was hypothesised that:
H3: Use of social media for collaborative learning is positively associated with online knowledge sharing behaviour.
Broadly Speaking social media/sites allow the students to interact, share the contents with colleagues, also assisting in building connections with others (Cain, 2008 ). In the present era, the majority of the college-going students are seen to be frequent users of these sophisticated devices to keep them informed and updated about the external affair. Facebook reported per day 1,00,000 new members join; Facebook is the most preferred social networking sites among the students of the United States as cited in (Cain, 2008 ). The researcher of the school of engineering, Swiss Federal Institute of Technology Lausanne, Switzerland, designed and developed Grasp, a social media platform for their students’ collaborative learning, sharing contents (Bogdanov et al., 2012 ). The utility and its usefulness could be seen in the University of Geneva and Tongji University at both two educational places students were satisfied and accept ‘ Grasp’ to collect, organised and share the contents. Students use of social media will interact ubiquity, heterogeneous and engaged in large groups (Wankel, 2009 ). So we hypotheses
H4: More interaction with teachers leads to higher students’ engagement.
However, a similar report published on 233 students revealed that social media assisted in their collaborative learning and self-confidence as they prefer communication technology than face to face communication. Although, the students have the willingness to communicate via social media platform than face to face (Voorn & Kommers, 2013 ). The potential use of social media tools facilitates in achieving higher-level learning through collaboration with colleagues and other renewed experts in their field (Junco, Heiberger, & Loken, 2011 ; Meyer, 2010 ; Novak, Razzouk, & Johnson, 2012 ; Redecker, Ala-Mutka, & Punie, 2010 ). Academic self-efficacy and optimism were found to be strongly related to performance, adjustment and consequently both directly impacted on student’s academic performance (Chemers, Hu, & Garcia, 2001 ). Data of 723 Malaysian researchers confirmed that both male and female students were satisfied with the use of social media for collaborative learning and engagement was found positively affected with learning performance (Al-Rahmi, Alias, Othman, Marin, & Tur, 2018 ). Social media were seen as a powerful driver for learning activities in terms of frankness, interactivity, and friendliness.
Junco et al. ( 2011 ) conducted research on the specific purpose of the social media; how Twitter impacted students’ engagement, found that it was extent discussion out of class, their participation in panel group (Rodriguez, 2011 ). A comparative study conducted by (Roblyer, McDaniel, Webb, Herman, & Witty, 2010 ) revealed that students were more techno-oriented than faculty members and more likely using Facebook and such similar communication technology to support their class-related task. Additionally, faculty members were more likely to use traditional techniques, i.e. email. Thus hypotheses framed is that:
H5: More interaction with peers ultimately leads to better students’ engagement.
Social networking sites and social media are closely similar, which provide a platform where students can interact, communicate, and share emotional intelligence and looking for people with other attitudes (Gikas & Grant, 2013 ). Facebook and YouTube channel use also increased in the skills/ability and knowledge and outcomes (Daniel, Isaac, & Janet, 2017 ). It was highlighted that 90% of faculty members were using some sort of social media in their courses/ teaching. Facebook was the most visited social media sites as per study, 40% of faculty members requested students to read and views content posted on social media; majority reports that videos, wiki, etc. the primary source of acquiring knowledge, social networking sites valuable tool/source of collaborative learning (Moran et al., 2011 ). However, more interestingly, in a study which was carried out on 658 faculty members in the eight different state university of Turkey, concluded that nearly half of the faculty member has some social media accounts.
Further reported that adopting social media for educational purposes, the primary motivational factor which stimulates them to use was effective and quick means of communication technology (Akçayır, 2017 ). Thus hypotheses formulated is:
H6: Online knowledge sharing behaviour is positively associated with the students’ engagement.
Using multiple treatment research design, following act-react to increase students’ academic performance and productivity, it was observed when self–monitoring record sheet was placed before students and seen that students engagement and educational productivity was increased (Rock & Thead, 2007 ). Student engagement in extra curriculum activities promotes academic achievement (Skinner & Belmont, 1993 ), increases grade rate (Connell, Spencer, & Aber, 1994 ), triggering student performance and positive expectations about academic abilities (Skinner & Belmont, 1993 ). They are spending time on online social networking sites linked to students engagement, which works as the motivator of academic performance (Fan & Williams, 2010 ). Moreover, it was noted in a survey of over 236 Malaysian students that weak association found between the online game and student’s academic performance (Eow, Ali, Mahmud, & Baki, 2009 ). In a survey of 671 students in Jordan, it was revealed that student’s engagement directly influences academic performance, also seen the indirect effect of parental involvement over academic performance (Al-Alwan, 2014 ). Engaged students are perceptive and highly active in classroom activities, ready to participate in different classroom extra activities and expose motivation to learn, which finally leads in academic achievement (Reyes, Brackett, Rivers, White, & Salovey, 2012 ). A mediated role of students engagement seen in 1399 students’ classroom emotional climate and grades (Reyes et al., 2012 ). A statistically significant relation was noticed between online lecture and exam performance.
Nonetheless, intelligence quotient, personality factors, students must be engaged in learning activities as cited in (Bertheussen & Myrland, 2016 ). The report of the 1906 students at 7 universities in Colombia confirmed that the weak correlation between collaborative learning, students faculty interaction with academic performance (Pineda-Báez et al., 2014 ) Thus, the hypothesis
H7: Student's Engagement is positively associated with the student's academic performance.
To check the students’ perception on social media for collaborative learning in higher education institutions, Data were gathered both offline and online survey administered to students from one public university in Eastern India (BBAU, Lucknow). For the sake of this study, indicators of interactivity with peers and teachers, the items of students engagement, the statement of social media for collaborative learning, and the elements of students’ academic performance were adopted from (AL-Rahmi & Othman, 2013 ). The statement of online knowledge sharing behaviour was taken from (Ma & Yuen, 2011 ).
The indicators of all variables which were mentioned above are measured on the standardised seven-point Likert scale with the anchor (1-Strongly Disagree, to 7-Strongly Agree). Interactivity with peers was measured using four indicators; the sample items using social media in class facilitates interaction with peers ; interactivity with teachers was measured using four symbols, the sample item is using social media in class allows me to discuss with the teacher. ; engagement was measured using three indicators by using social media I felt that my opinions had been taken into account in this class ; social media for collaborative learning was measured using four indicators collaborative learning experience in social media environment is better than in a face-to-face learning environment ; students’ academic performance was measured using five signs using social media to build a student-lecturer relationship with my lecturers, and this improves my academic performance ; online knowledge sharing behaviour was assessed using five symbols the counsel was received from other colleague using social media has increased our experience .
A sample of 360 undergraduate students was collected by convenience sampling method of a public university in Eastern India. The proposed model of study was measured and evaluated using variance based structured equation model (SEM)-a latent multi variance technique which provides the concurrent estimation of structural and measurement model that does not meet parametric assumption (Coelho & Duarte, 2016 ; Haryono & Wardoyo, 2012 ; Lee, 2007 ; Moqbel, Nevo, & Kock, 2013 ; Raykov & Marcoulides, 2000 ; Williams, Rana, & Dwivedi, 2015 ). The confirmatory factor analysis (CFA) was conducted to ensure whether the widely accepted criterion of discriminate and convergent validity met or not. The loading of all the indicators should be 0.50 or more (Field, 2011 ; Hair, Anderson, Tatham, & Black, 1992 ). And it should be statistically significant at least at the 0.05.
The majority of the students in this study were females (50.8%) while male students were only 49.2% with age 15–20 years (71.7%). It could be pointed out at this juncture that the majority of the students (53.9%) in BBAU were joined at least 1–5 academic pages for their getting information, awareness and knowledge. 46.1% of students spent 1–5 h per week on social networking sites for collaborative learning, interaction with teachers at an international level. The different academic pages followed for accessing material, communication with the faculty members stood at 44.4%, there would be various forms of the social networking sites (LinkedIn, Slide Share, YouTube Channel, Researchgate) which provide the facility of online collaborative learning, a platform at which both faculty members and students engaged in learning activities.
As per report (Nasir, Khatoon, & Bharadwaj, 2018 ), most of the social media user in India are college-going students, 33% girls followed by 27% boys students, and this reports also forecasted that India is going to become the highest 370.77 million internet users in 2022. Additionally, the majority of the faculty members use smartphone 44% to connect with the students for sharing material content. Technological advantages were the pivotal motivational force which stimulates faculty members and students to exploits the opportunities of resource materials (Nasir & Khan, 2018 ) (Fig. 2 ).
Reasons for Using Social Media
When the students were asked for what reason did they use social media, it was seen that rarely using for self-promotion, very frequently using for self-education, often used for passing the time with friends, and so many fruitful information the image mentioned above depicting.
The structural model was applied to scrutinize the potency and statistically significant relationship among unobserved variables. The present measurement model was evaluated using Confirmatory Factor Analysis (CFA), and allied procedures to examine the relationship among hypothetical latent variables has acceptable reliability and validity. This study used both SPSS 20.0 and AMOS to check measurement and structural model (Field, 2013 ; Hair, Anderson, et al., 1992 ; Mooi & Sarstedt, 2011 ; Norusis, 2011 ).
The Confirmatory Factor Analysis (CFA) was conducted to ensure whether the widely accepted criterion of discriminant and convergent validity met or not. The loading of all the indicators should be 0.70 or more it should be statistically significant at least at the 0.05 (Field, 2011 ; Hair, Anderson, et al., 1992 ).
CR or CA-based tests measured the reliability of the proposed measurement model. The CA provides an estimate of the indicators intercorrelation (Henseler & Sarstedt, 2013 . The benchmark limits of the CA is 0.7 or more (Nunnally & Bernstein, 1994 ). As per Table 2 , all latent variables in this study above the recommended threshold limit. Although, Average Variance Extracted (AVE) has also been demonstrated which exceed the benchmark limit 0.5. Thus all the above-specified values revealed that our instrument is valid and effective. (See Table 2 for the additional information) (Table 3 ).
In a nutshell, the measurement model clear numerous stringent tests of convergent validity, discriminant validity, reliability, and absence of multi-collinearity. The finding demonstrated that our model meets widely accepted data validation criteria. (Schumacker & Lomax, 2010 ).
The model fit was evaluated through the Chi-Square/degree of freedom (CMIN/DF), Root Mean Residual (RMR), Root Mean Square Error of Approximation (RMSEA), Comparative Fit Index (CFI), and Goodness of fit index (GFI) and Tucker-Lewis Index (TLI). The benchmark limit of the CFI, TLI, and GFI 0.90or more (Hair et al., 2016 ; Kock, 2011 ). The model study demonstrated in the table, as mentioned above 4 that the minimum threshold limit was achieved (See Table 4 for additional diagnosis).
Path coefficient of several hypotheses has been demonstrated in Fig. 3 , which is a variable par relationship. β (beta) Coefficients, standardised partial regression coefficients signify the powers of the multivariate relationship among latent variables in the model. Remarkably, it was observed that seven out of the seven proposed hypotheses were accepted and 78% of the explained variance in students’ academic performance, 60% explained variance in interactivity with teachers, 48% variance in interactivity with peers, 43% variance in online knowledge sharing behaviour and 79% variance in students’ engagement. Social media collaborative learning has a significant association with teacher interactivity(β = .693, P < 0.001), demonstrating that there is a direct effect on interaction with the teacher by social media when other variables are controlled. On the other hand, use of social media for collaborative learning has noticed statistically significant positive relationship with peers interactivity (β = .704, p < 0.001) meaning thereby, collaborative learning on social media by university students, leads to the high degree of interaction with peers, colleagues. Implied 10% rise in social media use for learning purposes, expected 7.04% increase in interaction with peers.
Path Diagram
Use of social media for collaborating learning has a significant positive association with online knowledge sharing behaviour (β = .583, p < 0.001), meaning thereby that the more intense use of social media for collaborative learning by university students, the more knowledge sharing between peers and colleagues. Also, interaction with the teacher seen the significant statistical positive association with students engagement (β = .450, p < 0.001), telling that the more conversation with teachers, leads to a high level of students engagement. Similarly, the practical interpretation of this result is that there is an expected 4.5% increase in student’s participation for every 10% increase in interaction with teachers. Interaction with peers has a significant positive association with students engagement (β = .210, p < 0.001). Practically, the finding revealed that 10% upturn in student’s involvement, there is a 2.1% increase in peer’s interaction. There is a significant positive association between online knowledge sharing behaviour and students engagement (β = 0.247, p < 0.001), and finally students engagement has been a statistically significant positive relationship with students’ academic performance (β = .972, p < 0.001), this is the clear indication that more engaged students in collaborative learning via social media leads to better students’ academic performance.
There is a continuing discussion in the academic literature that use of such social media and social networking sites would facilitate collaborative learning. It is human psychology generally that such communication media technology seems only for entertainment, but it should be noted here carefully that if such communication technology would be followed with due attention prove productive. It is essential to acknowledge that most university students nowadays adopting social media communication to interact with colleagues, teachers and also making the group be in touch with old friends and even a convenient source of transferring the resources. In the present era, the majority of the university students having diversified social media community groups like Whatsapp, Facebook pages following different academic web pages to upgrade their knowledge.
Practically for every 10% rise in students’ engagement, expected to be 2.1% increase in peer interaction. As the study suggested that students engage in different sites, they start discussing with colleagues. More engaged students in collaborative learning through social media lead better students’ academic performance. The present study revealed that for every 10% increase in student’s engagement, there would be an expected increase in student academic performance at a rate of 9.72. This extensive research finding revealed that the application of online social media would facilitate the students to become more creative, dynamics and connect to the worldwide instructor for collaborative learning.
Accordingly, the use of online social media for collaborative learning, interaction with mentors and colleagues leadbetter student’s engagement which consequently affects student’s academic performance. The higher education authority should provide such a platform which can nurture the student’s intellectual talents. Based on the empirical investigation, it would be said that students’ engagement, social media communication devices facilitate students to retrieve information and interact with others in real-time regarding sharing teaching materials contents. Additionally, such sophisticated communication devices would prove to be more useful to those students who feel too shy in front of peers; teachers may open up on the web for the collaborative learning and teaching in the global scenario and also beneficial for physically challenged students. It would also make sense that intensive use of such sophisticated technology in teaching pedagogical in higher education further facilitates the teachers and students to interact digitally, web-based learning, creating discussion group, etc. The result of this investigation confirmed that use of social media for collaborative learning purposes, interaction with peers, and teacher affect their academic performance positively, meaning at this moment that implementation of such sophisticated communication technology would bring revolutionary, drastic changes in higher education for international collaborative learning (Table 5 ).
Like all the studies, this study is also not exempted from the pitfalls, lacunas, and drawbacks. The first and foremost research limitation is it ignores the addiction of social media; excess use may lead to destruction, deviation from the focal point. The study only confined to only one academic institution. Hence, the finding of the project cannot be generalised as a whole. The significant positive results were found in this study due to the fact that the social media and mobile devices are frequently used by the university going students not only as a means of gratification but also for educational purposes.
Secondly, this study was conducted on university students, ignoring the faculty members, it might be possible that the faculty members would not have been interested in interacting with the students. Thus, future research could be possible towards faculty members in different higher education institutions. To the authors’ best reliance, this is the first and prime study to check the usefulness and applicability of social media in the higher education system in the Indian context.
Based on the empirical investigation, it could be noted that application and usefulness of the social media in transferring the resource materials, collaborative learning and interaction with the colleagues as well as teachers would facilitate students to be more enthusiastic and dynamic. This study provides guidelines to the corporate world in formulating strategies regarding the use of social media for collaborative learning.
The corresponding author declared here all types of data used in this study available for any clarification. The author of this manuscript ready for any justification regarding the data set. To make publically available of the data used in this study, the seeker must mail to the mentioned email address. The profile of the respondents was completely confidential.
Akçayır, G. (2017). Why do faculty members use or not use social networking sites for education? Computers in Human Behavior, 71 , 378–385.
Article Google Scholar
Al-Alwan, A. F. (2014). Modeling the relations among parental involvement, school engagement and academic performance of high school students. International Education Studies, 7 (4), 47–56.
Al-Mukhaini, E. M., Al-Qayoudhi, W. S., & Al-Badi, A. H. (2014). Adoption of social networking in education: A study of the use of social networks by higher education students in Oman. Journal of International Education Research, 10 (2), 143–154.
Google Scholar
Al-Rahmi, W. M., Alias, N., Othman, M. S., Marin, V. I., & Tur, G. (2018). A model of factors affecting learning performance through the use of social media in Malaysian higher education. Computers & Education, 121 , 59–72.
Al-Rahmi, W. M., & Othman, M. S. (2013). Evaluating student’s satisfaction of using social media through collaborative learning in higher education. International Journal of Advances in Engineering & Technology, 6 (4), 1541–1551.
Arbuckle, J. (2008). Amos 17.0 user's guide . Chicago: SPSS Inc..
Barnes, N. G., & Lescault, A. M. (2011). Social media adoption soars as higher-ed experiments and reevaluates its use of new communications tools . North Dartmouth: Center for Marketing Research. University of Massachusetts Dartmouth.
Bertheussen, B. A., & Myrland, Ø. (2016). Relation between academic performance and students’ engagement in digital learning activities. Journal of Education for Business, 91 (3), 125–131.
Bogdanov, E., Limpens, F., Li, N., El Helou, S., Salzmann, C., & Gillet, D. (2012). A social media platform in higher education. In Proceedings of the 2012 IEEE Global Engineering Education Conference (EDUCON) (pp. 1–8). IEEE.
Byrne, B. M. (1994). Structural equation modeling with EQS and EQS/windows: basic concepts, applications, and programming . Thousand Oaks: Sage.
Cain, J. (2008). Online social networking issues within academia and pharmacy education. American Journal of Pharmaceutical Education. https://doi.org/10.5688/aj720110 .
Cao, Y., Ajjan, H., & Hong, P. (2013). Using social media applications for educational outcomes in college teaching: a structural equation analysis. British Journal of Educational Technology, 44 (4), 581–593. https://doi.org/10.1111/bjet.12066 .
Cavus, N., & Ibrahim, D. (2008). A mobile tool for learning English words, Online Submission (pp. 6–9) Retrieved from http://libezproxy.open.ac.uk/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=eric&AN=ED504283&site=ehost-live&scope=site .
Cavus, N., & Ibrahim, D. (2009). M-learning: An experiment in using SMS to support learning new English language words. British Journal of Educational Technology, 40 (1), 78–91.
Chemers, M. M., Hu, L. T., & Garcia, B. F. (2001). Academic self-efficacy and first-year college student performance and adjustment. Journal of Educational Psychology, 93 (1), 55–64. https://doi.org/10.1037/0022-0663.93.1.55 .
Chen, I. Y. L., Chen, N.-S., & Kinshuk. (2009). International forum of Educational Technology & Society Examining the factors influencing participants’ knowledge sharing behavior in virtual learning communities published by : International forum of Educational Technology & Society Examining the factor. Educational Technology & Society, 12 (1), 134–148.
Chickering, A. W., & Gamson, Z. F. (1987). Seven principles for good practise in undergraduate education. AAHE bulletin, 3 , 7.
Coelho, J., & Duarte, C. (2016). A literature survey on older adults' use of social network services and social applications. Computers in Human Behavior, 58 , 187–205.
Connell, J. P., Spencer, M. B., & Aber, J. L. (1994). Educational risk and resilience in African-American youth: Context, self, action, and outcomes in school. Child Development, 65 (2), 493–506.
Daniel, E. A., Isaac, E. N., & Janet, A. K. (2017). Influence of Facebook usage on employee productivity: A case of university of cape coast staff. African Journal of Business Management, 11 (6), 110–116. https://doi.org/10.5897/AJBM2017.8265 .
DeBell, M., & Chapman, C. (2006). Computer and internet use by students in 2003. Statistical analysis report. NCES 2006-065. National Center for education statistics.
Dziuban, C., & Walker, J. D. (2012). ECAR Study of Undergraduate Students and Information Technology, 2012 (Research Report) . Louisville: EDUCAUSE Centre for Applied Research.
Eid, M. I. M., & Al-Jabri, I. M. (2016). Social networking, knowledge sharing, and student learning: The case of university students. Computers and Education, 99 , 14–27. https://doi.org/10.1016/j.compedu.2016.04.007 .
Elkaseh, A. M., Wong, K. W., & Fung, C. C. (2016). Perceived ease of use and perceived usefulness of social media for e-learning in Libyan higher education: A structural equation modeling analysis. International Journal of Information and Education Technology, 6 (3), 192.
Eow, Y. L., Ali, W. Z. b. W., Mahmud, R. b., & Baki, R. (2009). Form one students’ engagement with computer games and its effect on their academic achievement in a Malaysian secondary school. Computers and Education, 53 (4), 1082–1091. https://doi.org/10.1016/j.compedu.2009.05.013 .
Evans, C. (2014). Twitter for teaching: Can social media be used to enhance the process of learning? British Journal of Educational Wiley Online Library, 45 (5), 902–915. https://doi.org/10.1111/bjet.12099 .
Fan, W., & Williams, C. M. (2010). The effects of parental involvement on students’ academic self-efficacy, engagement and intrinsic motivation. Educational Psychology, 30 (1), 53–74. https://doi.org/10.1080/01443410903353302 .
Field, A. (2011). Discovering statistics using SPSS: (and sex and drugs and rock'n'roll) (Vol. 497). London: Sage.
Field, A. (2013). Factor analysis using SPSS. Scientific Research and Essays, 22 (June), 1–26. https://doi.org/10.1016/B978-0-444-52272-6.00519-5 .
Fisher, M., & Baird, D. E. (2006). Making mLearning work: Utilizing mobile technology for active exploration, collaboration, assessment, and reflection in higher education. Journal of Educational Technology Systems, 35 (1), 3–30.
Gikas, J., & Grant, M. M. (2013). Mobile computing devices in higher education: Student perspectives on learning with cellphones, smartphones & social media. Internet and Higher Education Mobile, 19 , 18–26. https://doi.org/10.1016/j.iheduc.2013.06.002 .
Greenhow, C. (2011a). Online social networks and learning. On the horizon, 19 (1), 4–12.
Greenhow, C. (2011b). Youth, learning, and social media. Journal of Educational Computing Research, 45 (2), 139–146. https://doi.org/10.2190/EC.45.2.a .
Hair Anderson, R. E., Tatham, R. L., & Black, W. C. (1992). Multivariate data analysis. International Journal of Pharmaceutics . https://doi.org/10.1016/j.ijpharm.2011.02.019 .
Hair Jr., J. F., Sarstedt, M., Matthews, L. M., & Ringle, C. M. (2016). Identifying and treating unobserved heterogeneity with FIMIX-PLS: part I–method. European Business Review.
Harrington, D. (2009). Confirmatory factor analysis . Oxford university press.
Haryono, S., & Wardoyo, P. (2012). Structural Equation Modeling (Vol. 331).
Henseler, J., & Sarstedt, M. (2013). Goodness-of-fit indices for partial least squares path modeling. Computational Statistics, 28 (2), 565–580.
Jackson, C. (2011). Your students love social media… and so can you. Teaching Tolerance, 39 , 38–41.
Junco, R., Heiberger, G., & Loken, E. (2011). The effect of twitter on college student engagement and grades. Journal of Computer Assisted Learning, 27 (2), 119–132.
Kabilan, M. K., Ahmad, N., & Abidin, M. J. Z. (2010). Facebook: An online environment for learning of English in institutions of higher education? The Internet and Higher Education, 13 (4), 179–187.
Kaplan, A. M., & Haenlein, M. (2010). Users of the world, unite! The challenges and opportunities of social media. Business Horizons, 53 (1), 59–68.
Kock, N. (2011). Using WarpPLS in e-collaboration studies: Mediating effects, control and second order variables, and algorithm choices. International Journal of e-Collaboration (IJeC), 7 (3), 1–13.
Kuh, G. D. (2007). What student engagement data tell us about college readiness. Peer Review, 9 (1), 4–8.
Kukulska-Hulme, A., & Shield, L. (2008). An overview of mobile assisted language learning: From content delivery to supported collaboration and interaction. ReCALL, 20 (3), 271–289.
Lee, S.-Y. (2007). Structural equation modeling: A Bayesian approach (Wiley series in probability and statistics). Ecotoxicology and Environmental Safety, 73 . https://doi.org/10.1016/j.ecoenv.2009.09.012 .
Leece, R. (2011). Engaging students through social media. Journal of the Australian and New Zealand Student Services Association, 38 , 10–14 Retrieved from https://www.researchgate.net/profile/Anthony_Jorm/publication/235003484_Introduction_to_guidelines_for_tertiary_education_institutions_to_assist_them_in_supporting_students_with_mental_health_problems/links/0c96052ba5314e1202000000.pdf#page=67 .
Lenhart, A., Arafeh, S., & Smith, A. (2008). Writing, technology and teens . Pew Internet & American Life Project.
Lenhart, A., Madden, M., & Hitlin, P. (2005). Teens and technology (p. 2008). Washington, DC: Pew Charitable Trusts Retrieved September 29.
Liccardi, I., Ounnas, A., Pau, R., Massey, E., Kinnunen, P., Lewthwaite, S., …, Sarkar, C. (2007). The role of social networks in students’ learning experiences. In ACM Sigcse Bulletin (39, 4, 224–237).
Ma, W. W. K., & Yuen, A. H. K. (2011). Understanding online knowledge sharing: An interpersonal relationship perspective. Computers & Education, 56 (1), 210–219.
Madden, M., & Zickuhr, K. (2011). 65% of online adults use social networking sites. Pew Internet & American Life Project, 1 , 14.
Meyer, K. A. (2010). A comparison of web 2.0 tools in a doctoral course. The Internet and Higher Education, 13 (4), 226–232.
Mirela Mabić, D. G. (2014). Facebook as a learning tool. Igarss, 2014 (1), 1–5. https://doi.org/10.1007/s13398-014-0173-7.2 .
Mooi, E., & Sarstedt, M. (2011). A concise guide to market research: The process, data, and methods using IBM SPSS statistics . Springeringer. https://doi.org/10.1007/978-3-642-12541-6 .
Moqbel, M., Nevo, S., & Kock, N. (2013). Organizational members’ use of social networking sites and job performance. Information Technology & People, 26 (3), 240–264. https://doi.org/10.1108/ITP-10-2012-0110 .
Moran, M., Seaman, J., & Tinti-Kane, H. (2011). Teaching, learning, and sharing: How Today’s higher education faculty use social media (pp. 1–16). Babson survey research group, (April. https://doi.org/10.1016/j.chb.2013.06.015 .
Nasir, J. A., & Khan, N. A. (2018). Faculty member usage of social media and mobile devices in higher education institution. International Journal of Advance and Innovative Research, 6 (1), 17–25.
Nasir, J. A., Khatoon, A., & Bharadwaj, S. (2018). Social media users in India: A futuristic approach. International Journal of Research and Analytical Reviews, 5 (4), 762–765 Retrieved from http://ijrar.com/ .
Nihalani, P. K., & Mayrath, M. C. (2010). Statistics I. Findings from using an iPhone app in a higher education course. In White Paper .
Norusis, M. (2011). IBM SPSS statistics 20 brief guide (pp. 1–170). IBM Corporation Retrieved from http://www.ibm.com/support .
Novak, E., Razzouk, R., & Johnson, T. E. (2012). The educational use of social annotation tools in higher education: A literature review. The Internet and Higher Education, 15 (1), 39–49.
Nunnally, J. C., & Bernstein, I. H. (1994). Psychological theory .
Pineda-Báez, C., José-Javier, B. A., Rubiano-Bello, Á., Pava-García, N., Suárez-García, R., & Cruz-Becerra, F. (2014). Student engagement and academic performance in the Colombian University context. RELIEVE-Revista Electrónica de Investigación y Evaluación Educativa, 20 (2), 1–19.
Raykov, T., & Marcoulides, G. A. (2000). A First Course in Structural Equation Modeling .
Redecker, C., Ala-Mutka, K., & Punie, Y. (2010). Learning 2.0-the impact of social media on learning in Europe. Policy brief. JRC scientific and technical report. EUR JRC56958 EN, Available from http://bit.ly/cljlpq . Accessed 6 Feb 2011.
Reuben, B. R. (2008). The use of social Media in Higher Education for marketing and communications : A guide for professionals in higher education (Vol. 5) Retrieved from httpdoteduguru comwpcontentuploads200808socialmediainhighereducation pdf)). https://doi.org/10.1108/S2044-9968(2012)0000005018 .
Book Google Scholar
Reyes, M. R., Brackett, M. A., Rivers, S. E., White, M., & Salovey, P. (2012). Classroom emotional climate, student engagement, and academic achievement. Journal of Educational Psychology, 104 (3), 700–712. https://doi.org/10.1037/a0027268 .
Richardson, J., & Lenarcic, J. (2008). Text Messaging as a Catalyst for Mobile Student Administration: The “Trigger” Experience. International Journal of Emerging Technologies & Society, 6 (2), 140–155.
Roblyer, M. D., McDaniel, M., Webb, M., Herman, J., & Witty, J. V. (2010). Findings on Facebook in higher education: A comparison of college faculty and student uses and perceptions of social networking sites. The Internet and Higher Education, 13 (3), 134–140.
Rock, M. L., & Thead, B. K. (2007). The effects of fading a strategic self-monitoring intervention on students’ academic engagement, accuracy, and productivity. Journal of Behavioral Education, 16 (4), 389–412. https://doi.org/10.1007/s10864-007-9049-7 .
Rodriguez, J. E. (2011). Social media use in higher education : Key areas to consider for educators. MERLOT Journal of Online Learning and Teaching, 7 (4), 539–550 https://doi.org/ISSN1558-9528 .
Rutherford, C. (2010). Using online social media to support Preservice student engagement. MERLOT Journal of Online Learning and Teaching, 6 (4), 703–711 Retrieved from http://jolt.merlot.org/vol6no4/rutherford_1210.pdf .
Schumacker, R. E., & Lomax, R. G. (2010). A Beginner’s Guide to structural equation modeling (3rd ed.). New York: Taylor & Francis Group.
Selwyn, N. (2012). Making sense of young people, education and digital technology: The role of sociological theory. Oxford Review of Education, 38 (1), 81–96.
Shih, Y. E. (2007). Setting the new standard with mobile computing in online learning. The International Review of Research in Open and Distributed Learning, 8 (2), 1–16.
Skinner, E. A., & Belmont, M. J. (1993). Motivation in the classroom: Reciprocal effects of teacher behavior and student engagement across the school year. Journal of educational psychology, 85 (4), 571.
Tabachnick, B. G., Fidell, L. S., & Ullman, J. B. (2007). Using multivariate statistics (Vol. 5). Boston: Pearson.
Voorn, R. J., & Kommers, P. A. (2013). Social media and higher education: Introversion and collaborative learning from the student’s perspective. International Journal of Social Media and Interactive Learning Environments, 1 (1), 59–73.
Wankel, C. (2009). Management education using social media. Organization Management Journal, 6 (4), 251–262.
Williams, M. D., Rana, N. P., & Dwivedi, Y. K. (2015). The unified theory of acceptance and use of technology (UTAUT): a literature review. Journal of Enterprise Information Management, 28 (3), 443–488.
Zhu, C. (2012). Student satisfaction, performance, and knowledge construction in online collaborative learning. Journal of Educational Technology & Society, 15 (1), 127–136.
Download references
We want to express our special gratitude to the Almighty who has blessed us with such hidden talent to give the shape of this research paper.
The authors of this manuscript, solemnly declared that no funding agency was supported to execute this research project.
Authors and affiliations.
Department of Commerce, Aligarh Muslim University, Aligarh, 202002, India
Jamal Abdul Nasir Ansari & Nawab Ali Khan
You can also search for this author in PubMed Google Scholar
Jamal Abdul Nasir Ansari: The first author of this manuscript has performed all sorts of necessary works like the collection of data from respondents, administration of the questionnaire. Collection of information from the respondents was quite challenging. The author faced a lot of difficulties while collecting data. The main contribution of the author in this manuscript is that the entire work, like data analysis and its interpretation performed by him. Additionally, the author has tried to explore and usefulness of social media and its applicability in transferring the course contents. Nawab Ali Khan: The second author of this manuscript has checked all types of grammatical issues, and necessary corrections wherever required. The author(s) read and approved the final manuscript.
Correspondence to Jamal Abdul Nasir Ansari .
Competing interests.
The authors declare that they have no competing interests.
Publisher’s note.
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/ ), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
Reprints and permissions
Cite this article.
Ansari, J.A.N., Khan, N.A. Exploring the role of social media in collaborative learning the new domain of learning. Smart Learn. Environ. 7 , 9 (2020). https://doi.org/10.1186/s40561-020-00118-7
Download citation
Received : 27 November 2019
Accepted : 18 February 2020
Published : 16 March 2020
DOI : https://doi.org/10.1186/s40561-020-00118-7
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative
What distinguishes social media from other communication, why research social media, what can i research about social media, conducting research on social media.
Social media has become an integral part of modern communication, influencing how people connect, share information, and interact with the world. As a rapidly evolving field, it presents a wealth of opportunities for research that can offer valuable insights into societal trends, behavioral patterns, and technological advancements. This article aims to provide inspiration and ideas for selecting compelling social media research topics. We’ll explore what makes social media unique, the importance of studying it, and offer suggestions for areas you can investigate.
Social media is a unique form of communication that differs significantly from traditional methods such as face-to-face interactions, phone calls, or even emails. Several key characteristics set social media apart, making it a fascinating area for research.
One of the most distinctive features of social media is its interactivity. Unlike traditional media, where communication is typically one-way, social media platforms enable two-way interactions between users. This interactivity allows users to not only consume content but also to create and share their own, leading to an environment rich in user-generated content. This aspect of social media fosters a participatory culture where individuals can contribute to discussions, share their perspectives, and engage with others in real-time.
Social media operates on a networked model of communication, where information is shared across a web of interconnected users. This networked nature allows content to spread rapidly through shares, likes, comments, and other forms of engagement. The viral potential of social media content is a key characteristic that distinguishes it from other forms of communication, where information dissemination is often more controlled and linear.
Another defining feature of social media is the use of algorithms to personalize user experiences. These algorithms analyze user behavior, preferences, and interactions to curate content that is most relevant to each individual. This level of personalization is unmatched by traditional communication methods and has profound implications for how people receive information, form opinions, and engage with the world around them. The algorithm-driven nature of social media also raises important questions about echo chambers, filter bubbles, and the impact of personalized content on societal discourse.
Social media platforms seamlessly integrate various forms of multimedia, including text, images, videos , and live streams. This multimedia approach enhances the richness of social media communication and allows users to express themselves in diverse and creative ways. The ability to combine different media types in a single platform sets social media apart from other communication methods, which may be more limited in their use of media.
Finally, a solid social media presence offers unprecedented global reach and immediacy. With social media exposure, users can connect with others across the world instantly, breaking down geographical barriers and enabling cross-cultural communication. The real-time nature of social media allows for immediate responses and updates, making it a powerful tool for sharing news, organizing events, and mobilizing movements for marketing endeavors, political campaigns, and other collective efforts.
Researching social media is crucial because of its pervasive influence on various aspects of society, including communication, culture, politics, and even mental health. As social media continues to evolve and integrate into everyday life, understanding its impact becomes increasingly important for several reasons.
First, social media shapes public opinion and discourse in ways that traditional media cannot. The speed at which information spreads on platforms like Twitter/X, Facebook, and Instagram can amplify voices and ideas, often creating significant cultural or political movements. Studying these phenomena can reveal insights into how public opinion is formed, how misinformation spreads, and how social movements gain traction.
Second, social media platforms collect vast amounts of data about user behavior, preferences, and interactions. This data offers a unique opportunity for researchers to analyze trends, understand user engagement, and explore the effects of algorithmic content curation. By examining these aspects, researchers can shed light on how social media influences decision-making, consumer behavior, and even voting patterns.
Moreover, social media has a profound impact on mental health and well-being. The constant connectivity and exposure to curated lives can lead to issues such as anxiety, depression, and feelings of inadequacy. Research in this area can help identify the factors contributing to these mental health challenges and guide the development of interventions or policies to mitigate them.
Finally, as social media becomes a key tool for marketing, education, and even governance, understanding its mechanisms and effects is vital for professionals across various fields. Whether it’s to improve social media marketing strategies, enhance educational outreach, or design more effective public policies, social media research papers provide valuable insights that can inform practice and policy.
For the most powerful data analysis, turn to ATLAS.ti. Get started with a free trial.
Choosing a social media research topic can be a difficult decision among numerous research opportunities across various disciplines. Here are three key areas to consider when selecting a research topic related to social media: societal impact, psychological effects, and technological advancements.
One of the most significant aspects of social media is its profound impact on society. Researching this area can provide valuable insights into how social media influences cultural norms, political movements, and social behavior.
In studying social media, psychology has many potential theoretical and practical research questions . Understanding how these platforms influence mental health, self-esteem, and social interactions is crucial for developing strategies to mitigate negative impacts and enhance positive outcomes.
Technological advancements play a pivotal role in shaping the evolution of social media platforms. Understanding these advancements and their implications can offer valuable insights into the future of social media and its impact on society.
Conducting research on social media requires careful consideration of the methodologies employed, the ethical implications involved, and the approaches to data analysis. Each of these factors plays a crucial role in ensuring that the research is both rigorous and responsible.
Selecting the appropriate research methodology is a foundational step in addressing social media research questions . The choice of methodology largely depends on the research questions and objectives. Qualitative methods, such as in-depth interviews , focus groups , and content analysis , offer valuable insights into the subjective experiences and perceptions of social media users.
For example, interviews can reveal how individuals construct and present their identities online, while content analysis allows researchers to explore patterns and themes within social media interactions, such as how users discuss specific topics or respond to particular events.
On the other hand, quantitative methods, like surveys and experiments, are essential for gathering data that can be measured and analyzed statistically. Surveys can provide a broad overview of user behaviors and attitudes across large populations, enabling researchers to identify trends and correlations. Experiments, meanwhile, are useful for testing specific hypotheses, such as the impact of social media use on academic performance or mental health.
In some cases, combining qualitative and quantitative methods in a mixed-methods approach can offer a more comprehensive understanding of the phenomena being studied, allowing researchers to explore both the depth and breadth of social media interactions.
Ethical considerations are paramount in social media research, given the sensitive nature of the data often involved. One of the primary ethical challenges is obtaining informed consent from participants , especially in environments where users may not be fully aware that their posts or interactions are being analyzed.
Researchers must navigate this challenge by ensuring that their methods of obtaining consent are clear and transparent, particularly when dealing with content that users might consider private, despite being posted on public platforms.
Protecting the privacy and confidentiality of participants is another critical concern. This involves anonymizing data to prevent the identification of individuals and securing the data to protect it from unauthorized access. Researchers must also be sensitive to the potential risks associated with their studies, particularly when dealing with vulnerable populations or sensitive topics such as mental health or political beliefs.
Transparency in the research process is essential; researchers should openly communicate their intentions, methods, and any potential conflicts of interest, ensuring that participants understand how their data will be used. Engaging with the communities involved in the research can also help to mitigate ethical concerns, as it fosters trust and collaboration, making the research process more inclusive and respectful of participants' rights and perspectives.
The analysis of social media data presents its own set of challenges, given the vast amount of information that can be generated on these platforms. Effective data analysis requires not only technical proficiency but also a deep understanding of the social context in which the data is produced.
Data cleaning and preparation are crucial initial steps, as social media data often contains noise and irrelevant information that can skew results. Researchers must carefully filter and organize their data to ensure that the analysis is accurate and meaningful. Once the data is prepared, researchers can apply various analytical techniques, depending on the research objectives.
For qualitative data , thematic analysis can be used to identify recurring themes and patterns within the content, providing insights into user behaviors and perceptions. Quantitative data , on the other hand, may require statistical analysis to uncover correlations, trends, or causal relationships.
Throughout the analysis process, it is important for researchers to remain mindful of the limitations of their data and the potential biases that may influence their findings. This includes being aware of the algorithms that social media platforms use to curate content, which can impact the data collected and the conclusions drawn from it.
Turn qualitative data into insights with our intuitive and powerful platform. Download a free trial today.
IMAGES
VIDEO
COMMENTS
Social networking is a global phenomenon that. has revolution ized how people interact with each other. It. affects nearly every aspect of our life: education, communication, employment, politics ...
Literature Review. Putnam (1995, p. 664-665) defined social capital as "features of social life - networks, norms, and trust - that enable participants to act together more effectively to pursue shared objectives."Li and Chen (2014, p. 117) further explained that social capital encompasses "resources embedded in one's social network, which can be assessed and used for instrumental ...
Depression, anxiety, catfishing, bullying, terro rism, and. criminal activities are some of the negative side s of social media on societies. Generall y, when peoples use social. media for ...
Abstract. Social media are responsible for aggravating mental health problems. This systematic study summarizes the effects of social network usage on mental health. Fifty papers were shortlisted from google scholar databases, and after the application of various inclusion and exclusion criteria, 16 papers were chosen and all papers were ...
Introduction. The term "social media" (SM) was first used in 1994 on a Tokyo online media environment, called Matisse. 1 It was in these early days of the commercial Internet that the first SM platforms were developed and launched. Over time, both the number of SM platforms and the number of active SM users have increased significantly, making it one of the most important applications of ...
With the dawn of social network sites, this issue is more important than ever. A close examination of the extensive body of research on social network sites suggests that conflicting results can be reconciled by a single theoretical approach: the interpersonal-connection-behaviors framework. Specifically, we suggest that social network sites ...
Social media has been defined as web-based communication platforms with three distinct features, in which the platform 1) allows users to create unique profiles and content to share with other users, 2) creates a visible network connection between users that can be navigated by other users, and 3) provides users with a space to broadcast ...
Introduction. The use of social media has grown substantially in recent years (Leong et al., 2019; Kemp, 2020).Social media refers to "the websites and online tools that facilitate interactions between users by providing them opportunities to share information, opinions, and interest" (Swar and Hameed, 2017, p. 141).Individuals use social media for many reasons, including entertainment ...
This entry explores the ways in which social media influences social life, including its impact on individual identity, culture, the economy, and politics, and examines systematic methods for studyin...
Social media. The term 'social media' refers to the various internet-based networks that enable users to interact with others, verbally and visually (Carr & Hayes, Citation 2015).According to the Pew Research Centre (Citation 2015), at least 92% of teenagers are active on social media.Lenhart, Smith, Anderson, Duggan, and Perrin (Citation 2015) identified the 13-17 age group as ...
Introduction. The past years have witnessed a staggering increase in empirical studies into the effects of social media use (SMU) on adolescents' mental health (e.g. [1∗∗, 2∗, 3]), defined as the absence of mental illness and the presence of well-being [4].This rapid increase may be due to at least two reasons.
Social media comprises communication websites that facilitate relationship forming between users from diverse backgrounds, resulting in a rich social structure. User generated content encourages inquiry and decision-making. Given the relevance of social media to various stakeholders, it has received significant attention from researchers of various fields, including information systems. There ...
Congruent with the growth of social media use, there are also increasing worries that social media might lead to social anxiety in users (Jelenchick et al., 2013).Social anxiety is one's state of avoiding social interactions and appearing inhibited in such interactions with other people (Schlenker & Leary, 1982).Scholars indicated that social anxiety could arise from managing a large network ...
The purpose of this study is to understand the role of social media content on users' engagement behavior. More specifically, we investigate: (i)the direct effects of format and platform on users' passive and active engagement behavior, and (ii) we assess the moderating effect of content context on the link between each content type (rational, emotional, and transactional content) and ...
negative emotions seem to indicate that addictive behaviors are on the rise and are closely related. to overuse of social media. On the other side of the coin, social media use also produces positive effects on. emotional well-being such as happiness, Mudita, humor, support, validation, and a more frequent.
Introduction. Social media has become a prominent fixture in the lives of many individuals facing the challenges of mental illness. Social media refers broadly to web and mobile platforms that allow individuals to connect with others within a virtual network (such as Facebook, Twitter, Instagram, Snapchat, or LinkedIn), where they can share, co-create, or exchange various forms of digital ...
Previous studies regarding social interactions commonly adopt research methods that investigate causal relationships between variables. The existing approaches often utilize variables derived from general contexts, aiming to apply them universally across diverse situations. However, social interactions, including the usage of social media, are intricately woven within the immediate social context.
Social media use confers many benefits by providing access to a wide range of information sources, which facilitate learning (Greenhow and Robelia, 2009). However, instead of using social networking sites for academic purposes, students tend to be actively involved in online shopping, gaming, and entertainment during the day and at night.
Social network analysis (SNA) is a theoretical framework that conceptualizes the structure of social networks by focusing on the characteristics of the ties connecting members rather than the characteristics of the individual (Otte & Rousseau, Citation 2002). SNA uses mathematical models to determine the structural relationships between nodes ...
1 Science and Technology Department, Nanjing University of Posts and Telecommunications, Nanjing, China; 2 School of Marxism, Hohai University, Nanjing, Jiangsu, China; 3 Government Enterprise Customer Center, China Mobile Group Jiangsu Co., Ltd., Nanjing, China; The use of social media is incomparably on the rise among students, influenced by the globalized forms of communication and the post ...
A Study on Positive and Negative Effects of Socia l Media on Society. W.Akram 1*, R.Kumar2. 1* Department of Computer Applications, GDC Mendhar, Poonch, India. 2 Department of Computer ...
Kaplan and Haenlein (2010) defined social media as "… a group of Internet-based applications that build on the ideological and technological foundations of Web 2.0, and that allow the creation and exchange of User Generated Content" (p. 61). The emergence of social media technologies has been embraced by a growing number of users who post text messages, pictures, and videos online ...
Some of them are positive, such as the improvement of important communication skills, making students more sociable online. In addition, social networking extends students' knowledge and helps them to be active in creating and sharing information. Nevertheless, social networks have been found to have negative effects, such as the lowering of ...
This study is an attempt to examine the application and usefulness of social media and mobile devices in transferring the resources and interaction with academicians in higher education institutions across the boundary wall, a hitherto unexplained area of research. This empirical study is based on the survey of 360 students of a university in eastern India, cognising students' perception on ...
Introduction. Social media has become an integral part of modern communication, influencing how people connect, share information, and interact with the world. As a rapidly evolving field, it presents a wealth of opportunities for research that can offer valuable insights into societal trends, behavioral patterns, and technological advancements.
Beatriz Jordá is a PhD candidate in the Department of Communication at Carlos III University of Madrid and an adjunct professor in the Department of English at Saint Louis University, Madrid campus. She has also been a visiting scholar at University of Gothenburg. Her research focuses on the study of persuasion in the context of politics and social media.
The lock-up period prohibiting Trump from selling or even borrowing against his $2.3 billion stake in Truth Social owner Trump Media & Technology Group is scheduled to expire by September 25 ...