The Savvy Scientist

The Savvy Scientist

Experiences of a London PhD student and beyond

What is the Significance of a Study? Examples and Guide

Significance of a study graphic, showing a female scientist reading a book

If you’re reading this post you’re probably wondering: what is the significance of a study?

No matter where you’re at with a piece of research, it is a good idea to think about the potential significance of your work. And sometimes you’ll have to explicitly write a statement of significance in your papers, it addition to it forming part of your thesis.

In this post I’ll cover what the significance of a study is, how to measure it, how to describe it with examples and add in some of my own experiences having now worked in research for over nine years.

If you’re reading this because you’re writing up your first paper, welcome! You may also like my how-to guide for all aspects of writing your first research paper .

Looking for guidance on writing the statement of significance for a paper or thesis? Click here to skip straight to that section.

What is the Significance of a Study?

For research papers, theses or dissertations it’s common to explicitly write a section describing the significance of the study. We’ll come onto what to include in that section in just a moment.

However the significance of a study can actually refer to several different things.

Graphic showing the broadening significance of a study going from your study, the wider research field, business opportunities through to society as a whole.

Working our way from the most technical to the broadest, depending on the context, the significance of a study may refer to:

  • Within your study: Statistical significance. Can we trust the findings?
  • Wider research field: Research significance. How does your study progress the field?
  • Commercial / economic significance: Could there be business opportunities for your findings?
  • Societal significance: What impact could your study have on the wider society.
  • And probably other domain-specific significance!

We’ll shortly cover each of them in turn, including how they’re measured and some examples for each type of study significance.

But first, let’s touch on why you should consider the significance of your research at an early stage.

Why Care About the Significance of a Study?

No matter what is motivating you to carry out your research, it is sensible to think about the potential significance of your work. In the broadest sense this asks, how does the study contribute to the world?

After all, for many people research is only worth doing if it will result in some expected significance. For the vast majority of us our studies won’t be significant enough to reach the evening news, but most studies will help to enhance knowledge in a particular field and when research has at least some significance it makes for a far more fulfilling longterm pursuit.

Furthermore, a lot of us are carrying out research funded by the public. It therefore makes sense to keep an eye on what benefits the work could bring to the wider community.

Often in research you’ll come to a crossroads where you must decide which path of research to pursue. Thinking about the potential benefits of a strand of research can be useful for deciding how to spend your time, money and resources.

It’s worth noting though, that not all research activities have to work towards obvious significance. This is especially true while you’re a PhD student, where you’re figuring out what you enjoy and may simply be looking for an opportunity to learn a new skill.

However, if you’re trying to decide between two potential projects, it can be useful to weigh up the potential significance of each.

Let’s now dive into the different types of significance, starting with research significance.

Research Significance

What is the research significance of a study.

Unless someone specifies which type of significance they’re referring to, it is fair to assume that they want to know about the research significance of your study.

Research significance describes how your work has contributed to the field, how it could inform future studies and progress research.

Where should I write about my study’s significance in my thesis?

Typically you should write about your study’s significance in the Introduction and Conclusions sections of your thesis.

It’s important to mention it in the Introduction so that the relevance of your work and the potential impact and benefits it could have on the field are immediately apparent. Explaining why your work matters will help to engage readers (and examiners!) early on.

It’s also a good idea to detail the study’s significance in your Conclusions section. This adds weight to your findings and helps explain what your study contributes to the field.

On occasion you may also choose to include a brief description in your Abstract.

What is expected when submitting an article to a journal

It is common for journals to request a statement of significance, although this can sometimes be called other things such as:

  • Impact statement
  • Significance statement
  • Advances in knowledge section

Here is one such example of what is expected:

Impact Statement:  An Impact Statement is required for all submissions.  Your impact statement will be evaluated by the Editor-in-Chief, Global Editors, and appropriate Associate Editor. For your manuscript to receive full review, the editors must be convinced that it is an important advance in for the field. The Impact Statement is not a restating of the abstract. It should address the following: Why is the work submitted important to the field? How does the work submitted advance the field? What new information does this work impart to the field? How does this new information impact the field? Experimental Biology and Medicine journal, author guidelines

Typically the impact statement will be shorter than the Abstract, around 150 words.

Defining the study’s significance is helpful not just for the impact statement (if the journal asks for one) but also for building a more compelling argument throughout your submission. For instance, usually you’ll start the Discussion section of a paper by highlighting the research significance of your work. You’ll also include a short description in your Abstract too.

How to describe the research significance of a study, with examples

Whether you’re writing a thesis or a journal article, the approach to writing about the significance of a study are broadly the same.

I’d therefore suggest using the questions above as a starting point to base your statements on.

  • Why is the work submitted important to the field?
  • How does the work submitted advance the field?
  • What new information does this work impart to the field?
  • How does this new information impact the field?

Answer those questions and you’ll have a much clearer idea of the research significance of your work.

When describing it, try to clearly state what is novel about your study’s contribution to the literature. Then go on to discuss what impact it could have on progressing the field along with recommendations for future work.

Potential sentence starters

If you’re not sure where to start, why not set a 10 minute timer and have a go at trying to finish a few of the following sentences. Not sure on what to put? Have a chat to your supervisor or lab mates and they may be able to suggest some ideas.

  • This study is important to the field because…
  • These findings advance the field by…
  • Our results highlight the importance of…
  • Our discoveries impact the field by…

Now you’ve had a go let’s have a look at some real life examples.

Statement of significance examples

A statement of significance / impact:

Impact Statement This review highlights the historical development of the concept of “ideal protein” that began in the 1950s and 1980s for poultry and swine diets, respectively, and the major conceptual deficiencies of the long-standing concept of “ideal protein” in animal nutrition based on recent advances in amino acid (AA) metabolism and functions. Nutritionists should move beyond the “ideal protein” concept to consider optimum ratios and amounts of all proteinogenic AAs in animal foods and, in the case of carnivores, also taurine. This will help formulate effective low-protein diets for livestock, poultry, and fish, while sustaining global animal production. Because they are not only species of agricultural importance, but also useful models to study the biology and diseases of humans as well as companion (e.g. dogs and cats), zoo, and extinct animals in the world, our work applies to a more general readership than the nutritionists and producers of farm animals. Wu G, Li P. The “ideal protein” concept is not ideal in animal nutrition.  Experimental Biology and Medicine . 2022;247(13):1191-1201. doi: 10.1177/15353702221082658

And the same type of section but this time called “Advances in knowledge”:

Advances in knowledge: According to the MY-RADs criteria, size measurements of focal lesions in MRI are now of relevance for response assessment in patients with monoclonal plasma cell disorders. Size changes of 1 or 2 mm are frequently observed due to uncertainty of the measurement only, while the actual focal lesion has not undergone any biological change. Size changes of at least 6 mm or more in  T 1  weighted or  T 2  weighted short tau inversion recovery sequences occur in only 5% or less of cases when the focal lesion has not undergone any biological change. Wennmann M, Grözinger M, Weru V, et al. Test-retest, inter- and intra-rater reproducibility of size measurements of focal bone marrow lesions in MRI in patients with multiple myeloma [published online ahead of print, 2023 Apr 12].  Br J Radiol . 2023;20220745. doi: 10.1259/bjr.20220745

Other examples of research significance

Moving beyond the formal statement of significance, here is how you can describe research significance more broadly within your paper.

Describing research impact in an Abstract of a paper:

Three-dimensional visualisation and quantification of the chondrocyte population within articular cartilage can be achieved across a field of view of several millimetres using laboratory-based micro-CT. The ability to map chondrocytes in 3D opens possibilities for research in fields from skeletal development through to medical device design and treatment of cartilage degeneration. Conclusions section of the abstract in my first paper .

In the Discussion section of a paper:

We report for the utility of a standard laboratory micro-CT scanner to visualise and quantify features of the chondrocyte population within intact articular cartilage in 3D. This study represents a complimentary addition to the growing body of evidence supporting the non-destructive imaging of the constituents of articular cartilage. This offers researchers the opportunity to image chondrocyte distributions in 3D without specialised synchrotron equipment, enabling investigations such as chondrocyte morphology across grades of cartilage damage, 3D strain mapping techniques such as digital volume correlation to evaluate mechanical properties  in situ , and models for 3D finite element analysis  in silico  simulations. This enables an objective quantification of chondrocyte distribution and morphology in three dimensions allowing greater insight for investigations into studies of cartilage development, degeneration and repair. One such application of our method, is as a means to provide a 3D pattern in the cartilage which, when combined with digital volume correlation, could determine 3D strain gradient measurements enabling potential treatment and repair of cartilage degeneration. Moreover, the method proposed here will allow evaluation of cartilage implanted with tissue engineered scaffolds designed to promote chondral repair, providing valuable insight into the induced regenerative process. The Discussion section of the paper is laced with references to research significance.

How is longer term research significance measured?

Looking beyond writing impact statements within papers, sometimes you’ll want to quantify the long term research significance of your work. For instance when applying for jobs.

The most obvious measure of a study’s long term research significance is the number of citations it receives from future publications. The thinking is that a study which receives more citations will have had more research impact, and therefore significance , than a study which received less citations. Citations can give a broad indication of how useful the work is to other researchers but citations aren’t really a good measure of significance.

Bear in mind that us researchers can be lazy folks and sometimes are simply looking to cite the first paper which backs up one of our claims. You can find studies which receive a lot of citations simply for packaging up the obvious in a form which can be easily found and referenced, for instance by having a catchy or optimised title.

Likewise, research activity varies wildly between fields. Therefore a certain study may have had a big impact on a particular field but receive a modest number of citations, simply because not many other researchers are working in the field.

Nevertheless, citations are a standard measure of significance and for better or worse it remains impressive for someone to be the first author of a publication receiving lots of citations.

Other measures for the research significance of a study include:

  • Accolades: best paper awards at conferences, thesis awards, “most downloaded” titles for articles, press coverage.
  • How much follow-on research the study creates. For instance, part of my PhD involved a novel material initially developed by another PhD student in the lab. That PhD student’s research had unlocked lots of potential new studies and now lots of people in the group were using the same material and developing it for different applications. The initial study may not receive a high number of citations yet long term it generated a lot of research activity.

That covers research significance, but you’ll often want to consider other types of significance for your study and we’ll cover those next.

Statistical Significance

What is the statistical significance of a study.

Often as part of a study you’ll carry out statistical tests and then state the statistical significance of your findings: think p-values eg <0.05. It is useful to describe the outcome of these tests within your report or paper, to give a measure of statistical significance.

Effectively you are trying to show whether the performance of your innovation is actually better than a control or baseline and not just chance. Statistical significance deserves a whole other post so I won’t go into a huge amount of depth here.

Things that make publication in  The BMJ  impossible or unlikely Internal validity/robustness of the study • It had insufficient statistical power, making interpretation difficult; • Lack of statistical power; The British Medical Journal’s guide for authors

Calculating statistical significance isn’t always necessary (or valid) for a study, such as if you have a very small number of samples, but it is a very common requirement for scientific articles.

Writing a journal article? Check the journal’s guide for authors to see what they expect. Generally if you have approximately five or more samples or replicates it makes sense to start thinking about statistical tests. Speak to your supervisor and lab mates for advice, and look at other published articles in your field.

How is statistical significance measured?

Statistical significance is quantified using p-values . Depending on your study design you’ll choose different statistical tests to compute the p-value.

A p-value of 0.05 is a common threshold value. The 0.05 means that there is a 1/20 chance that the difference in performance you’re reporting is just down to random chance.

  • p-values above 0.05 mean that the result isn’t statistically significant enough to be trusted: it is too likely that the effect you’re showing is just luck.
  • p-values less than or equal to 0.05 mean that the result is statistically significant. In other words: unlikely to just be chance, which is usually considered a good outcome.

Low p-values (eg p = 0.001) mean that it is highly unlikely to be random chance (1/1000 in the case of p = 0.001), therefore more statistically significant.

It is important to clarify that, although low p-values mean that your findings are statistically significant, it doesn’t automatically mean that the result is scientifically important. More on that in the next section on research significance.

How to describe the statistical significance of your study, with examples

In the first paper from my PhD I ran some statistical tests to see if different staining techniques (basically dyes) increased how well you could see cells in cow tissue using micro-CT scanning (a 3D imaging technique).

In your methods section you should mention the statistical tests you conducted and then in the results you will have statements such as:

Between mediums for the two scan protocols C/N [contrast to noise ratio] was greater for EtOH than the PBS in both scanning methods (both  p  < 0.0001) with mean differences of 1.243 (95% CI [confidence interval] 0.709 to 1.778) for absorption contrast and 6.231 (95% CI 5.772 to 6.690) for propagation contrast. … Two repeat propagation scans were taken of samples from the PTA-stained groups. No difference in mean C/N was found with either medium: PBS had a mean difference of 0.058 ( p  = 0.852, 95% CI -0.560 to 0.676), EtOH had a mean difference of 1.183 ( p  = 0.112, 95% CI 0.281 to 2.648). From the Results section of my first paper, available here . Square brackets added for this post to aid clarity.

From this text the reader can infer from the first paragraph that there was a statistically significant difference in using EtOH compared to PBS (really small p-value of <0.0001). However, from the second paragraph, the difference between two repeat scans was statistically insignificant for both PBS (p = 0.852) and EtOH (p = 0.112).

By conducting these statistical tests you have then earned your right to make bold statements, such as these from the discussion section:

Propagation phase-contrast increases the contrast of individual chondrocytes [cartilage cells] compared to using absorption contrast. From the Discussion section from the same paper.

Without statistical tests you have no evidence that your results are not just down to random chance.

Beyond describing the statistical significance of a study in the main body text of your work, you can also show it in your figures.

In figures such as bar charts you’ll often see asterisks to represent statistical significance, and “n.s.” to show differences between groups which are not statistically significant. Here is one such figure, with some subplots, from the same paper:

Figure from a paper showing the statistical significance of a study using asterisks

In this example an asterisk (*) between two bars represents p < 0.05. Two asterisks (**) represents p < 0.001 and three asterisks (***) represents p < 0.0001. This should always be stated in the caption of your figure since the values that each asterisk refers to can vary.

Now that we know if a study is showing statistically and research significance, let’s zoom out a little and consider the potential for commercial significance.

Commercial and Industrial Significance

What are commercial and industrial significance.

Moving beyond significance in relation to academia, your research may also have commercial or economic significance.

Simply put:

  • Commercial significance: could the research be commercialised as a product or service? Perhaps the underlying technology described in your study could be licensed to a company or you could even start your own business using it.
  • Industrial significance: more widely than just providing a product which could be sold, does your research provide insights which may affect a whole industry? Such as: revealing insights or issues with current practices, performance gains you don’t want to commercialise (e.g. solar power efficiency), providing suggested frameworks or improvements which could be employed industry-wide.

I’ve grouped these two together because there can certainly be overlap. For instance, perhaps your new technology could be commercialised whilst providing wider improvements for the whole industry.

Commercial and industrial significance are not relevant to most studies, so only write about it if you and your supervisor can think of reasonable routes to your work having an impact in these ways.

How are commercial and industrial significance measured?

Unlike statistical and research significances, the measures of commercial and industrial significance can be much more broad.

Here are some potential measures of significance:

Commercial significance:

  • How much value does your technology bring to potential customers or users?
  • How big is the potential market and how much revenue could the product potentially generate?
  • Is the intellectual property protectable? i.e. patentable, or if not could the novelty be protected with trade secrets: if so publish your method with caution!
  • If commercialised, could the product bring employment to a geographical area?

Industrial significance:

What impact could it have on the industry? For instance if you’re revealing an issue with something, such as unintended negative consequences of a drug , what does that mean for the industry and the public? This could be:

  • Reduced overhead costs
  • Better safety
  • Faster production methods
  • Improved scaleability

How to describe the commercial and industrial significance of a study, with examples

Commercial significance.

If your technology could be commercially viable, and you’ve got an interest in commercialising it yourself, it is likely that you and your university may not want to immediately publish the study in a journal.

You’ll probably want to consider routes to exploiting the technology and your university may have a “technology transfer” team to help researchers navigate the various options.

However, if instead of publishing a paper you’re submitting a thesis or dissertation then it can be useful to highlight the commercial significance of your work. In this instance you could include statements of commercial significance such as:

The measurement technology described in this study provides state of the art performance and could enable the development of low cost devices for aerospace applications. An example of commercial significance I invented for this post

Industrial significance

First, think about the industrial sectors who could benefit from the developments described in your study.

For example if you’re working to improve battery efficiency it is easy to think of how it could lead to performance gains for certain industries, like personal electronics or electric vehicles. In these instances you can describe the industrial significance relatively easily, based off your findings.

For example:

By utilising abundant materials in the described battery fabrication process we provide a framework for battery manufacturers to reduce dependence on rare earth components. Again, an invented example

For other technologies there may well be industrial applications but they are less immediately obvious and applicable. In these scenarios the best you can do is to simply reframe your research significance statement in terms of potential commercial applications in a broad way.

As a reminder: not all studies should address industrial significance, so don’t try to invent applications just for the sake of it!

Societal Significance

What is the societal significance of a study.

The most broad category of significance is the societal impact which could stem from it.

If you’re working in an applied field it may be quite easy to see a route for your research to impact society. For others, the route to societal significance may be less immediate or clear.

Studies can help with big issues facing society such as:

  • Medical applications : vaccines, surgical implants, drugs, improving patient safety. For instance this medical device and drug combination I worked on which has a very direct route to societal significance.
  • Political significance : Your research may provide insights which could contribute towards potential changes in policy or better understanding of issues facing society.
  • Public health : for instance COVID-19 transmission and related decisions.
  • Climate change : mitigation such as more efficient solar panels and lower cost battery solutions, and studying required adaptation efforts and technologies. Also, better understanding around related societal issues, for instance this study on the effects of temperature on hate speech.

How is societal significance measured?

Societal significance at a high level can be quantified by the size of its potential societal effect. Just like a lab risk assessment, you can think of it in terms of probability (or how many people it could help) and impact magnitude.

Societal impact = How many people it could help x the magnitude of the impact

Think about how widely applicable the findings are: for instance does it affect only certain people? Then think about the potential size of the impact: what kind of difference could it make to those people?

Between these two metrics you can get a pretty good overview of the potential societal significance of your research study.

How to describe the societal significance of a study, with examples

Quite often the broad societal significance of your study is what you’re setting the scene for in your Introduction. In addition to describing the existing literature, it is common to for the study’s motivation to touch on its wider impact for society.

For those of us working in healthcare research it is usually pretty easy to see a path towards societal significance.

Our CLOUT model has state-of-the-art performance in mortality prediction, surpassing other competitive NN models and a logistic regression model … Our results show that the risk factors identified by the CLOUT model agree with physicians’ assessment, suggesting that CLOUT could be used in real-world clinicalsettings. Our results strongly support that CLOUT may be a useful tool to generate clinical prediction models, especially among hospitalized and critically ill patient populations. Learning Latent Space Representations to Predict Patient Outcomes: Model Development and Validation

In other domains the societal significance may either take longer or be more indirect, meaning that it can be more difficult to describe the societal impact.

Even so, here are some examples I’ve found from studies in non-healthcare domains:

We examined food waste as an initial investigation and test of this methodology, and there is clear potential for the examination of not only other policy texts related to food waste (e.g., liability protection, tax incentives, etc.; Broad Leib et al., 2020) but related to sustainable fishing (Worm et al., 2006) and energy use (Hawken, 2017). These other areas are of obvious relevance to climate change… AI-Based Text Analysis for Evaluating Food Waste Policies
The continued development of state-of-the art NLP tools tailored to climate policy will allow climate researchers and policy makers to extract meaningful information from this growing body of text, to monitor trends over time and administrative units, and to identify potential policy improvements. BERT Classification of Paris Agreement Climate Action Plans

Top Tips For Identifying & Writing About the Significance of Your Study

  • Writing a thesis? Describe the significance of your study in the Introduction and the Conclusion .
  • Submitting a paper? Read the journal’s guidelines. If you’re writing a statement of significance for a journal, make sure you read any guidance they give for what they’re expecting.
  • Take a step back from your research and consider your study’s main contributions.
  • Read previously published studies in your field . Use this for inspiration and ideas on how to describe the significance of your own study
  • Discuss the study with your supervisor and potential co-authors or collaborators and brainstorm potential types of significance for it.

Now you’ve finished reading up on the significance of a study you may also like my how-to guide for all aspects of writing your first research paper .

Writing an academic journal paper

I hope that you’ve learned something useful from this article about the significance of a study. If you have any more research-related questions let me know, I’m here to help.

To gain access to my content library you can subscribe below for free:

Share this:

  • Click to share on Facebook (Opens in new window)
  • Click to share on LinkedIn (Opens in new window)
  • Click to share on Twitter (Opens in new window)
  • Click to share on Reddit (Opens in new window)

Related Posts

Self portrait photo of me thinking about the key lessons from my PhD

The Five Most Powerful Lessons I Learned During My PhD

8th August 2024 8th August 2024

Image with a title showing 'How to make PhD thesis corrections' with a cartoon image of a man writing on a piece of paper, while holding a test tube, with a stack of books on the desk beside him

Minor Corrections: How To Make Them and Succeed With Your PhD Thesis

2nd June 2024 2nd June 2024

Graphic of data from experiments written on a notepad with the title "How to manage data"

How to Master Data Management in Research

25th April 2024 4th August 2024

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Notify me of follow-up comments by email.

This site uses Akismet to reduce spam. Learn how your comment data is processed .

Privacy Overview

How To Write Significance of the Study (With Examples) 

How To Write Significance of the Study (With Examples) 

Whether you’re writing a research paper or thesis, a portion called Significance of the Study ensures your readers understand the impact of your work. Learn how to effectively write this vital part of your research paper or thesis through our detailed steps, guidelines, and examples.

Related: How to Write a Concept Paper for Academic Research

Table of Contents

What is the significance of the study.

The Significance of the Study presents the importance of your research. It allows you to prove the study’s impact on your field of research, the new knowledge it contributes, and the people who will benefit from it.

Related: How To Write Scope and Delimitation of a Research Paper (With Examples)

Where Should I Put the Significance of the Study?

The Significance of the Study is part of the first chapter or the Introduction. It comes after the research’s rationale, problem statement, and hypothesis.

Related: How to Make Conceptual Framework (with Examples and Templates)

Why Should I Include the Significance of the Study?

The purpose of the Significance of the Study is to give you space to explain to your readers how exactly your research will be contributing to the literature of the field you are studying 1 . It’s where you explain why your research is worth conducting and its significance to the community, the people, and various institutions.

How To Write Significance of the Study: 5 Steps

Below are the steps and guidelines for writing your research’s Significance of the Study.

1. Use Your Research Problem as a Starting Point

Your problem statement can provide clues to your research study’s outcome and who will benefit from it 2 .

Ask yourself, “How will the answers to my research problem be beneficial?”. In this manner, you will know how valuable it is to conduct your study. 

Let’s say your research problem is “What is the level of effectiveness of the lemongrass (Cymbopogon citratus) in lowering the blood glucose level of Swiss mice (Mus musculus)?”

Discovering a positive correlation between the use of lemongrass and lower blood glucose level may lead to the following results:

  • Increased public understanding of the plant’s medical properties;
  • Higher appreciation of the importance of lemongrass  by the community;
  • Adoption of lemongrass tea as a cheap, readily available, and natural remedy to lower their blood glucose level.

Once you’ve zeroed in on the general benefits of your study, it’s time to break it down into specific beneficiaries.

2. State How Your Research Will Contribute to the Existing Literature in the Field

Think of the things that were not explored by previous studies. Then, write how your research tackles those unexplored areas. Through this, you can convince your readers that you are studying something new and adding value to the field.

3. Explain How Your Research Will Benefit Society

In this part, tell how your research will impact society. Think of how the results of your study will change something in your community. 

For example, in the study about using lemongrass tea to lower blood glucose levels, you may indicate that through your research, the community will realize the significance of lemongrass and other herbal plants. As a result, the community will be encouraged to promote the cultivation and use of medicinal plants.

4. Mention the Specific Persons or Institutions Who Will Benefit From Your Study

Using the same example above, you may indicate that this research’s results will benefit those seeking an alternative supplement to prevent high blood glucose levels.

5. Indicate How Your Study May Help Future Studies in the Field

You must also specifically indicate how your research will be part of the literature of your field and how it will benefit future researchers. In our example above, you may indicate that through the data and analysis your research will provide, future researchers may explore other capabilities of herbal plants in preventing different diseases.

Tips and Warnings

  • Think ahead . By visualizing your study in its complete form, it will be easier for you to connect the dots and identify the beneficiaries of your research.
  • Write concisely. Make it straightforward, clear, and easy to understand so that the readers will appreciate the benefits of your research. Avoid making it too long and wordy.
  • Go from general to specific . Like an inverted pyramid, you start from above by discussing the general contribution of your study and become more specific as you go along. For instance, if your research is about the effect of remote learning setup on the mental health of college students of a specific university , you may start by discussing the benefits of the research to society, to the educational institution, to the learning facilitators, and finally, to the students.
  • Seek help . For example, you may ask your research adviser for insights on how your research may contribute to the existing literature. If you ask the right questions, your research adviser can point you in the right direction.
  • Revise, revise, revise. Be ready to apply necessary changes to your research on the fly. Unexpected things require adaptability, whether it’s the respondents or variables involved in your study. There’s always room for improvement, so never assume your work is done until you have reached the finish line.

Significance of the Study Examples

This section presents examples of the Significance of the Study using the steps and guidelines presented above.

Example 1: STEM-Related Research

Research Topic: Level of Effectiveness of the Lemongrass ( Cymbopogon citratus ) Tea in Lowering the Blood Glucose Level of Swiss Mice ( Mus musculus ).

Significance of the Study .

This research will provide new insights into the medicinal benefit of lemongrass ( Cymbopogon citratus ), specifically on its hypoglycemic ability.

Through this research, the community will further realize promoting medicinal plants, especially lemongrass, as a preventive measure against various diseases. People and medical institutions may also consider lemongrass tea as an alternative supplement against hyperglycemia. 

Moreover, the analysis presented in this study will convey valuable information for future research exploring the medicinal benefits of lemongrass and other medicinal plants.  

Example 2: Business and Management-Related Research

Research Topic: A Comparative Analysis of Traditional and Social Media Marketing of Small Clothing Enterprises.

Significance of the Study:

By comparing the two marketing strategies presented by this research, there will be an expansion on the current understanding of the firms on these marketing strategies in terms of cost, acceptability, and sustainability. This study presents these marketing strategies for small clothing enterprises, giving them insights into which method is more appropriate and valuable for them. 

Specifically, this research will benefit start-up clothing enterprises in deciding which marketing strategy they should employ. Long-time clothing enterprises may also consider the result of this research to review their current marketing strategy.

Furthermore, a detailed presentation on the comparison of the marketing strategies involved in this research may serve as a tool for further studies to innovate the current method employed in the clothing Industry.

Example 3: Social Science -Related Research.

Research Topic:  Divide Et Impera : An Overview of How the Divide-and-Conquer Strategy Prevailed on Philippine Political History.

Significance of the Study :

Through the comprehensive exploration of this study on Philippine political history, the influence of the Divide et Impera, or political decentralization, on the political discernment across the history of the Philippines will be unraveled, emphasized, and scrutinized. Moreover, this research will elucidate how this principle prevailed until the current political theatre of the Philippines.

In this regard, this study will give awareness to society on how this principle might affect the current political context. Moreover, through the analysis made by this study, political entities and institutions will have a new approach to how to deal with this principle by learning about its influence in the past.

In addition, the overview presented in this research will push for new paradigms, which will be helpful for future discussion of the Divide et Impera principle and may lead to a more in-depth analysis.

Example 4: Humanities-Related Research

Research Topic: Effectiveness of Meditation on Reducing the Anxiety Levels of College Students.

Significance of the Study: 

This research will provide new perspectives in approaching anxiety issues of college students through meditation. 

Specifically, this research will benefit the following:

 Community – this study spreads awareness on recognizing anxiety as a mental health concern and how meditation can be a valuable approach to alleviating it.

Academic Institutions and Administrators – through this research, educational institutions and administrators may promote programs and advocacies regarding meditation to help students deal with their anxiety issues.

Mental health advocates – the result of this research will provide valuable information for the advocates to further their campaign on spreading awareness on dealing with various mental health issues, including anxiety, and how to stop stigmatizing those with mental health disorders.

Parents – this research may convince parents to consider programs involving meditation that may help the students deal with their anxiety issues.

Students will benefit directly from this research as its findings may encourage them to consider meditation to lower anxiety levels.

Future researchers – this study covers information involving meditation as an approach to reducing anxiety levels. Thus, the result of this study can be used for future discussions on the capabilities of meditation in alleviating other mental health concerns.

Frequently Asked Questions

1. what is the difference between the significance of the study and the rationale of the study.

Both aim to justify the conduct of the research. However, the Significance of the Study focuses on the specific benefits of your research in the field, society, and various people and institutions. On the other hand, the Rationale of the Study gives context on why the researcher initiated the conduct of the study.

Let’s take the research about the Effectiveness of Meditation in Reducing Anxiety Levels of College Students as an example. Suppose you are writing about the Significance of the Study. In that case, you must explain how your research will help society, the academic institution, and students deal with anxiety issues through meditation. Meanwhile, for the Rationale of the Study, you may state that due to the prevalence of anxiety attacks among college students, you’ve decided to make it the focal point of your research work.

2. What is the difference between Justification and the Significance of the Study?

In Justification, you express the logical reasoning behind the conduct of the study. On the other hand, the Significance of the Study aims to present to your readers the specific benefits your research will contribute to the field you are studying, community, people, and institutions.

Suppose again that your research is about the Effectiveness of Meditation in Reducing the Anxiety Levels of College Students. Suppose you are writing the Significance of the Study. In that case, you may state that your research will provide new insights and evidence regarding meditation’s ability to reduce college students’ anxiety levels. Meanwhile, you may note in the Justification that studies are saying how people used meditation in dealing with their mental health concerns. You may also indicate how meditation is a feasible approach to managing anxiety using the analysis presented by previous literature.

3. How should I start my research’s Significance of the Study section?

– This research will contribute… – The findings of this research… – This study aims to… – This study will provide… – Through the analysis presented in this study… – This study will benefit…

Moreover, you may start the Significance of the Study by elaborating on the contribution of your research in the field you are studying.

4. What is the difference between the Purpose of the Study and the Significance of the Study?

The Purpose of the Study focuses on why your research was conducted, while the Significance of the Study tells how the results of your research will benefit anyone.

Suppose your research is about the Effectiveness of Lemongrass Tea in Lowering the Blood Glucose Level of Swiss Mice . You may include in your Significance of the Study that the research results will provide new information and analysis on the medical ability of lemongrass to solve hyperglycemia. Meanwhile, you may include in your Purpose of the Study that your research wants to provide a cheaper and natural way to lower blood glucose levels since commercial supplements are expensive.

5. What is the Significance of the Study in Tagalog?

In Filipino research, the Significance of the Study is referred to as Kahalagahan ng Pag-aaral.

  • Draft your Significance of the Study. Retrieved 18 April 2021, from http://dissertationedd.usc.edu/draft-your-significance-of-the-study.html
  • Regoniel, P. (2015). Two Tips on How to Write the Significance of the Study. Retrieved 18 April 2021, from https://simplyeducate.me/2015/02/09/significance-of-the-study/

Written by Jewel Kyle Fabula

in Career and Education , Juander How

significance of a research work

Jewel Kyle Fabula

Jewel Kyle Fabula is a Bachelor of Science in Economics student at the University of the Philippines Diliman. His passion for learning mathematics developed as he competed in some mathematics competitions during his Junior High School years. He loves cats, playing video games, and listening to music.

Browse all articles written by Jewel Kyle Fabula

Copyright Notice

All materials contained on this site are protected by the Republic of the Philippines copyright law and may not be reproduced, distributed, transmitted, displayed, published, or broadcast without the prior written permission of filipiknow.net or in the case of third party materials, the owner of that content. You may not alter or remove any trademark, copyright, or other notice from copies of the content. Be warned that we have already reported and helped terminate several websites and YouTube channels for blatantly stealing our content. If you wish to use filipiknow.net content for commercial purposes, such as for content syndication, etc., please contact us at legal(at)filipiknow(dot)net

How To Write a Significance Statement for Your Research

A significance statement is an essential part of a research paper. It explains the importance and relevance of the study to the academic community and the world at large. To write a compelling significance statement, identify the research problem, explain why it is significant, provide evidence of its importance, and highlight its potential impact on future research, policy, or practice. A well-crafted significance statement should effectively communicate the value of the research to readers and help them understand why it matters.

Updated on May 4, 2023

a life sciences researcher writing a significance statement for her researcher

A significance statement is a clearly stated, non-technical paragraph that explains why your research matters. It’s central in making the public aware of and gaining support for your research.

Write it in jargon-free language that a reader from any field can understand. Well-crafted, easily readable significance statements can improve your chances for citation and impact and make it easier for readers outside your field to find and understand your work.

Read on for more details on what a significance statement is, how it can enhance the impact of your research, and, of course, how to write one.

What is a significance statement in research?

A significance statement answers the question: How will your research advance scientific knowledge and impact society at large (as well as specific populations)? 

You might also see it called a “Significance of the study” statement. Some professional organizations in the STEM sciences and social sciences now recommended that journals in their disciplines make such statements a standard feature of each published article. Funding agencies also consider “significance” a key criterion for their awards.

Read some examples of significance statements from the Proceedings of the National Academy of Sciences (PNAS) here .

Depending upon the specific journal or funding agency’s requirements, your statement may be around 100 words and answer these questions:

1. What’s the purpose of this research?

2. What are its key findings?

3. Why do they matter?

4. Who benefits from the research results?

Readers will want to know: “What is interesting or important about this research?” Keep asking yourself that question.

Where to place the significance statement in your manuscript

Most journals ask you to place the significance statement before or after the abstract, so check with each journal’s guide. 

This article is focused on the formal significance statement, even though you’ll naturally highlight your project’s significance elsewhere in your manuscript. (In the introduction, you’ll set out your research aims, and in the conclusion, you’ll explain the potential applications of your research and recommend areas for future research. You’re building an overall case for the value of your work.)

Developing the significance statement

The main steps in planning and developing your statement are to assess the gaps to which your study contributes, and then define your work’s implications and impact.

Identify what gaps your study fills and what it contributes

Your literature review was a big part of how you planned your study. To develop your research aims and objectives, you identified gaps or unanswered questions in the preceding research and designed your study to address them.

Go back to that lit review and look at those gaps again. Review your research proposal to refresh your memory. Ask:

  • How have my research findings advanced knowledge or provided notable new insights?
  • How has my research helped to prove (or disprove) a hypothesis or answer a research question?
  • Why are those results important?

Consider your study’s potential impact at two levels: 

  • What contribution does my research make to my field?
  • How does it specifically contribute to knowledge; that is, who will benefit the most from it?

Define the implications and potential impact

As you make notes, keep the reasons in mind for why you are writing this statement. Whom will it impact, and why?

The first audience for your significance statement will be journal reviewers when you submit your article for publishing. Many journals require one for manuscript submissions. Study the author’s guide of your desired journal to see its criteria ( here’s an example ). Peer reviewers who can clearly understand the value of your research will be more likely to recommend publication. 

Second, when you apply for funding, your significance statement will help justify why your research deserves a grant from a funding agency . The U.S. National Institutes of Health (NIH), for example, wants to see that a project will “exert a sustained, powerful influence on the research field(s) involved.” Clear, simple language is always valuable because not all reviewers will be specialists in your field.

Third, this concise statement about your study’s importance can affect how potential readers engage with your work. Science journalists and interested readers can promote and spread your work, enhancing your reputation and influence. Help them understand your work.

You’re now ready to express the importance of your research clearly and concisely. Time to start writing.

How to write a significance statement: Key elements 

When drafting your statement, focus on both the content and writing style.

  • In terms of content, emphasize the importance, timeliness, and relevance of your research results. 
  • Write the statement in plain, clear language rather than scientific or technical jargon. Your audience will include not just your fellow scientists but also non-specialists like journalists, funding reviewers, and members of the public. 

Follow the process we outline below to build a solid, well-crafted, and informative statement. 

Get started

Some suggested opening lines to help you get started might be:

  • The implications of this study are… 
  • Building upon previous contributions, our study moves the field forward because…
  • Our study furthers previous understanding about…

Alternatively, you may start with a statement about the phenomenon you’re studying, leading to the problem statement.

Include these components

Next, draft some sentences that include the following elements. A good example, which we’ll use here, is a significance statement by Rogers et al. (2022) published in the Journal of Climate .

1. Briefly situate your research study in its larger context . Start by introducing the topic, leading to a problem statement. Here’s an example:

‘Heatwaves pose a major threat to human health, ecosystems, and human systems.”

2. State the research problem.

“Simultaneous heatwaves affecting multiple regions can exacerbate such threats. For example, multiple food-producing regions simultaneously undergoing heat-related crop damage could drive global food shortages.”

3. Tell what your study does to address it.

“We assess recent changes in the occurrence of simultaneous large heatwaves.”

4. Provide brief but powerful evidence to support the claims your statement is making , Use quantifiable terms rather than vague ones (e.g., instead of “This phenomenon is happening now more than ever,” see below how Rogers et al. (2022) explained it). This evidence intensifies and illustrates the problem more vividly:

“Such simultaneous heatwaves are 7 times more likely now than 40 years ago. They are also hotter and affect a larger area. Their increasing occurrence is mainly driven by warming baseline temperatures due to global heating, but changes in weather patterns contribute to disproportionate increases over parts of Europe, the eastern United States, and Asia.

5. Relate your study’s impact to the broader context , starting with its general significance to society—then, when possible, move to the particular as you name specific applications of your research findings. (Our example lacks this second level of application.) 

“Better understanding the drivers of weather pattern changes is therefore important for understanding future concurrent heatwave characteristics and their impacts.”

Refine your English

Don’t understate or overstate your findings – just make clear what your study contributes. When you have all the elements in place, review your draft to simplify and polish your language. Even better, get an expert AJE edit . Be sure to use “plain” language rather than academic jargon.

  • Avoid acronyms, scientific jargon, and technical terms 
  • Use active verbs in your sentence structure rather than passive voice (e.g., instead of “It was found that...”, use “We found...”)
  • Make sentence structures short, easy to understand – readable
  • Try to address only one idea in each sentence and keep sentences within 25 words (15 words is even better)
  • Eliminate nonessential words and phrases (“fluff” and wordiness)

Enhance your significance statement’s impact

Always take time to review your draft multiple times. Make sure that you:

  • Keep your language focused
  • Provide evidence to support your claims
  • Relate the significance to the broader research context in your field

After revising your significance statement, request feedback from a reading mentor about how to make it even clearer. If you’re not a native English speaker, seek help from a native-English-speaking colleague or use an editing service like AJE to make sure your work is at a native level.

Understanding the significance of your study

Your readers may have much less interest than you do in the specific details of your research methods and measures. Many readers will scan your article to learn how your findings might apply to them and their own research. 

Different types of significance

Your findings may have different types of significance, relevant to different populations or fields of study for different reasons. You can emphasize your work’s statistical, clinical, or practical significance. Editors or reviewers in the social sciences might also evaluate your work’s social or political significance.

Statistical significance means that the results are unlikely to have occurred randomly. Instead, it implies a true cause-and-effect relationship.

Clinical significance means that your findings are applicable for treating patients and improving quality of life.

Practical significance is when your research outcomes are meaningful to society at large, in the “real world.” Practical significance is usually measured by the study’s  effect size . Similarly, evaluators may attribute social or political significance to research that addresses “real and immediate” social problems.

The AJE Team

The AJE Team

See our "Privacy Policy"

significance of a research work

Community Blog

Keep up-to-date on postgraduate related issues with our quick reads written by students, postdocs, professors and industry leaders.

What is the Significance of the Study?

Picture of DiscoverPhDs

  • By DiscoverPhDs
  • August 25, 2020

Significance of the Study

  • what the significance of the study means,
  • why it’s important to include in your research work,
  • where you would include it in your paper, thesis or dissertation,
  • how you write one
  • and finally an example of a well written section about the significance of the study.

What does Significance of the Study mean?

The significance of the study is a written statement that explains why your research was needed. It’s a justification of the importance of your work and impact it has on your research field, it’s contribution to new knowledge and how others will benefit from it.

Why is the Significance of the Study important?

The significance of the study, also known as the rationale of the study, is important to convey to the reader why the research work was important. This may be an academic reviewer assessing your manuscript under peer-review, an examiner reading your PhD thesis, a funder reading your grant application or another research group reading your published journal paper. Your academic writing should make clear to the reader what the significance of the research that you performed was, the contribution you made and the benefits of it.

How do you write the Significance of the Study?

When writing this section, first think about where the gaps in knowledge are in your research field. What are the areas that are poorly understood with little or no previously published literature? Or what topics have others previously published on that still require further work. This is often referred to as the problem statement.

The introduction section within the significance of the study should include you writing the problem statement and explaining to the reader where the gap in literature is.

Then think about the significance of your research and thesis study from two perspectives: (1) what is the general contribution of your research on your field and (2) what specific contribution have you made to the knowledge and who does this benefit the most.

For example, the gap in knowledge may be that the benefits of dumbbell exercises for patients recovering from a broken arm are not fully understood. You may have performed a study investigating the impact of dumbbell training in patients with fractures versus those that did not perform dumbbell exercises and shown there to be a benefit in their use. The broad significance of the study would be the improvement in the understanding of effective physiotherapy methods. Your specific contribution has been to show a significant improvement in the rate of recovery in patients with broken arms when performing certain dumbbell exercise routines.

This statement should be no more than 500 words in length when written for a thesis. Within a research paper, the statement should be shorter and around 200 words at most.

Significance of the Study: An example

Building on the above hypothetical academic study, the following is an example of a full statement of the significance of the study for you to consider when writing your own. Keep in mind though that there’s no single way of writing the perfect significance statement and it may well depend on the subject area and the study content.

Here’s another example to help demonstrate how a significance of the study can also be applied to non-technical fields:

The significance of this research lies in its potential to inform clinical practices and patient counseling. By understanding the psychological outcomes associated with non-surgical facial aesthetics, practitioners can better guide their patients in making informed decisions about their treatment plans. Additionally, this study contributes to the body of academic knowledge by providing empirical evidence on the effects of these cosmetic procedures, which have been largely anecdotal up to this point.

The statement of the significance of the study is used by students and researchers in academic writing to convey the importance of the research performed; this section is written at the end of the introduction and should describe the specific contribution made and who it benefits.

Multistage Sampling explained with Multistage Sample

Multistage sampling is a more complex form of cluster sampling for obtaining sample populations. Learn their pros and cons and how to undertake them.

Do you need to have published papers to do a PhD?

Do you need to have published papers to do a PhD? The simple answer is no but it could benefit your application if you can.

Tips for Applying to a PhD

Thinking about applying to a PhD? Then don’t miss out on these 4 tips on how to best prepare your application.

Join thousands of other students and stay up to date with the latest PhD programmes, funding opportunities and advice.

significance of a research work

Browse PhDs Now

Science Investigatory Project

A science investigatory project is a science-based research project or study that is performed by school children in a classroom, exhibition or science fair.

DiscoverPhDs procrastination trap

Are you always finding yourself working on sections of your research tasks right up until your deadlines? Are you still finding yourself distracted the moment

significance of a research work

Christine is entering the 4th year of her PhD Carleton University, researching worker’s experiences of the changing conditions in the Non Profit and Social Service sector, pre and during COVID-19.

significance of a research work

Dr Grayson gained her PhD in Mechanical Engineering from Cornell University in 2016. She now works in industry as an Applications Portfolio Manager and is a STEM Speaker and Advocate.

Join Thousands of Students

  • Link to facebook
  • Link to linkedin
  • Link to twitter
  • Link to youtube
  • Writing Tips

How to Discuss the Significance of Your Research

How to Discuss the Significance of Your Research

6-minute read

  • 10th April 2023

Introduction

Research papers can be a real headache for college students . As a student, your research needs to be credible enough to support your thesis statement. You must also ensure you’ve discussed the literature review, findings, and results.

However, it’s also important to discuss the significance of your research . Your potential audience will care deeply about this. It will also help you conduct your research. By knowing the impact of your research, you’ll understand what important questions to answer.

If you’d like to know more about the impact of your research, read on! We’ll talk about why it’s important and how to discuss it in your paper.

What Is the Significance of Research?

This is the potential impact of your research on the field of study. It includes contributions from new knowledge from the research and those who would benefit from it. You should present this before conducting research, so you need to be aware of current issues associated with the thesis before discussing the significance of the research.

Why Does the Significance of Research Matter?

Potential readers need to know why your research is worth pursuing. Discussing the significance of research answers the following questions:

●  Why should people read your research paper ?

●  How will your research contribute to the current knowledge related to your topic?

●  What potential impact will it have on the community and professionals in the field?

Not including the significance of research in your paper would be like a knight trying to fight a dragon without weapons.

Where Do I Discuss the Significance of Research in My Paper?

As previously mentioned, the significance of research comes before you conduct it. Therefore, you should discuss the significance of your research in the Introduction section. Your reader should know the problem statement and hypothesis beforehand.

Steps to Discussing the Significance of Your Research

Discussing the significance of research might seem like a loaded question, so we’ve outlined some steps to help you tackle it.

Step 1: The Research Problem

The problem statement can reveal clues about the outcome of your research. Your research should provide answers to the problem, which is beneficial to all those concerned. For example, imagine the problem statement is, “To what extent do elementary and high school teachers believe cyberbullying affects student performance?”

Learning teachers’ opinions on the effects of cyberbullying on student performance could result in the following:

●  Increased public awareness of cyberbullying in elementary and high schools

●  Teachers’ perceptions of cyberbullying negatively affecting student performance

Find this useful?

Subscribe to our newsletter and get writing tips from our editors straight to your inbox.

●  Whether cyberbullying is more prevalent in elementary or high schools

The research problem will steer your research in the right direction, so it’s best to start with the problem statement.

Step 2: Existing Literature in the Field

Think about current information on your topic, and then find out what information is missing. Are there any areas that haven’t been explored? Your research should add new information to the literature, so be sure to state this in your discussion. You’ll need to know the current literature on your topic anyway, as this is part of your literature review section .

Step 3: Your Research’s Impact on Society

Inform your readers about the impact on society your research could have on it. For example, in the study about teachers’ opinions on cyberbullying, you could mention that your research will educate the community about teachers’ perceptions of cyberbullying as it affects student performance. As a result, the community will know how many teachers believe cyberbullying affects student performance.

You can also mention specific individuals and institutions that would benefit from your study. In the example of cyberbullying, you might indicate that school principals and superintendents would benefit from your research.

Step 4: Future Studies in the Field

Next, discuss how the significance of your research will benefit future studies, which is especially helpful for future researchers in your field. In the example of cyberbullying affecting student performance, your research could provide further opportunities to assess teacher perceptions of cyberbullying and its effects on students from larger populations. This prepares future researchers for data collection and analysis.

Discussing the significance of your research may sound daunting when you haven’t conducted it yet. However, an audience might not read your paper if they don’t know the significance of the research. By focusing on the problem statement and the research benefits to society and future studies, you can convince your audience of the value of your research.

Remember that everything you write doesn’t have to be set in stone. You can go back and tweak the significance of your research after conducting it. At first, you might only include general contributions of your study, but as you research, your contributions will become more specific.

You should have a solid understanding of your topic in general, its associated problems, and the literature review before tackling the significance of your research. However, you’re not trying to prove your thesis statement at this point. The significance of research just convinces the audience that your study is worth reading.

Finally, we always recommend seeking help from your research advisor whenever you’re struggling with ideas. For a more visual idea of how to discuss the significance of your research, we suggest checking out this video .

1. Do I need to do my research before discussing its significance?

No, you’re discussing the significance of your research before you conduct it. However, you should be knowledgeable about your topic and the related literature.

2. Is the significance of research the same as its implications?

No, the research implications are potential questions from your study that justify further exploration, which comes after conducting the research.

 3. Discussing the significance of research seems overwhelming. Where should I start?

We recommend the problem statement as a starting point, which reveals clues to the potential outcome of your research.

4. How can I get feedback on my discussion of the significance of my research?

Our proofreading experts can help. They’ll check your writing for grammar, punctuation errors, spelling, and concision. Submit a 500-word document for free today!

Share this article:

Post A New Comment

Got content that needs a quick turnaround? Let us polish your work. Explore our editorial business services.

5-minute read

Free Email Newsletter Template (2024)

Promoting a brand means sharing valuable insights to connect more deeply with your audience, and...

How to Write a Nonprofit Grant Proposal

If you’re seeking funding to support your charitable endeavors as a nonprofit organization, you’ll need...

9-minute read

How to Use Infographics to Boost Your Presentation

Is your content getting noticed? Capturing and maintaining an audience’s attention is a challenge when...

8-minute read

Why Interactive PDFs Are Better for Engagement

Are you looking to enhance engagement and captivate your audience through your professional documents? Interactive...

7-minute read

Seven Key Strategies for Voice Search Optimization

Voice search optimization is rapidly shaping the digital landscape, requiring content professionals to adapt their...

4-minute read

Five Creative Ways to Showcase Your Digital Portfolio

Are you a creative freelancer looking to make a lasting impression on potential clients or...

Logo Harvard University

Make sure your writing is the best it can be with our expert English proofreading and editing.

TAA Abstract

The Why: Explaining the significance of your research

In the first four articles of this series, we examined The What: Defining a research project , The Where: Constructing an effective writing environment , The When: Setting realistic timeframes for your research , and The Who: Finding key sources in the existing literature . In this article, we will explore the fifth, and final, W of academic writing, The Why: Explaining the significance of your research.

Q1: When considering the significance of your research, what is the general contribution you make?

According to the Unite for Sight online module titled “ The Importance of Research ”:

“The purpose of research is to inform action. Thus, your study should seek to contextualize its findings within the larger body of research. Research must always be of high quality in order to produce knowledge that is applicable outside of the research setting. Furthermore, the results of your study may have implications for policy and future project implementation.”

In response to this TweetChat question, Twitter user @aemidr shared that the “dissemination of the research outcomes” is their contribution. Petra Boynton expressed a contribution of “easy to follow resources other people can use to help improve their health/wellbeing”.

Eric Schmieder said, “In general, I try to expand the application of technology to improve the efficiency of business processes through my research and personal use and development of technology solutions.” While Janet Salmons offered the response, “ I am a metaresearcher , that is, I research emerging qualitative methods & write about them. I hope contribution helps student & experienced researchers try new approaches.”

Despite the different contributions each of these participants noted as the significance of their individual research efforts, there is a significance to each. In addition to the importance stated through the above examples, Leann Zarah offered 7 Reasons Why Research Is Important , as follows:

  • A Tool for Building Knowledge and for Facilitating Learning
  • Means to Understand Various Issues and Increase Public Awareness
  • An Aid to Business Success
  • A Way to Prove Lies and to Support Truths
  • Means to Find, Gauge, and Seize Opportunities
  • A Seed to Love Reading, Writing, Analyzing, and Sharing Valuable Information
  • Nourishment and Exercise for the Mind

Q1a: What is the specific significance of your research to yourself or other individuals?

The first of “ 3 Important Things to Consider When Selecting Your Research Topic ”, as written by Stephen Fiedler is to “choose something that interests you”. By doing so, you are more likely to stay motivated and persevere through inevitable challenges.

As mentioned earlier, for Salmons her interests lie in emerging methods and new approaches to research. As Salmons pointed out in the TweetChat, “Conventional methods may not be adequate in a globally-connected world – using online methods expands potential participation.”

For @aemidr, “specific significance of my research is on health and safety from the environment and lifestyle”. In contrast, Schmieder said “my ongoing research allows me to be a better educator, to be more efficient in my own business practices, and to feel comfortable engaging with new technology”.

Regardless of discipline, a personal statement can help identify for yourself and others your suitability for specific research. Some things to include in the statement are:

  • Your reasons for choosing your topic of research
  • The aspects of your topic of research that interest you most
  • Any work experience, placement or voluntary work you have undertaken, particularly if it is relevant to your subject. Include the skills and abilities you have gained from these activities
  • How your choice of research fits in with your future career plans

Q2: Why is it important to communicate the value of your research?

According to Salmons, “If you research and no one knows about it or can use what you discover, it is just an intellectual exercise. If we want the public to support & fund research, we must show why it’s important!” She has written for the SAGE MethodSpace blog on the subject Write with Purpose, Publish for Impact building a collection of articles from both the MethodSpace blog and TAA’s blog, Abstract .

Peter J. Stogios shares with us benefits to both the scientist and the public in his article, “ Why Sharing Your Research with the Public is as Necessary as Doing the Research Itself ”. Unsure where to start? Stogios states, “There are many ways scientists can communicate more directly with the public. These include writing a personal blog, updating their lab’s or personal website to be less technical and more accessible to non-scientists, popular science forums and message boards, and engaging with your institution’s research communication office. Most organizations publish newsletters or create websites showcasing the work being done, and act as intermediaries between the researchers and the media. Scientists can and should interact more with these communicators.”

Schmieder stated during the TweetChat that the importance of communicating the value of your research is “primarily to help others understand why you do what you do, but also for funding purposes, application of your results by others, and increased personal value and validation”.

In her article, “ Explaining Your Research to the Public: Why It Matters, How to Do It! ”, Sharon Page-Medrich conveys the importance, stating “UC Berkeley’s 30,000+ undergraduate and 11,000+ graduate students generate or contribute to diverse research in the natural and physical sciences, social sciences and humanities, and many professional fields. Such research and its applications are fundamental to saving lives, restoring healthy environments, making art and preserving culture, and raising standards of living. Yet the average person-in-the-street may not see the connection between students’ investigations and these larger outcomes.”

Q2a: To whom is it most difficult to explain that value?

Although important, it’s not always easy to share our research efforts with others. Erin Bedford sets the scene as she tells us “ How to (Not) Talk about Your Research ”. “It’s happened to the best of us. First, the question: ‘so, what is your research on?’ Then, the blank stare as you try to explain. And finally, the uninterested but polite nod and smile.”

Schmieder acknowledges that these polite people who care enough to ask, but often are the hardest to explain things to are “family and friends who don’t share the same interests or understanding of the subject matter.” It’s not that they don’t care about the efforts, it’s that the level to which a researcher’s investment and understanding is different from those asking about their work.

When faced with less-than-supportive reactions from friends, Noelle Sterne shares some ways to retain your perspective and friendship in her TAA blog article, “ Friends – How to deal with their negative responses to your academic projects ”.

Q3: What methods have you used to explain your research to others (both inside and outside of your discipline)?

Schmieder stated, “I have done webinars, professional development seminars, blog articles, and online courses” in an effort to communicate research to others. The Edinburg Napier University LibGuides guide to Sharing Your Research includes some of these in their list of resources as well adding considerations of online presence, saving time / online efficiency, copyright, and compliance to the discussion.

Michaela Panter states in her article, “ Sharing Your Findings with a General Audience ”, that “tips and guidelines for conveying your research to a general audience are increasingly widespread, yet scientists remain wary of doing so.” She notes, however, that “effectively sharing your research with a general audience can positively affect funding for your work” and “engaging the general public can further the impact of your research”.

If these are affects you desire, consider CES’s “ Six ways to share your research findings ”, as follows:

  • Know your audience and define your goal
  • Collaborate with others
  • Make a plan
  • Embrace plain language writing
  • Layer and link, and
  • Evaluate your work

Q4: What are some places you can share your research and its significance beyond your writing?

Beyond traditional journal article publication efforts, there are many opportunities to share your research with a larger community. Schmieder listed several options during the TweetChat event, specifically, “conference presentations, social media, blogs, professional networks and organizations, podcasts, and online courses”.

Elsevier’s resource, “ Sharing and promoting your article ” provides advice on sharing your article in the following ten places:

  • At a conference
  • For classroom teaching purposes
  • For grant applications
  • With my colleagues
  • On a preprint server
  • On my personal blog or website
  • On my institutional repository
  • On a subject repository (or other non-commercial repository)
  • On Scholarly Communication Network (SCN), such as Mendeley or Scholar Universe
  • Social Media, such as Facebook, LinkedIn, Twitter

Nature Publishing Group’s “ tips for promoting your research ” include nine ways to get started:

  • Share your work with your social networks
  • Update your professional profile
  • Utilize research-sharing platforms
  • Create a Google Scholar profile – or review and enhance your existing one
  • Highlight key and topical points in a blog post
  • Make your research outputs shareable and discoverable
  • Register for a unique ORCID author identifier
  • Encourage readership within your institution

Finally, Sheffield Solutions produced a top ten list of actions you can take to help share and disseminate your work more widely online, as follows:

  • Create an ORCID ID
  • Upload to Sheffield’s MyPublications system
  • Make your work Open Access
  • Create a Google Scholar profile
  • Join an academic social network
  • Connect through Twitter
  • Blog about your research
  • Upload to Slideshare or ORDA
  • Track your research

Q5: How is the significance of your study conveyed in your writing efforts?

Schmieder stated, “Significance is conveyed through the introduction, the structure of the study, and the implications for further research sections of articles”. According to The Writing Center at University of North Carolina at Chapel Hill, “A thesis statement tells the reader how you will interpret the significance of the subject matter under discussion”.

In their online Tips & Tools resource on Thesis Statements , they share the following six questions to ask to help determine if your thesis is strong:

  • Do I answer the question?
  • Have I taken a position that others might challenge or oppose?
  • Is my thesis statement specific enough?
  • Does my thesis pass the “So what?” test?
  • Does my essay support my thesis specifically and without wandering?
  • Does my thesis pass the “how and why?” test?

Some journals, such as Elsevier’s Acta Biomaterialia, now require a statement of significance with manuscript submissions. According to the announcement linked above, “these statements will address the novelty aspect and the significance of the work with respect to the existing literature and more generally to the society.” and “by highlighting the scientific merit of your research, these statements will help make your work more visible to our readership.”

Q5a: How does the significance influence the structure of your writing?

According to Jeff Hume-Pratuch in the Academic Coaching & Writing (ACW) article, “ Using APA Style in Academic Writing: Precision and Clarity ”, “The need for precision and clarity of expression is one of the distinguishing marks of academic writing.” As a result, Hume-Pratuch advises that you “choose your words wisely so that they do not come between your idea and the audience.” To do so, he suggests avoiding ambiguous expressions, approximate language, and euphemisms and jargon in your writing.

Schmieder shared in the TweetChat that “the impact of the writing is affected by the target audience for the research and can influence word choice, organization of ideas, and elements included in the narrative”.

Discussing the organization of ideas, Patrick A. Regoniel offers “ Two Tips in Writing the Significance of the Study ” claiming that by referring to the statement of the problem and writing from general to specific contribution, you can “prevent your mind from wandering wildly or aimlessly as you explore the significance of your study”.

Q6: What are some ways you can improve your ability to explain your research to others?

For both Schmieder and Salmons, practice is key. Schmieder suggested, “Practice simplifying the concepts. Focus on why rather than what. Share research in areas where they are active and comfortable”. Salmons added, “answer ‘so what’ and ‘who cares’ questions. Practice creating a sentence. For my study of the collaborative process: ‘Learning to collaborate is important for team success in professional life’ works better than ‘a phenomenological study of instructors’ perceptions’”.

In a guest blog post for Scientific American titled “ Effective Communication, Better Science ”, Mónica I. Feliú-Mójer claimed “to be a successful scientist, you must be an effective communicator.” In support of the goal of being an effective communicator, a list of training opportunities and other resources are included in the article.

Along the same lines, The University of Melbourne shared the following list of resources, workshops, and programs in their online resource on academic writing and communication skills :

  • Speaking and Presenting : Resources for presenting your research, using PowerPoint to your advantage, presenting at conferences and helpful videos on presenting effectively
  • Research Impact Library Advisory Service  (RILAS): Helps you to determine the impact of your publications and other research outputs for academic promotions and grant applications
  • Three Minute Thesis Competition  (3MT): Research communication competition that requires you to deliver a compelling oration on your thesis topic and its significance in just three minutes or less.
  • Visualise your Thesis Competition : A dynamic and engaging audio-visual “elevator pitch” (e-Poster) to communicate your research to a broad non-specialist audience in 60 seconds.

As we complete this series exploration of the five W’s of academic writing, we hope that you are adequately prepared to apply them to your own research efforts of defining a research project, constructing an effective writing environment, setting realistic timeframes for your research, finding key sources in the existing literature, and last, but not least, explaining the significance of your research.

Share this:

significance of a research work

  • Share on Tumblr

Please note that all ​content on this site ​is copyrighted by the Textbook & Academic Authors Association (TAA). Individual articles may be re​posted and/or printed in non-commercial publications provided you include the byline​ (if applicable), the entire article without alterations, and this copyright notice: “© 202​4, Textbook & Academic Authors Association (TAA). Originally published ​on the TAA Blog, Abstrac t on [Date, Issue, Number].” A copy of the issue in which the article is reprinted​, or a link to the blog or online site, should be mailed to ​K​im Pawlak P.O. Box 3​37, ​C​ochrane, WI 5462​2 or ​K​im.Pawlak @taaonline.net.

significance of a research work

  • Privacy Policy

Research Method

Home » Scope of the Research – Writing Guide and Examples

Scope of the Research – Writing Guide and Examples

Table of Contents

Scope of the Research

Scope of the Research

Scope of research refers to the range of topics, areas, and subjects that a research project intends to cover. It is the extent and limitations of the study, defining what is included and excluded in the research.

The scope of a research project depends on various factors, such as the research questions , objectives , methodology, and available resources. It is essential to define the scope of the research project clearly to avoid confusion and ensure that the study addresses the intended research questions.

How to Write Scope of the Research

Writing the scope of the research involves identifying the specific boundaries and limitations of the study. Here are some steps you can follow to write a clear and concise scope of the research:

  • Identify the research question: Start by identifying the specific question that you want to answer through your research . This will help you focus your research and define the scope more clearly.
  • Define the objectives: Once you have identified the research question, define the objectives of your study. What specific goals do you want to achieve through your research?
  • Determine the population and sample: Identify the population or group of people that you will be studying, as well as the sample size and selection criteria. This will help you narrow down the scope of your research and ensure that your findings are applicable to the intended audience.
  • Identify the variables: Determine the variables that will be measured or analyzed in your research. This could include demographic variables, independent variables , dependent variables , or any other relevant factors.
  • Define the timeframe: Determine the timeframe for your study, including the start and end date, as well as any specific time intervals that will be measured.
  • Determine the geographical scope: If your research is location-specific, define the geographical scope of your study. This could include specific regions, cities, or neighborhoods that you will be focusing on.
  • Outline the limitations: Finally, outline any limitations or constraints of your research, such as time, resources, or access to data. This will help readers understand the scope and applicability of your research findings.

Examples of the Scope of the Research

Some Examples of the Scope of the Research are as follows:

Title : “Investigating the impact of artificial intelligence on job automation in the IT industry”

Scope of Research:

This study aims to explore the impact of artificial intelligence on job automation in the IT industry. The research will involve a qualitative analysis of job postings, identifying tasks that can be automated using AI. The study will also assess the potential implications of job automation on the workforce, including job displacement, job creation, and changes in job requirements.

Title : “Developing a machine learning model for predicting cyberattacks on corporate networks”

This study will develop a machine learning model for predicting cyberattacks on corporate networks. The research will involve collecting and analyzing network traffic data, identifying patterns and trends that are indicative of cyberattacks. The study aims to build an accurate and reliable predictive model that can help organizations identify and prevent cyberattacks before they occur.

Title: “Assessing the usability of a mobile app for managing personal finances”

This study will assess the usability of a mobile app for managing personal finances. The research will involve conducting a usability test with a group of participants, evaluating the app’s ease of use, efficiency, and user satisfaction. The study aims to identify areas of the app that need improvement, and to provide recommendations for enhancing its usability and user experience.

Title : “Exploring the effects of mindfulness meditation on stress reduction among college students”

This study aims to investigate the impact of mindfulness meditation on reducing stress levels among college students. The research will involve a randomized controlled trial with two groups: a treatment group that receives mindfulness meditation training and a control group that receives no intervention. The study will examine changes in stress levels, as measured by self-report questionnaires, before and after the intervention.

Title: “Investigating the impact of social media on body image dissatisfaction among young adults”

This study will explore the relationship between social media use and body image dissatisfaction among young adults. The research will involve a cross-sectional survey of participants aged 18-25, assessing their social media use, body image perceptions, and self-esteem. The study aims to identify any correlations between social media use and body image dissatisfaction, and to determine if certain social media platforms or types of content are particularly harmful.

When to Write Scope of the Research

Here is a guide on When to Write the Scope of the Research:

  • Before starting your research project, it’s important to clearly define the scope of your study. This will help you stay focused on your research question and avoid getting sidetracked by irrelevant information.
  • The scope of the research should be determined by the research question or problem statement. It should outline what you intend to investigate and what you will not be investigating.
  • The scope should also take into consideration any limitations of the study, such as time, resources, or access to data. This will help you realistically plan and execute your research.
  • Writing the scope of the research early in the research process can also help you refine your research question and identify any gaps in the existing literature that your study can address.
  • It’s important to revisit the scope of the research throughout the research process to ensure that you stay on track and make any necessary adjustments.
  • The scope of the research should be clearly communicated in the research proposal or study protocol to ensure that all stakeholders are aware of the research objectives and limitations.
  • The scope of the research should also be reflected in the research design, methods, and analysis plan. This will ensure that the research is conducted in a systematic and rigorous manner that is aligned with the research objectives.
  • The scope of the research should be written in a clear and concise manner, using language that is accessible to all stakeholders, including those who may not be familiar with the research topic or methodology.
  • When writing the scope of the research, it’s important to be transparent about any assumptions or biases that may influence the research findings. This will help ensure that the research is conducted in an ethical and responsible manner.
  • The scope of the research should be reviewed and approved by the research supervisor, committee members, or other relevant stakeholders. This will ensure that the research is feasible, relevant, and contributes to the field of study.
  • Finally, the scope of the research should be clearly stated in the research report or dissertation to provide context for the research findings and conclusions. This will help readers understand the significance of the research and its contribution to the field of study.

Purpose of Scope of the Research

Purposes of Scope of the Research are as follows:

  • Defines the boundaries and extent of the study.
  • Determines the specific objectives and research questions to be addressed.
  • Provides direction and focus for the research.
  • Helps to identify the relevant theories, concepts, and variables to be studied.
  • Enables the researcher to select the appropriate research methodology and techniques.
  • Allows for the allocation of resources (time, money, personnel) to the research.
  • Establishes the criteria for the selection of the sample and data collection methods.
  • Facilitates the interpretation and generalization of the results.
  • Ensures the ethical considerations and constraints are addressed.
  • Provides a framework for the presentation and dissemination of the research findings.

Advantages of Scope of the Research

Here are some advantages of having a well-defined scope of research:

  • Provides clarity and focus: Defining the scope of research helps to provide clarity and focus to the study. This ensures that the research stays on track and does not deviate from its intended purpose.
  • Helps to manage resources: Knowing the scope of research allows researchers to allocate resources effectively. This includes managing time, budget, and personnel required to conduct the study.
  • Improves the quality of research: A well-defined scope of research helps to ensure that the study is designed to achieve specific objectives. This helps to improve the quality of the research by reducing the likelihood of errors or bias.
  • Facilitates communication: A clear scope of research enables researchers to communicate the goals and objectives of the study to stakeholders, such as funding agencies or participants. This facilitates understanding and enhances cooperation.
  • Enables replication : A well-defined scope of research makes it easier to replicate the study in the future. This allows other researchers to validate the findings and build upon them, leading to the advancement of knowledge in the field.
  • Increases the relevance of research: Defining the scope of research helps to ensure that the study is relevant to the problem or issue being investigated. This increases the likelihood that the findings will be useful and applicable to real-world situations.
  • Reduces the risk of scope creep : Scope creep occurs when the research expands beyond the original scope, leading to an increase in the time, cost, and resources required to complete the study. A clear definition of the scope of research helps to reduce the risk of scope creep by establishing boundaries and limitations.
  • Enhances the credibility of research: A well-defined scope of research helps to enhance the credibility of the study by ensuring that it is designed to achieve specific objectives and answer specific research questions. This makes it easier for others to assess the validity and reliability of the study.
  • Provides a framework for decision-making : A clear scope of research provides a framework for decision-making throughout the research process. This includes decisions related to data collection, analysis, and interpretation.

Scope of the Research Vs Scope of the Project

Scope of ResearchScope of Project
A focused and specific implementation of a solutionFocused and specific implementation of a solution
Seeks to explore and discover new information and knowledgeAims to solve a problem or address a specific need
Can be theoretical or practical in natureGenerally practical, with tangible deliverables
May involve data collection, analysis, and interpretationInvolves planning, execution, and monitoring of tasks and activities
Usually conducted over a longer period of timeHas a defined timeline and milestones
May result in publications, reports, or academic degreesResults in a product, service, or outcome that meets the project objectives
Can have implications beyond the specific project or applicationHas a direct impact on the stakeholders and users involved in the project

About the author

' src=

Muhammad Hassan

Researcher, Academic Writer, Web developer

You may also like

Dissertation

Dissertation – Format, Example and Template

Significance of the Study

Significance of the Study – Examples and Writing...

Thesis Statement

Thesis Statement – Examples, Writing Guide

Critical Analysis

Critical Analysis – Types, Examples and Writing...

Research Topic

Research Topics – Ideas and Examples

APA Table of Contents

APA Table of Contents – Format and Example

Afribary

How to Write Significance of the Study in a Project Research Paper

How to Write Significance of the Study in a Project Research Paper

When you write your thesis or research paper, there is a section of your introduction that is allotted to the significance of the study. The purpose of this section is to state why your study was needed and the contribution of your research to your field.

In this guide, you will learn the meaning of the significance of the study in your research paper and how to write one.

What is the Significance of the Study?

The significance of the study is basically a written statement that explains why your research was important. It justifies why your research was needed, the impact of your research in your field, its contribution, and how others (audience) would benefit from it.

Also referred to as the rationale of the study, the significance of the study is important to communicate why your research is important to your reader. It is important to make clear the significance of your study for easy comprehension by the readers.

Tips for writing the significance of the study

Reflect on the Problem Statement When writing this section of your paper, first reflect on what contribution your research is making to your field, the gaps in knowledge in your research field, and why your work should be published.

Your problem statement should be reflected in the introduction of the significance of the study. Your research problem statement can guide you to identify specific contributions your research is making to your field of study.

Write from a general contribution to a specific contribution Write your significance of the study in an inverted pyramid format. Start with your research contribution to society as a whole, and then proceed to narrow it down to a specific individual or group of people.

When writing your statement of study, the length should not be more than 500 words for a thesis and around 200 words for a research paper.

However, note that writing the significance of study depends on your subject area and your content as there is no single way of writing a perfect significance of study.

An Example of Significance of Study

This study's findings will further reveal how management-employee bilateral relationships can be strengthened while improving workplace productivity. The findings would be of major importance in assessing how collective bargaining can be a major tool in improving workplace performance in a developing economy like Nigeria. Collective bargaining would help both management and employees bargain on terms and conditions of service and resolve their grievances without leading to strikes, lock-outs, and other forms of industrial actions. The best approach in negotiating on the bargaining table is to provide employees with the importance of collective bargaining as the best method of settling the industrial conflict, which will improve their productivity and lead to higher organizational performance.

The significance of the study is used in academic writing by students and researchers to communicate the importance of a research problem. This section describes specific contributions made to your field of study and who benefits from it. Also, the extent to which the study matters and its potential benefits to people, researchers, departments and other fields are discussed here. This statement is written at the end of your introduction and should be well attended to.

  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer

QuestionPro

survey software icon

  • Solutions Industries Gaming Automotive Sports and events Education Government Travel & Hospitality Financial Services Healthcare Cannabis Technology Use Case AskWhy Communities Audience Contactless surveys Mobile LivePolls Member Experience GDPR Positive People Science 360 Feedback Surveys
  • Resources Blog eBooks Survey Templates Case Studies Training Help center

significance of a research work

Home Market Research

What is Research: Definition, Methods, Types & Examples

What is Research

The search for knowledge is closely linked to the object of study; that is, to the reconstruction of the facts that will provide an explanation to an observed event and that at first sight can be considered as a problem. It is very human to seek answers and satisfy our curiosity. Let’s talk about research.

Content Index

What is Research?

What are the characteristics of research.

  • Comparative analysis chart

Qualitative methods

Quantitative methods, 8 tips for conducting accurate research.

Research is the careful consideration of study regarding a particular concern or research problem using scientific methods. According to the American sociologist Earl Robert Babbie, “research is a systematic inquiry to describe, explain, predict, and control the observed phenomenon. It involves inductive and deductive methods.”

Inductive methods analyze an observed event, while deductive methods verify the observed event. Inductive approaches are associated with qualitative research , and deductive methods are more commonly associated with quantitative analysis .

Research is conducted with a purpose to:

  • Identify potential and new customers
  • Understand existing customers
  • Set pragmatic goals
  • Develop productive market strategies
  • Address business challenges
  • Put together a business expansion plan
  • Identify new business opportunities
  • Good research follows a systematic approach to capture accurate data. Researchers need to practice ethics and a code of conduct while making observations or drawing conclusions.
  • The analysis is based on logical reasoning and involves both inductive and deductive methods.
  • Real-time data and knowledge is derived from actual observations in natural settings.
  • There is an in-depth analysis of all data collected so that there are no anomalies associated with it.
  • It creates a path for generating new questions. Existing data helps create more research opportunities.
  • It is analytical and uses all the available data so that there is no ambiguity in inference.
  • Accuracy is one of the most critical aspects of research. The information must be accurate and correct. For example, laboratories provide a controlled environment to collect data. Accuracy is measured in the instruments used, the calibrations of instruments or tools, and the experiment’s final result.

What is the purpose of research?

There are three main purposes:

  • Exploratory: As the name suggests, researchers conduct exploratory studies to explore a group of questions. The answers and analytics may not offer a conclusion to the perceived problem. It is undertaken to handle new problem areas that haven’t been explored before. This exploratory data analysis process lays the foundation for more conclusive data collection and analysis.

LEARN ABOUT: Descriptive Analysis

  • Descriptive: It focuses on expanding knowledge on current issues through a process of data collection. Descriptive research describe the behavior of a sample population. Only one variable is required to conduct the study. The three primary purposes of descriptive studies are describing, explaining, and validating the findings. For example, a study conducted to know if top-level management leaders in the 21st century possess the moral right to receive a considerable sum of money from the company profit.

LEARN ABOUT: Best Data Collection Tools

  • Explanatory: Causal research or explanatory research is conducted to understand the impact of specific changes in existing standard procedures. Running experiments is the most popular form. For example, a study that is conducted to understand the effect of rebranding on customer loyalty.

Here is a comparative analysis chart for a better understanding:

 
Approach used Unstructured Structured Highly structured
Conducted throughAsking questions Asking questions By using hypotheses.
TimeEarly stages of decision making Later stages of decision makingLater stages of decision making

It begins by asking the right questions and choosing an appropriate method to investigate the problem. After collecting answers to your questions, you can analyze the findings or observations to draw reasonable conclusions.

When it comes to customers and market studies, the more thorough your questions, the better the analysis. You get essential insights into brand perception and product needs by thoroughly collecting customer data through surveys and questionnaires . You can use this data to make smart decisions about your marketing strategies to position your business effectively.

To make sense of your study and get insights faster, it helps to use a research repository as a single source of truth in your organization and manage your research data in one centralized data repository .

Types of research methods and Examples

what is research

Research methods are broadly classified as Qualitative and Quantitative .

Both methods have distinctive properties and data collection methods .

Qualitative research is a method that collects data using conversational methods, usually open-ended questions . The responses collected are essentially non-numerical. This method helps a researcher understand what participants think and why they think in a particular way.

Types of qualitative methods include:

  • One-to-one Interview
  • Focus Groups
  • Ethnographic studies
  • Text Analysis

Quantitative methods deal with numbers and measurable forms . It uses a systematic way of investigating events or data. It answers questions to justify relationships with measurable variables to either explain, predict, or control a phenomenon.

Types of quantitative methods include:

  • Survey research
  • Descriptive research
  • Correlational research

LEARN MORE: Descriptive Research vs Correlational Research

Remember, it is only valuable and useful when it is valid, accurate, and reliable. Incorrect results can lead to customer churn and a decrease in sales.

It is essential to ensure that your data is:

  • Valid – founded, logical, rigorous, and impartial.
  • Accurate – free of errors and including required details.
  • Reliable – other people who investigate in the same way can produce similar results.
  • Timely – current and collected within an appropriate time frame.
  • Complete – includes all the data you need to support your business decisions.

Gather insights

What is a research - tips

  • Identify the main trends and issues, opportunities, and problems you observe. Write a sentence describing each one.
  • Keep track of the frequency with which each of the main findings appears.
  • Make a list of your findings from the most common to the least common.
  • Evaluate a list of the strengths, weaknesses, opportunities, and threats identified in a SWOT analysis .
  • Prepare conclusions and recommendations about your study.
  • Act on your strategies
  • Look for gaps in the information, and consider doing additional inquiry if necessary
  • Plan to review the results and consider efficient methods to analyze and interpret results.

Review your goals before making any conclusions about your study. Remember how the process you have completed and the data you have gathered help answer your questions. Ask yourself if what your analysis revealed facilitates the identification of your conclusions and recommendations.

LEARN MORE ABOUT OUR SOFTWARE         FREE TRIAL

MORE LIKE THIS

Jotform vs Wufoo

Jotform vs Wufoo: Comparison of Features and Prices

Aug 13, 2024

significance of a research work

Product or Service: Which is More Important? — Tuesday CX Thoughts

significance of a research work

Life@QuestionPro: Thomas Maiwald-Immer’s Experience

Aug 9, 2024

What Is Research, and Why Do People Do It?

  • Open Access
  • First Online: 03 December 2022

Cite this chapter

You have full access to this open access chapter

significance of a research work

  • James Hiebert 6 ,
  • Jinfa Cai 7 ,
  • Stephen Hwang 7 ,
  • Anne K Morris 6 &
  • Charles Hohensee 6  

Part of the book series: Research in Mathematics Education ((RME))

21k Accesses

Abstractspiepr Abs1

Every day people do research as they gather information to learn about something of interest. In the scientific world, however, research means something different than simply gathering information. Scientific research is characterized by its careful planning and observing, by its relentless efforts to understand and explain, and by its commitment to learn from everyone else seriously engaged in research. We call this kind of research scientific inquiry and define it as “formulating, testing, and revising hypotheses.” By “hypotheses” we do not mean the hypotheses you encounter in statistics courses. We mean predictions about what you expect to find and rationales for why you made these predictions. Throughout this and the remaining chapters we make clear that the process of scientific inquiry applies to all kinds of research studies and data, both qualitative and quantitative.

You have full access to this open access chapter,  Download chapter PDF

Part I. What Is Research?

Have you ever studied something carefully because you wanted to know more about it? Maybe you wanted to know more about your grandmother’s life when she was younger so you asked her to tell you stories from her childhood, or maybe you wanted to know more about a fertilizer you were about to use in your garden so you read the ingredients on the package and looked them up online. According to the dictionary definition, you were doing research.

Recall your high school assignments asking you to “research” a topic. The assignment likely included consulting a variety of sources that discussed the topic, perhaps including some “original” sources. Often, the teacher referred to your product as a “research paper.”

Were you conducting research when you interviewed your grandmother or wrote high school papers reviewing a particular topic? Our view is that you were engaged in part of the research process, but only a small part. In this book, we reserve the word “research” for what it means in the scientific world, that is, for scientific research or, more pointedly, for scientific inquiry .

Exercise 1.1

Before you read any further, write a definition of what you think scientific inquiry is. Keep it short—Two to three sentences. You will periodically update this definition as you read this chapter and the remainder of the book.

This book is about scientific inquiry—what it is and how to do it. For starters, scientific inquiry is a process, a particular way of finding out about something that involves a number of phases. Each phase of the process constitutes one aspect of scientific inquiry. You are doing scientific inquiry as you engage in each phase, but you have not done scientific inquiry until you complete the full process. Each phase is necessary but not sufficient.

In this chapter, we set the stage by defining scientific inquiry—describing what it is and what it is not—and by discussing what it is good for and why people do it. The remaining chapters build directly on the ideas presented in this chapter.

A first thing to know is that scientific inquiry is not all or nothing. “Scientificness” is a continuum. Inquiries can be more scientific or less scientific. What makes an inquiry more scientific? You might be surprised there is no universally agreed upon answer to this question. None of the descriptors we know of are sufficient by themselves to define scientific inquiry. But all of them give you a way of thinking about some aspects of the process of scientific inquiry. Each one gives you different insights.

An image of the book's description with the words like research, science, and inquiry and what the word research meant in the scientific world.

Exercise 1.2

As you read about each descriptor below, think about what would make an inquiry more or less scientific. If you think a descriptor is important, use it to revise your definition of scientific inquiry.

Creating an Image of Scientific Inquiry

We will present three descriptors of scientific inquiry. Each provides a different perspective and emphasizes a different aspect of scientific inquiry. We will draw on all three descriptors to compose our definition of scientific inquiry.

Descriptor 1. Experience Carefully Planned in Advance

Sir Ronald Fisher, often called the father of modern statistical design, once referred to research as “experience carefully planned in advance” (1935, p. 8). He said that humans are always learning from experience, from interacting with the world around them. Usually, this learning is haphazard rather than the result of a deliberate process carried out over an extended period of time. Research, Fisher said, was learning from experience, but experience carefully planned in advance.

This phrase can be fully appreciated by looking at each word. The fact that scientific inquiry is based on experience means that it is based on interacting with the world. These interactions could be thought of as the stuff of scientific inquiry. In addition, it is not just any experience that counts. The experience must be carefully planned . The interactions with the world must be conducted with an explicit, describable purpose, and steps must be taken to make the intended learning as likely as possible. This planning is an integral part of scientific inquiry; it is not just a preparation phase. It is one of the things that distinguishes scientific inquiry from many everyday learning experiences. Finally, these steps must be taken beforehand and the purpose of the inquiry must be articulated in advance of the experience. Clearly, scientific inquiry does not happen by accident, by just stumbling into something. Stumbling into something unexpected and interesting can happen while engaged in scientific inquiry, but learning does not depend on it and serendipity does not make the inquiry scientific.

Descriptor 2. Observing Something and Trying to Explain Why It Is the Way It Is

When we were writing this chapter and googled “scientific inquiry,” the first entry was: “Scientific inquiry refers to the diverse ways in which scientists study the natural world and propose explanations based on the evidence derived from their work.” The emphasis is on studying, or observing, and then explaining . This descriptor takes the image of scientific inquiry beyond carefully planned experience and includes explaining what was experienced.

According to the Merriam-Webster dictionary, “explain” means “(a) to make known, (b) to make plain or understandable, (c) to give the reason or cause of, and (d) to show the logical development or relations of” (Merriam-Webster, n.d. ). We will use all these definitions. Taken together, they suggest that to explain an observation means to understand it by finding reasons (or causes) for why it is as it is. In this sense of scientific inquiry, the following are synonyms: explaining why, understanding why, and reasoning about causes and effects. Our image of scientific inquiry now includes planning, observing, and explaining why.

An image represents the observation required in the scientific inquiry including planning and explaining.

We need to add a final note about this descriptor. We have phrased it in a way that suggests “observing something” means you are observing something in real time—observing the way things are or the way things are changing. This is often true. But, observing could mean observing data that already have been collected, maybe by someone else making the original observations (e.g., secondary analysis of NAEP data or analysis of existing video recordings of classroom instruction). We will address secondary analyses more fully in Chap. 4 . For now, what is important is that the process requires explaining why the data look like they do.

We must note that for us, the term “data” is not limited to numerical or quantitative data such as test scores. Data can also take many nonquantitative forms, including written survey responses, interview transcripts, journal entries, video recordings of students, teachers, and classrooms, text messages, and so forth.

An image represents the data explanation as it is not limited and takes numerous non-quantitative forms including an interview, journal entries, etc.

Exercise 1.3

What are the implications of the statement that just “observing” is not enough to count as scientific inquiry? Does this mean that a detailed description of a phenomenon is not scientific inquiry?

Find sources that define research in education that differ with our position, that say description alone, without explanation, counts as scientific research. Identify the precise points where the opinions differ. What are the best arguments for each of the positions? Which do you prefer? Why?

Descriptor 3. Updating Everyone’s Thinking in Response to More and Better Information

This descriptor focuses on a third aspect of scientific inquiry: updating and advancing the field’s understanding of phenomena that are investigated. This descriptor foregrounds a powerful characteristic of scientific inquiry: the reliability (or trustworthiness) of what is learned and the ultimate inevitability of this learning to advance human understanding of phenomena. Humans might choose not to learn from scientific inquiry, but history suggests that scientific inquiry always has the potential to advance understanding and that, eventually, humans take advantage of these new understandings.

Before exploring these bold claims a bit further, note that this descriptor uses “information” in the same way the previous two descriptors used “experience” and “observations.” These are the stuff of scientific inquiry and we will use them often, sometimes interchangeably. Frequently, we will use the term “data” to stand for all these terms.

An overriding goal of scientific inquiry is for everyone to learn from what one scientist does. Much of this book is about the methods you need to use so others have faith in what you report and can learn the same things you learned. This aspect of scientific inquiry has many implications.

One implication is that scientific inquiry is not a private practice. It is a public practice available for others to see and learn from. Notice how different this is from everyday learning. When you happen to learn something from your everyday experience, often only you gain from the experience. The fact that research is a public practice means it is also a social one. It is best conducted by interacting with others along the way: soliciting feedback at each phase, taking opportunities to present work-in-progress, and benefitting from the advice of others.

A second implication is that you, as the researcher, must be committed to sharing what you are doing and what you are learning in an open and transparent way. This allows all phases of your work to be scrutinized and critiqued. This is what gives your work credibility. The reliability or trustworthiness of your findings depends on your colleagues recognizing that you have used all appropriate methods to maximize the chances that your claims are justified by the data.

A third implication of viewing scientific inquiry as a collective enterprise is the reverse of the second—you must be committed to receiving comments from others. You must treat your colleagues as fair and honest critics even though it might sometimes feel otherwise. You must appreciate their job, which is to remain skeptical while scrutinizing what you have done in considerable detail. To provide the best help to you, they must remain skeptical about your conclusions (when, for example, the data are difficult for them to interpret) until you offer a convincing logical argument based on the information you share. A rather harsh but good-to-remember statement of the role of your friendly critics was voiced by Karl Popper, a well-known twentieth century philosopher of science: “. . . if you are interested in the problem which I tried to solve by my tentative assertion, you may help me by criticizing it as severely as you can” (Popper, 1968, p. 27).

A final implication of this third descriptor is that, as someone engaged in scientific inquiry, you have no choice but to update your thinking when the data support a different conclusion. This applies to your own data as well as to those of others. When data clearly point to a specific claim, even one that is quite different than you expected, you must reconsider your position. If the outcome is replicated multiple times, you need to adjust your thinking accordingly. Scientific inquiry does not let you pick and choose which data to believe; it mandates that everyone update their thinking when the data warrant an update.

Doing Scientific Inquiry

We define scientific inquiry in an operational sense—what does it mean to do scientific inquiry? What kind of process would satisfy all three descriptors: carefully planning an experience in advance; observing and trying to explain what you see; and, contributing to updating everyone’s thinking about an important phenomenon?

We define scientific inquiry as formulating , testing , and revising hypotheses about phenomena of interest.

Of course, we are not the only ones who define it in this way. The definition for the scientific method posted by the editors of Britannica is: “a researcher develops a hypothesis, tests it through various means, and then modifies the hypothesis on the basis of the outcome of the tests and experiments” (Britannica, n.d. ).

An image represents the scientific inquiry definition given by the editors of Britannica and also defines the hypothesis on the basis of the experiments.

Notice how defining scientific inquiry this way satisfies each of the descriptors. “Carefully planning an experience in advance” is exactly what happens when formulating a hypothesis about a phenomenon of interest and thinking about how to test it. “ Observing a phenomenon” occurs when testing a hypothesis, and “ explaining ” what is found is required when revising a hypothesis based on the data. Finally, “updating everyone’s thinking” comes from comparing publicly the original with the revised hypothesis.

Doing scientific inquiry, as we have defined it, underscores the value of accumulating knowledge rather than generating random bits of knowledge. Formulating, testing, and revising hypotheses is an ongoing process, with each revised hypothesis begging for another test, whether by the same researcher or by new researchers. The editors of Britannica signaled this cyclic process by adding the following phrase to their definition of the scientific method: “The modified hypothesis is then retested, further modified, and tested again.” Scientific inquiry creates a process that encourages each study to build on the studies that have gone before. Through collective engagement in this process of building study on top of study, the scientific community works together to update its thinking.

Before exploring more fully the meaning of “formulating, testing, and revising hypotheses,” we need to acknowledge that this is not the only way researchers define research. Some researchers prefer a less formal definition, one that includes more serendipity, less planning, less explanation. You might have come across more open definitions such as “research is finding out about something.” We prefer the tighter hypothesis formulation, testing, and revision definition because we believe it provides a single, coherent map for conducting research that addresses many of the thorny problems educational researchers encounter. We believe it is the most useful orientation toward research and the most helpful to learn as a beginning researcher.

A final clarification of our definition is that it applies equally to qualitative and quantitative research. This is a familiar distinction in education that has generated much discussion. You might think our definition favors quantitative methods over qualitative methods because the language of hypothesis formulation and testing is often associated with quantitative methods. In fact, we do not favor one method over another. In Chap. 4 , we will illustrate how our definition fits research using a range of quantitative and qualitative methods.

Exercise 1.4

Look for ways to extend what the field knows in an area that has already received attention by other researchers. Specifically, you can search for a program of research carried out by more experienced researchers that has some revised hypotheses that remain untested. Identify a revised hypothesis that you might like to test.

Unpacking the Terms Formulating, Testing, and Revising Hypotheses

To get a full sense of the definition of scientific inquiry we will use throughout this book, it is helpful to spend a little time with each of the key terms.

We first want to make clear that we use the term “hypothesis” as it is defined in most dictionaries and as it used in many scientific fields rather than as it is usually defined in educational statistics courses. By “hypothesis,” we do not mean a null hypothesis that is accepted or rejected by statistical analysis. Rather, we use “hypothesis” in the sense conveyed by the following definitions: “An idea or explanation for something that is based on known facts but has not yet been proved” (Cambridge University Press, n.d. ), and “An unproved theory, proposition, or supposition, tentatively accepted to explain certain facts and to provide a basis for further investigation or argument” (Agnes & Guralnik, 2008 ).

We distinguish two parts to “hypotheses.” Hypotheses consist of predictions and rationales . Predictions are statements about what you expect to find when you inquire about something. Rationales are explanations for why you made the predictions you did, why you believe your predictions are correct. So, for us “formulating hypotheses” means making explicit predictions and developing rationales for the predictions.

“Testing hypotheses” means making observations that allow you to assess in what ways your predictions were correct and in what ways they were incorrect. In education research, it is rarely useful to think of your predictions as either right or wrong. Because of the complexity of most issues you will investigate, most predictions will be right in some ways and wrong in others.

By studying the observations you make (data you collect) to test your hypotheses, you can revise your hypotheses to better align with the observations. This means revising your predictions plus revising your rationales to justify your adjusted predictions. Even though you might not run another test, formulating revised hypotheses is an essential part of conducting a research study. Comparing your original and revised hypotheses informs everyone of what you learned by conducting your study. In addition, a revised hypothesis sets the stage for you or someone else to extend your study and accumulate more knowledge of the phenomenon.

We should note that not everyone makes a clear distinction between predictions and rationales as two aspects of hypotheses. In fact, common, non-scientific uses of the word “hypothesis” may limit it to only a prediction or only an explanation (or rationale). We choose to explicitly include both prediction and rationale in our definition of hypothesis, not because we assert this should be the universal definition, but because we want to foreground the importance of both parts acting in concert. Using “hypothesis” to represent both prediction and rationale could hide the two aspects, but we make them explicit because they provide different kinds of information. It is usually easier to make predictions than develop rationales because predictions can be guesses, hunches, or gut feelings about which you have little confidence. Developing a compelling rationale requires careful thought plus reading what other researchers have found plus talking with your colleagues. Often, while you are developing your rationale you will find good reasons to change your predictions. Developing good rationales is the engine that drives scientific inquiry. Rationales are essentially descriptions of how much you know about the phenomenon you are studying. Throughout this guide, we will elaborate on how developing good rationales drives scientific inquiry. For now, we simply note that it can sharpen your predictions and help you to interpret your data as you test your hypotheses.

An image represents the rationale and the prediction for the scientific inquiry and different types of information provided by the terms.

Hypotheses in education research take a variety of forms or types. This is because there are a variety of phenomena that can be investigated. Investigating educational phenomena is sometimes best done using qualitative methods, sometimes using quantitative methods, and most often using mixed methods (e.g., Hay, 2016 ; Weis et al. 2019a ; Weisner, 2005 ). This means that, given our definition, hypotheses are equally applicable to qualitative and quantitative investigations.

Hypotheses take different forms when they are used to investigate different kinds of phenomena. Two very different activities in education could be labeled conducting experiments and descriptions. In an experiment, a hypothesis makes a prediction about anticipated changes, say the changes that occur when a treatment or intervention is applied. You might investigate how students’ thinking changes during a particular kind of instruction.

A second type of hypothesis, relevant for descriptive research, makes a prediction about what you will find when you investigate and describe the nature of a situation. The goal is to understand a situation as it exists rather than to understand a change from one situation to another. In this case, your prediction is what you expect to observe. Your rationale is the set of reasons for making this prediction; it is your current explanation for why the situation will look like it does.

You will probably read, if you have not already, that some researchers say you do not need a prediction to conduct a descriptive study. We will discuss this point of view in Chap. 2 . For now, we simply claim that scientific inquiry, as we have defined it, applies to all kinds of research studies. Descriptive studies, like others, not only benefit from formulating, testing, and revising hypotheses, but also need hypothesis formulating, testing, and revising.

One reason we define research as formulating, testing, and revising hypotheses is that if you think of research in this way you are less likely to go wrong. It is a useful guide for the entire process, as we will describe in detail in the chapters ahead. For example, as you build the rationale for your predictions, you are constructing the theoretical framework for your study (Chap. 3 ). As you work out the methods you will use to test your hypothesis, every decision you make will be based on asking, “Will this help me formulate or test or revise my hypothesis?” (Chap. 4 ). As you interpret the results of testing your predictions, you will compare them to what you predicted and examine the differences, focusing on how you must revise your hypotheses (Chap. 5 ). By anchoring the process to formulating, testing, and revising hypotheses, you will make smart decisions that yield a coherent and well-designed study.

Exercise 1.5

Compare the concept of formulating, testing, and revising hypotheses with the descriptions of scientific inquiry contained in Scientific Research in Education (NRC, 2002 ). How are they similar or different?

Exercise 1.6

Provide an example to illustrate and emphasize the differences between everyday learning/thinking and scientific inquiry.

Learning from Doing Scientific Inquiry

We noted earlier that a measure of what you have learned by conducting a research study is found in the differences between your original hypothesis and your revised hypothesis based on the data you collected to test your hypothesis. We will elaborate this statement in later chapters, but we preview our argument here.

Even before collecting data, scientific inquiry requires cycles of making a prediction, developing a rationale, refining your predictions, reading and studying more to strengthen your rationale, refining your predictions again, and so forth. And, even if you have run through several such cycles, you still will likely find that when you test your prediction you will be partly right and partly wrong. The results will support some parts of your predictions but not others, or the results will “kind of” support your predictions. A critical part of scientific inquiry is making sense of your results by interpreting them against your predictions. Carefully describing what aspects of your data supported your predictions, what aspects did not, and what data fell outside of any predictions is not an easy task, but you cannot learn from your study without doing this analysis.

An image represents the cycle of events that take place before making predictions, developing the rationale, and studying the prediction and rationale multiple times.

Analyzing the matches and mismatches between your predictions and your data allows you to formulate different rationales that would have accounted for more of the data. The best revised rationale is the one that accounts for the most data. Once you have revised your rationales, you can think about the predictions they best justify or explain. It is by comparing your original rationales to your new rationales that you can sort out what you learned from your study.

Suppose your study was an experiment. Maybe you were investigating the effects of a new instructional intervention on students’ learning. Your original rationale was your explanation for why the intervention would change the learning outcomes in a particular way. Your revised rationale explained why the changes that you observed occurred like they did and why your revised predictions are better. Maybe your original rationale focused on the potential of the activities if they were implemented in ideal ways and your revised rationale included the factors that are likely to affect how teachers implement them. By comparing the before and after rationales, you are describing what you learned—what you can explain now that you could not before. Another way of saying this is that you are describing how much more you understand now than before you conducted your study.

Revised predictions based on carefully planned and collected data usually exhibit some of the following features compared with the originals: more precision, more completeness, and broader scope. Revised rationales have more explanatory power and become more complete, more aligned with the new predictions, sharper, and overall more convincing.

Part II. Why Do Educators Do Research?

Doing scientific inquiry is a lot of work. Each phase of the process takes time, and you will often cycle back to improve earlier phases as you engage in later phases. Because of the significant effort required, you should make sure your study is worth it. So, from the beginning, you should think about the purpose of your study. Why do you want to do it? And, because research is a social practice, you should also think about whether the results of your study are likely to be important and significant to the education community.

If you are doing research in the way we have described—as scientific inquiry—then one purpose of your study is to understand , not just to describe or evaluate or report. As we noted earlier, when you formulate hypotheses, you are developing rationales that explain why things might be like they are. In our view, trying to understand and explain is what separates research from other kinds of activities, like evaluating or describing.

One reason understanding is so important is that it allows researchers to see how or why something works like it does. When you see how something works, you are better able to predict how it might work in other contexts, under other conditions. And, because conditions, or contextual factors, matter a lot in education, gaining insights into applying your findings to other contexts increases the contributions of your work and its importance to the broader education community.

Consequently, the purposes of research studies in education often include the more specific aim of identifying and understanding the conditions under which the phenomena being studied work like the observations suggest. A classic example of this kind of study in mathematics education was reported by William Brownell and Harold Moser in 1949 . They were trying to establish which method of subtracting whole numbers could be taught most effectively—the regrouping method or the equal additions method. However, they realized that effectiveness might depend on the conditions under which the methods were taught—“meaningfully” versus “mechanically.” So, they designed a study that crossed the two instructional approaches with the two different methods (regrouping and equal additions). Among other results, they found that these conditions did matter. The regrouping method was more effective under the meaningful condition than the mechanical condition, but the same was not true for the equal additions algorithm.

What do education researchers want to understand? In our view, the ultimate goal of education is to offer all students the best possible learning opportunities. So, we believe the ultimate purpose of scientific inquiry in education is to develop understanding that supports the improvement of learning opportunities for all students. We say “ultimate” because there are lots of issues that must be understood to improve learning opportunities for all students. Hypotheses about many aspects of education are connected, ultimately, to students’ learning. For example, formulating and testing a hypothesis that preservice teachers need to engage in particular kinds of activities in their coursework in order to teach particular topics well is, ultimately, connected to improving students’ learning opportunities. So is hypothesizing that school districts often devote relatively few resources to instructional leadership training or hypothesizing that positioning mathematics as a tool students can use to combat social injustice can help students see the relevance of mathematics to their lives.

We do not exclude the importance of research on educational issues more removed from improving students’ learning opportunities, but we do think the argument for their importance will be more difficult to make. If there is no way to imagine a connection between your hypothesis and improving learning opportunities for students, even a distant connection, we recommend you reconsider whether it is an important hypothesis within the education community.

Notice that we said the ultimate goal of education is to offer all students the best possible learning opportunities. For too long, educators have been satisfied with a goal of offering rich learning opportunities for lots of students, sometimes even for just the majority of students, but not necessarily for all students. Evaluations of success often are based on outcomes that show high averages. In other words, if many students have learned something, or even a smaller number have learned a lot, educators may have been satisfied. The problem is that there is usually a pattern in the groups of students who receive lower quality opportunities—students of color and students who live in poor areas, urban and rural. This is not acceptable. Consequently, we emphasize the premise that the purpose of education research is to offer rich learning opportunities to all students.

One way to make sure you will be able to convince others of the importance of your study is to consider investigating some aspect of teachers’ shared instructional problems. Historically, researchers in education have set their own research agendas, regardless of the problems teachers are facing in schools. It is increasingly recognized that teachers have had trouble applying to their own classrooms what researchers find. To address this problem, a researcher could partner with a teacher—better yet, a small group of teachers—and talk with them about instructional problems they all share. These discussions can create a rich pool of problems researchers can consider. If researchers pursued one of these problems (preferably alongside teachers), the connection to improving learning opportunities for all students could be direct and immediate. “Grounding a research question in instructional problems that are experienced across multiple teachers’ classrooms helps to ensure that the answer to the question will be of sufficient scope to be relevant and significant beyond the local context” (Cai et al., 2019b , p. 115).

As a beginning researcher, determining the relevance and importance of a research problem is especially challenging. We recommend talking with advisors, other experienced researchers, and peers to test the educational importance of possible research problems and topics of study. You will also learn much more about the issue of research importance when you read Chap. 5 .

Exercise 1.7

Identify a problem in education that is closely connected to improving learning opportunities and a problem that has a less close connection. For each problem, write a brief argument (like a logical sequence of if-then statements) that connects the problem to all students’ learning opportunities.

Part III. Conducting Research as a Practice of Failing Productively

Scientific inquiry involves formulating hypotheses about phenomena that are not fully understood—by you or anyone else. Even if you are able to inform your hypotheses with lots of knowledge that has already been accumulated, you are likely to find that your prediction is not entirely accurate. This is normal. Remember, scientific inquiry is a process of constantly updating your thinking. More and better information means revising your thinking, again, and again, and again. Because you never fully understand a complicated phenomenon and your hypotheses never produce completely accurate predictions, it is easy to believe you are somehow failing.

The trick is to fail upward, to fail to predict accurately in ways that inform your next hypothesis so you can make a better prediction. Some of the best-known researchers in education have been open and honest about the many times their predictions were wrong and, based on the results of their studies and those of others, they continuously updated their thinking and changed their hypotheses.

A striking example of publicly revising (actually reversing) hypotheses due to incorrect predictions is found in the work of Lee J. Cronbach, one of the most distinguished educational psychologists of the twentieth century. In 1955, Cronbach delivered his presidential address to the American Psychological Association. Titling it “Two Disciplines of Scientific Psychology,” Cronbach proposed a rapprochement between two research approaches—correlational studies that focused on individual differences and experimental studies that focused on instructional treatments controlling for individual differences. (We will examine different research approaches in Chap. 4 ). If these approaches could be brought together, reasoned Cronbach ( 1957 ), researchers could find interactions between individual characteristics and treatments (aptitude-treatment interactions or ATIs), fitting the best treatments to different individuals.

In 1975, after years of research by many researchers looking for ATIs, Cronbach acknowledged the evidence for simple, useful ATIs had not been found. Even when trying to find interactions between a few variables that could provide instructional guidance, the analysis, said Cronbach, creates “a hall of mirrors that extends to infinity, tormenting even the boldest investigators and defeating even ambitious designs” (Cronbach, 1975 , p. 119).

As he was reflecting back on his work, Cronbach ( 1986 ) recommended moving away from documenting instructional effects through statistical inference (an approach he had championed for much of his career) and toward approaches that probe the reasons for these effects, approaches that provide a “full account of events in a time, place, and context” (Cronbach, 1986 , p. 104). This is a remarkable change in hypotheses, a change based on data and made fully transparent. Cronbach understood the value of failing productively.

Closer to home, in a less dramatic example, one of us began a line of scientific inquiry into how to prepare elementary preservice teachers to teach early algebra. Teaching early algebra meant engaging elementary students in early forms of algebraic reasoning. Such reasoning should help them transition from arithmetic to algebra. To begin this line of inquiry, a set of activities for preservice teachers were developed. Even though the activities were based on well-supported hypotheses, they largely failed to engage preservice teachers as predicted because of unanticipated challenges the preservice teachers faced. To capitalize on this failure, follow-up studies were conducted, first to better understand elementary preservice teachers’ challenges with preparing to teach early algebra, and then to better support preservice teachers in navigating these challenges. In this example, the initial failure was a necessary step in the researchers’ scientific inquiry and furthered the researchers’ understanding of this issue.

We present another example of failing productively in Chap. 2 . That example emerges from recounting the history of a well-known research program in mathematics education.

Making mistakes is an inherent part of doing scientific research. Conducting a study is rarely a smooth path from beginning to end. We recommend that you keep the following things in mind as you begin a career of conducting research in education.

First, do not get discouraged when you make mistakes; do not fall into the trap of feeling like you are not capable of doing research because you make too many errors.

Second, learn from your mistakes. Do not ignore your mistakes or treat them as errors that you simply need to forget and move past. Mistakes are rich sites for learning—in research just as in other fields of study.

Third, by reflecting on your mistakes, you can learn to make better mistakes, mistakes that inform you about a productive next step. You will not be able to eliminate your mistakes, but you can set a goal of making better and better mistakes.

Exercise 1.8

How does scientific inquiry differ from everyday learning in giving you the tools to fail upward? You may find helpful perspectives on this question in other resources on science and scientific inquiry (e.g., Failure: Why Science is So Successful by Firestein, 2015).

Exercise 1.9

Use what you have learned in this chapter to write a new definition of scientific inquiry. Compare this definition with the one you wrote before reading this chapter. If you are reading this book as part of a course, compare your definition with your colleagues’ definitions. Develop a consensus definition with everyone in the course.

Part IV. Preview of Chap. 2

Now that you have a good idea of what research is, at least of what we believe research is, the next step is to think about how to actually begin doing research. This means how to begin formulating, testing, and revising hypotheses. As for all phases of scientific inquiry, there are lots of things to think about. Because it is critical to start well, we devote Chap. 2 to getting started with formulating hypotheses.

Agnes, M., & Guralnik, D. B. (Eds.). (2008). Hypothesis. In Webster’s new world college dictionary (4th ed.). Wiley.

Google Scholar  

Britannica. (n.d.). Scientific method. In Encyclopaedia Britannica . Retrieved July 15, 2022 from https://www.britannica.com/science/scientific-method

Brownell, W. A., & Moser, H. E. (1949). Meaningful vs. mechanical learning: A study in grade III subtraction . Duke University Press..

Cai, J., Morris, A., Hohensee, C., Hwang, S., Robison, V., Cirillo, M., Kramer, S. L., & Hiebert, J. (2019b). Posing significant research questions. Journal for Research in Mathematics Education, 50 (2), 114–120. https://doi.org/10.5951/jresematheduc.50.2.0114

Article   Google Scholar  

Cambridge University Press. (n.d.). Hypothesis. In Cambridge dictionary . Retrieved July 15, 2022 from https://dictionary.cambridge.org/us/dictionary/english/hypothesis

Cronbach, J. L. (1957). The two disciplines of scientific psychology. American Psychologist, 12 , 671–684.

Cronbach, L. J. (1975). Beyond the two disciplines of scientific psychology. American Psychologist, 30 , 116–127.

Cronbach, L. J. (1986). Social inquiry by and for earthlings. In D. W. Fiske & R. A. Shweder (Eds.), Metatheory in social science: Pluralisms and subjectivities (pp. 83–107). University of Chicago Press.

Hay, C. M. (Ed.). (2016). Methods that matter: Integrating mixed methods for more effective social science research . University of Chicago Press.

Merriam-Webster. (n.d.). Explain. In Merriam-Webster.com dictionary . Retrieved July 15, 2022, from https://www.merriam-webster.com/dictionary/explain

National Research Council. (2002). Scientific research in education . National Academy Press.

Weis, L., Eisenhart, M., Duncan, G. J., Albro, E., Bueschel, A. C., Cobb, P., Eccles, J., Mendenhall, R., Moss, P., Penuel, W., Ream, R. K., Rumbaut, R. G., Sloane, F., Weisner, T. S., & Wilson, J. (2019a). Mixed methods for studies that address broad and enduring issues in education research. Teachers College Record, 121 , 100307.

Weisner, T. S. (Ed.). (2005). Discovering successful pathways in children’s development: Mixed methods in the study of childhood and family life . University of Chicago Press.

Download references

Author information

Authors and affiliations.

School of Education, University of Delaware, Newark, DE, USA

James Hiebert, Anne K Morris & Charles Hohensee

Department of Mathematical Sciences, University of Delaware, Newark, DE, USA

Jinfa Cai & Stephen Hwang

You can also search for this author in PubMed   Google Scholar

Rights and permissions

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/ ), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

Reprints and permissions

Copyright information

© 2023 The Author(s)

About this chapter

Hiebert, J., Cai, J., Hwang, S., Morris, A.K., Hohensee, C. (2023). What Is Research, and Why Do People Do It?. In: Doing Research: A New Researcher’s Guide. Research in Mathematics Education. Springer, Cham. https://doi.org/10.1007/978-3-031-19078-0_1

Download citation

DOI : https://doi.org/10.1007/978-3-031-19078-0_1

Published : 03 December 2022

Publisher Name : Springer, Cham

Print ISBN : 978-3-031-19077-3

Online ISBN : 978-3-031-19078-0

eBook Packages : Education Education (R0)

Share this chapter

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Publish with us

Policies and ethics

  • Find a journal
  • Track your research

AOFIRS

  • Board Members
  • Management Team
  • Become a Contributor
  • Volunteer Opportunities
  • Code of Ethical Practices

KNOWLEDGE NETWORK

  • Search Engines List
  • Suggested Reading Library
  • Web Directories
  • Research Papers
  • Industry News

AOFIRS Knowledge Share Network

  • Become a Member
  • Associate Membership
  • Certified Membership
  • Membership Application
  • Corporate Application

Join Professional Group of Online Researchers

  • CIRS Certification Program
  • CIRS Certification Objectives
  • CIRS Certification Benefits
  • CIRS Certification Exam
  • Maintain Your Certification

Top Research Courses

  • Upcoming Events
  • Live Classes
  • Classes Schedule
  • Webinars Schedules

Online Research Training Program

  • Latest Articles
  • Internet Research
  • Search Techniques
  • Research Methods
  • Business Research
  • Search Engines
  • Research & Tools
  • Investigative Research
  • Internet Search
  • Work from Home
  • Internet Ethics
  • Internet Privacy

Six Reasons Why Research is Important

Importance of internet Research

Everyone conducts research in some form or another from a young age, whether news, books, or browsing the Internet. Internet users come across thoughts, ideas, or perspectives - the curiosity that drives the desire to explore. However, when research is essential to make practical decisions, the nature of the study alters - it all depends on its application and purpose. For instance, skilled research offered as a  research paper service  has a definite objective, and it is focused and organized. Professional research helps derive inferences and conclusions from solving problems. visit the HB tool services for the amazing research tools that will help to solve your problems regarding the research on any project.

What is the Importance of Research?

The primary goal of the research is to guide action, gather evidence for theories, and contribute to the growth of knowledge in data analysis. This article discusses the importance of research and the multiple reasons why it is beneficial to everyone, not just students and scientists.

On the other hand, research is important in business decision-making because it can assist in making better decisions when combined with their experience and intuition.

Reasons for the Importance of Research

  • Acquire Knowledge Effectively
  • Research helps in problem-solving
  • Provides the latest information
  • Builds credibility
  • Helps in business success
  • Discover and Seize opportunities

1-  Acquire Knowledge Efficiently through Research

The most apparent reason to conduct research is to understand more. Even if you think you know everything there is to know about a subject, there is always more to learn. Research helps you expand on any prior knowledge you have of the subject. The research process creates new opportunities for learning and progress.

2- Research Helps in Problem-solving

Problem-solving can be divided into several components, which require knowledge and analysis, for example,  identification of issues, cause identification,  identifying potential solutions, decision to take action, monitoring and evaluation of activity and outcomes.

You may just require additional knowledge to formulate an informed strategy and make an informed decision. When you know you've gathered reliable data, you'll be a lot more confident in your answer.

3- Research Provides the Latest Information

Research enables you to seek out the most up-to-date facts. There is always new knowledge and discoveries in various sectors, particularly scientific ones. Staying updated keeps you from falling behind and providing inaccurate or incomplete information. You'll be better prepared to discuss a topic and build on ideas if you have the most up-to-date information. With the help of tools and certifications such as CIRS , you may learn internet research skills quickly and easily. Internet research can provide instant, global access to information.

4- Research Builds Credibility

Research provides a solid basis for formulating thoughts and views. You can speak confidently about something you know to be true. It's much more difficult for someone to find flaws in your arguments after you've finished your tasks. In your study, you should prioritize the most reputable sources. Your research should focus on the most reliable sources. You won't be credible if your "research" comprises non-experts' opinions. People are more inclined to pay attention if your research is excellent.

5-  Research Helps in Business Success

R&D might also help you gain a competitive advantage. Finding ways to make things run more smoothly and differentiate a company's products from those of its competitors can help to increase a company's market worth.

6-  Research Discover and Seize Opportunities

People can maximize their potential and achieve their goals through various opportunities provided by research. These include getting jobs, scholarships, educational subsidies, projects, commercial collaboration, and budgeted travel. Research is essential for anyone looking for work or a change of environment. Unemployed people will have a better chance of finding potential employers through job advertisements or agencies. 

How to Improve Your Research Skills

Start with the big picture and work your way down.

It might be hard to figure out where to start when you start researching. There's nothing wrong with a simple internet search to get you started. Online resources like Google and Wikipedia are a great way to get a general idea of a subject, even though they aren't always correct. They usually give a basic overview with a short history and any important points.

Identify Reliable Source

Not every source is reliable, so it's critical that you can tell the difference between the good ones and the bad ones. To find a reliable source, use your analytical and critical thinking skills and ask yourself the following questions: Is this source consistent with other sources I've discovered? Is the author a subject matter expert? Is there a conflict of interest in the author's point of view on this topic?

Validate Information from Various Sources

Take in new information.

The purpose of research is to find answers to your questions, not back up what you already assume. Only looking for confirmation is a minimal way to research because it forces you to pick and choose what information you get and stops you from getting the most accurate picture of the subject. When you do research, keep an open mind to learn as much as possible.

Facilitates Learning Process

Learning new things and implementing them in daily life can be frustrating. Finding relevant and credible information requires specialized training and web search skills due to the sheer enormity of the Internet and the rapid growth of indexed web pages. On the other hand, short courses and Certifications like CIRS make the research process more accessible. CIRS Certification offers complete knowledge from beginner to expert level. You can become a Certified Professional Researcher and get a high-paying job, but you'll also be much more efficient and skilled at filtering out reliable data. You can learn more about becoming a Certified Professional Researcher.

Stay Organized

You'll see a lot of different material during the process of gathering data, from web pages to PDFs to videos. You must keep all of this information organized in some way so that you don't lose anything or forget to mention something properly. There are many ways to keep your research project organized, but here are a few of the most common:  Learning Management Software , Bookmarks in your browser, index cards, and a bibliography that you can add to as you go are all excellent tools for writing.

Make Use of the library's Resources

If you still have questions about researching, don't worry—even if you're not a student performing academic or course-related research, there are many resources available to assist you. Many high school and university libraries, in reality, provide resources not only for staff and students but also for the general public. Look for research guidelines or access to specific databases on the library's website. Association of Internet Research Specialists enjoys sharing informational content such as research-related articles , research papers , specialized search engines list compiled from various sources, and contributions from our members and in-house experts.

of Conducting Research

Latest from erin r. goodrich.

  • Enhancing Efficiency: The Role of Technology in Personal Injury Case Management
  • The Evolution and Future of Workplace Benefit Administration
  • Leveraging Local SEO Strategies for Small Business Growth

Live Classes Schedule

World's leading professional association of Internet Research Specialists - We deliver Knowledge, Education, Training, and Certification in the field of Professional Online Research. The AOFIRS is considered a major contributor in improving Web Search Skills and recognizes Online Research work as a full-time occupation for those that use the Internet as their primary source of information.

Get Exclusive Research Tips in Your Inbox

  • Privacy Policy
  • Terms & Conditions
  • Advertising Opportunities
  • Knowledge Network

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • J Pharmacol Pharmacother
  • v.4(2); Apr-Jun 2013

The critical steps for successful research: The research proposal and scientific writing: (A report on the pre-conference workshop held in conjunction with the 64 th annual conference of the Indian Pharmaceutical Congress-2012)

Pitchai balakumar.

Pharmacology Unit, Faculty of Pharmacy, AIMST University, Semeling, 08100 Bedong. Kedah Darul Aman, Malaysia

Mohammed Naseeruddin Inamdar

1 Department of Pharmacology, Al-Ameen College of Pharmacy, Bengaluru, Karnataka, India

Gowraganahalli Jagadeesh

2 Division of Cardiovascular and Renal Products, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, USA

An interactive workshop on ‘The Critical Steps for Successful Research: The Research Proposal and Scientific Writing’ was conducted in conjunction with the 64 th Annual Conference of the Indian Pharmaceutical Congress-2012 at Chennai, India. In essence, research is performed to enlighten our understanding of a contemporary issue relevant to the needs of society. To accomplish this, a researcher begins search for a novel topic based on purpose, creativity, critical thinking, and logic. This leads to the fundamental pieces of the research endeavor: Question, objective, hypothesis, experimental tools to test the hypothesis, methodology, and data analysis. When correctly performed, research should produce new knowledge. The four cornerstones of good research are the well-formulated protocol or proposal that is well executed, analyzed, discussed and concluded. This recent workshop educated researchers in the critical steps involved in the development of a scientific idea to its successful execution and eventual publication.

INTRODUCTION

Creativity and critical thinking are of particular importance in scientific research. Basically, research is original investigation undertaken to gain knowledge and understand concepts in major subject areas of specialization, and includes the generation of ideas and information leading to new or substantially improved scientific insights with relevance to the needs of society. Hence, the primary objective of research is to produce new knowledge. Research is both theoretical and empirical. It is theoretical because the starting point of scientific research is the conceptualization of a research topic and development of a research question and hypothesis. Research is empirical (practical) because all of the planned studies involve a series of observations, measurements, and analyses of data that are all based on proper experimental design.[ 1 – 9 ]

The subject of this report is to inform readers of the proceedings from a recent workshop organized by the 64 th Annual conference of the ‘ Indian Pharmaceutical Congress ’ at SRM University, Chennai, India, from 05 to 06 December 2012. The objectives of the workshop titled ‘The Critical Steps for Successful Research: The Research Proposal and Scientific Writing,’ were to assist participants in developing a strong fundamental understanding of how best to develop a research or study protocol, and communicate those research findings in a conference setting or scientific journal. Completing any research project requires meticulous planning, experimental design and execution, and compilation and publication of findings in the form of a research paper. All of these are often unfamiliar to naïve researchers; thus, the purpose of this workshop was to teach participants to master the critical steps involved in the development of an idea to its execution and eventual publication of the results (See the last section for a list of learning objectives).

THE STRUCTURE OF THE WORKSHOP

The two-day workshop was formatted to include key lectures and interactive breakout sessions that focused on protocol development in six subject areas of the pharmaceutical sciences. This was followed by sessions on scientific writing. DAY 1 taught the basic concepts of scientific research, including: (1) how to formulate a topic for research and to describe the what, why , and how of the protocol, (2) biomedical literature search and review, (3) study designs, statistical concepts, and result analyses, and (4) publication ethics. DAY 2 educated the attendees on the basic elements and logistics of writing a scientific paper and thesis, and preparation of poster as well as oral presentations.

The final phase of the workshop was the ‘Panel Discussion,’ including ‘Feedback/Comments’ by participants. There were thirteen distinguished speakers from India and abroad. Approximately 120 post-graduate and pre-doctoral students, young faculty members, and scientists representing industries attended the workshop from different parts of the country. All participants received a printed copy of the workshop manual and supporting materials on statistical analyses of data.

THE BASIC CONCEPTS OF RESEARCH: THE KEY TO GETTING STARTED IN RESEARCH

A research project generally comprises four key components: (1) writing a protocol, (2) performing experiments, (3) tabulating and analyzing data, and (4) writing a thesis or manuscript for publication.

Fundamentals in the research process

A protocol, whether experimental or clinical, serves as a navigator that evolves from a basic outline of the study plan to become a qualified research or grant proposal. It provides the structural support for the research. Dr. G. Jagadeesh (US FDA), the first speaker of the session, spoke on ‘ Fundamentals in research process and cornerstones of a research project .’ He discussed at length the developmental and structural processes in preparing a research protocol. A systematic and step-by-step approach is necessary in planning a study. Without a well-designed protocol, there would be a little chance for successful completion of a research project or an experiment.

Research topic

The first and the foremost difficult task in research is to identify a topic for investigation. The research topic is the keystone of the entire scientific enterprise. It begins the project, drives the entire study, and is crucial for moving the project forward. It dictates the remaining elements of the study [ Table 1 ] and thus, it should not be too narrow or too broad or unfocused. Because of these potential pitfalls, it is essential that a good or novel scientific idea be based on a sound concept. Creativity, critical thinking, and logic are required to generate new concepts and ideas in solving a research problem. Creativity involves critical thinking and is associated with generating many ideas. Critical thinking is analytical, judgmental, and involves evaluating choices before making a decision.[ 4 ] Thus, critical thinking is convergent type thinking that narrows and refines those divergent ideas and finally settles to one idea for an in-depth study. The idea on which a research project is built should be novel, appropriate to achieve within the existing conditions, and useful to the society at large. Therefore, creativity and critical thinking assist biomedical scientists in research that results in funding support, novel discovery, and publication.[ 1 , 4 ]

Elements of a study protocol

An external file that holds a picture, illustration, etc.
Object name is JPP-4-130-g001.jpg

Research question

The next most crucial aspect of a study protocol is identifying a research question. It should be a thought-provoking question. The question sets the framework. It emerges from the title, findings/results, and problems observed in previous studies. Thus, mastering the literature, attendance at conferences, and discussion in journal clubs/seminars are sources for developing research questions. Consider the following example in developing related research questions from the research topic.

Hepatoprotective activity of Terminalia arjuna and Apium graveolens on paracetamol-induced liver damage in albino rats.

How is paracetamol metabolized in the body? Does it involve P450 enzymes? How does paracetamol cause liver injury? What are the mechanisms by which drugs can alleviate liver damage? What biochemical parameters are indicative of liver injury? What major endogenous inflammatory molecules are involved in paracetamol-induced liver damage?

A research question is broken down into more precise objectives. The objectives lead to more precise methods and definition of key terms. The objectives should be SMART-Specific, Measurable, Achievable, Realistic, Time-framed,[ 10 ] and should cover the entire breadth of the project. The objectives are sometimes organized into hierarchies: Primary, secondary, and exploratory; or simply general and specific. Study the following example:

To evaluate the safety and tolerability of single oral doses of compound X in normal volunteers.

To assess the pharmacokinetic profile of compound X following single oral doses.

To evaluate the incidence of peripheral edema reported as an adverse event.

The objectives and research questions are then formulated into a workable or testable hypothesis. The latter forces us to think carefully about what comparisons will be needed to answer the research question, and establishes the format for applying statistical tests to interpret the results. The hypothesis should link a process to an existing or postulated biologic pathway. A hypothesis is written in a form that can yield measurable results. Studies that utilize statistics to compare groups of data should have a hypothesis. Consider the following example:

  • The hepatoprotective activity of Terminalia arjuna is superior to that of Apium graveolens against paracetamol-induced liver damage in albino rats.

All biological research, including discovery science, is hypothesis-driven. However, not all studies need be conducted with a hypothesis. For example, descriptive studies (e.g., describing characteristics of a plant, or a chemical compound) do not need a hypothesis.[ 1 ]

Relevance of the study

Another important section to be included in the protocol is ‘significance of the study.’ Its purpose is to justify the need for the research that is being proposed (e.g., development of a vaccine for a disease). In summary, the proposed study should demonstrate that it represents an advancement in understanding and that the eventual results will be meaningful, contribute to the field, and possibly even impact society.

Biomedical literature

A literature search may be defined as the process of examining published sources of information on a research or review topic, thesis, grant application, chemical, drug, disease, or clinical trial, etc. The quantity of information available in print or electronically (e.g., the internet) is immense and growing with time. A researcher should be familiar with the right kinds of databases and search engines to extract the needed information.[ 3 , 6 ]

Dr. P. Balakumar (Institute of Pharmacy, Rajendra Institute of Technology and Sciences, Sirsa, Haryana; currently, Faculty of Pharmacy, AIMST University, Malaysia) spoke on ‘ Biomedical literature: Searching, reviewing and referencing .’ He schematically explained the basis of scientific literature, designing a literature review, and searching literature. After an introduction to the genesis and diverse sources of scientific literature searches, the use of PubMed, one of the premier databases used for biomedical literature searches world-wide, was illustrated with examples and screenshots. Several companion databases and search engines are also used for finding information related to health sciences, and they include Embase, Web of Science, SciFinder, The Cochrane Library, International Pharmaceutical Abstracts, Scopus, and Google Scholar.[ 3 ] Literature searches using alternative interfaces for PubMed such as GoPubMed, Quertle, PubFocus, Pubget, and BibliMed were discussed. The participants were additionally informed of databases on chemistry, drugs and drug targets, clinical trials, toxicology, and laboratory animals (reviewed in ref[ 3 ]).

Referencing and bibliography are essential in scientific writing and publication.[ 7 ] Referencing systems are broadly classified into two major types, such as Parenthetical and Notation systems. Parenthetical referencing is also known as Harvard style of referencing, while Vancouver referencing style and ‘Footnote’ or ‘Endnote’ are placed under Notation referencing systems. The participants were educated on each referencing system with examples.

Bibliography management

Dr. Raj Rajasekaran (University of California at San Diego, CA, USA) enlightened the audience on ‘ bibliography management ’ using reference management software programs such as Reference Manager ® , Endnote ® , and Zotero ® for creating and formatting bibliographies while writing a manuscript for publication. The discussion focused on the use of bibliography management software in avoiding common mistakes such as incomplete references. Important steps in bibliography management, such as creating reference libraries/databases, searching for references using PubMed/Google scholar, selecting and transferring selected references into a library, inserting citations into a research article and formatting bibliographies, were presented. A demonstration of Zotero®, a freely available reference management program, included the salient features of the software, adding references from PubMed using PubMed ID, inserting citations and formatting using different styles.

Writing experimental protocols

The workshop systematically instructed the participants in writing ‘ experimental protocols ’ in six disciplines of Pharmaceutical Sciences.: (1) Pharmaceutical Chemistry (presented by Dr. P. V. Bharatam, NIPER, Mohali, Punjab); (2) Pharmacology (presented by Dr. G. Jagadeesh and Dr. P. Balakumar); (3) Pharmaceutics (presented by Dr. Jayant Khandare, Piramal Life Sciences, Mumbai); (4) Pharmacy Practice (presented by Dr. Shobha Hiremath, Al-Ameen College of Pharmacy, Bengaluru); (5) Pharmacognosy and Phytochemistry (presented by Dr. Salma Khanam, Al-Ameen College of Pharmacy, Bengaluru); and (6) Pharmaceutical Analysis (presented by Dr. Saranjit Singh, NIPER, Mohali, Punjab). The purpose of the research plan is to describe the what (Specific Aims/Objectives), why (Background and Significance), and how (Design and Methods) of the proposal.

The research plan should answer the following questions: (a) what do you intend to do; (b) what has already been done in general, and what have other researchers done in the field; (c) why is this worth doing; (d) how is it innovative; (e) what will this new work add to existing knowledge; and (f) how will the research be accomplished?

In general, the format used by the faculty in all subjects is shown in Table 2 .

Elements of a research protocol

An external file that holds a picture, illustration, etc.
Object name is JPP-4-130-g002.jpg

Biostatistics

Biostatistics is a key component of biomedical research. Highly reputed journals like The Lancet, BMJ, Journal of the American Medical Association, and many other biomedical journals include biostatisticians on their editorial board or reviewers list. This indicates that a great importance is given for learning and correctly employing appropriate statistical methods in biomedical research. The post-lunch session on day 1 of the workshop was largely committed to discussion on ‘ Basic biostatistics .’ Dr. R. Raveendran (JIPMER, Puducherry) and Dr. Avijit Hazra (PGIMER, Kolkata) reviewed, in parallel sessions, descriptive statistics, probability concepts, sample size calculation, choosing a statistical test, confidence intervals, hypothesis testing and ‘ P ’ values, parametric and non-parametric statistical tests, including analysis of variance (ANOVA), t tests, Chi-square test, type I and type II errors, correlation and regression, and summary statistics. This was followed by a practice and demonstration session. Statistics CD, compiled by Dr. Raveendran, was distributed to the participants before the session began and was demonstrated live. Both speakers worked on a variety of problems that involved both clinical and experimental data. They discussed through examples the experimental designs encountered in a variety of studies and statistical analyses performed for different types of data. For the benefit of readers, we have summarized statistical tests applied frequently for different experimental designs and post-hoc tests [ Figure 1 ].

An external file that holds a picture, illustration, etc.
Object name is JPP-4-130-g003.jpg

Conceptual framework for statistical analyses of data. Of the two kinds of variables, qualitative (categorical) and quantitative (numerical), qualitative variables (nominal or ordinal) are not normally distributed. Numerical data that come from normal distributions are analyzed using parametric tests, if not; the data are analyzed using non-parametric tests. The most popularly used Student's t -test compares the means of two populations, data for this test could be paired or unpaired. One-way analysis of variance (ANOVA) is used to compare the means of three or more independent populations that are normally distributed. Applying t test repeatedly in pair (multiple comparison), to compare the means of more than two populations, will increase the probability of type I error (false positive). In this case, for proper interpretation, we need to adjust the P values. Repeated measures ANOVA is used to compare the population means if more than two observations coming from same subject over time. The null hypothesis is rejected with a ‘ P ’ value of less than 0.05, and the difference in population means is considered to be statistically significant. Subsequently, appropriate post-hoc tests are used for pairwise comparisons of population means. Two-way or three-way ANOVA are considered if two (diet, dose) or three (diet, dose, strain) independent factors, respectively, are analyzed in an experiment (not described in the Figure). Categorical nominal unmatched variables (counts or frequencies) are analyzed by Chi-square test (not shown in the Figure)

Research and publication ethics

The legitimate pursuit of scientific creativity is unfortunately being marred by a simultaneous increase in scientific misconduct. A disproportionate share of allegations involves scientists of many countries, and even from respected laboratories. Misconduct destroys faith in science and scientists and creates a hierarchy of fraudsters. Investigating misconduct also steals valuable time and resources. In spite of these facts, most researchers are not aware of publication ethics.

Day 1 of the workshop ended with a presentation on ‘ research and publication ethics ’ by Dr. M. K. Unnikrishnan (College of Pharmaceutical Sciences, Manipal University, Manipal). He spoke on the essentials of publication ethics that included plagiarism (attempting to take credit of the work of others), self-plagiarism (multiple publications by an author on the same content of work with slightly different wordings), falsification (manipulation of research data and processes and omitting critical data or results), gift authorship (guest authorship), ghostwriting (someone other than the named author (s) makes a major contribution), salami publishing (publishing many papers, with minor differences, from the same study), and sabotage (distracting the research works of others to halt their research completion). Additionally, Dr. Unnikrishnan pointed out the ‘ Ingelfinger rule ’ of stipulating that a scientist must not submit the same original research in two different journals. He also advised the audience that authorship is not just credit for the work but also responsibility for scientific contents of a paper. Although some Indian Universities are instituting preventive measures (e.g., use of plagiarism detecting software, Shodhganga digital archiving of doctoral theses), Dr. Unnikrishnan argued for a great need to sensitize young researchers on the nature and implications of scientific misconduct. Finally, he discussed methods on how editors and peer reviewers should ethically conduct themselves while managing a manuscript for publication.

SCIENTIFIC COMMUNICATION: THE KEY TO SUCCESSFUL SELLING OF FINDINGS

Research outcomes are measured through quality publications. Scientists must not only ‘do’ science but must ‘write’ science. The story of the project must be told in a clear, simple language weaving in previous work done in the field, answering the research question, and addressing the hypothesis set forth at the beginning of the study. Scientific publication is an organic process of planning, researching, drafting, revising, and updating the current knowledge for future perspectives. Writing a research paper is no easier than the research itself. The lectures of Day 2 of the workshop dealt with the basic elements and logistics of writing a scientific paper.

An overview of paper structure and thesis writing

Dr. Amitabh Prakash (Adis, Auckland, New Zealand) spoke on ‘ Learning how to write a good scientific paper .’ His presentation described the essential components of an original research paper and thesis (e.g., introduction, methods, results, and discussion [IMRaD]) and provided guidance on the correct order, in which data should appear within these sections. The characteristics of a good abstract and title and the creation of appropriate key words were discussed. Dr. Prakash suggested that the ‘title of a paper’ might perhaps have a chance to make a good impression, and the title might be either indicative (title that gives the purpose of the study) or declarative (title that gives the study conclusion). He also suggested that an abstract is a succinct summary of a research paper, and it should be specific, clear, and concise, and should have IMRaD structure in brief, followed by key words. Selection of appropriate papers to be cited in the reference list was also discussed. Various unethical authorships were enumerated, and ‘The International Committee of Medical Journal Editors (ICMJE) criteria for authorship’ was explained ( http://www.icmje.org/ethical_1author.html ; also see Table 1 in reference #9). The session highlighted the need for transparency in medical publication and provided a clear description of items that needed to be included in the ‘Disclosures’ section (e.g., sources of funding for the study and potential conflicts of interest of all authors, etc.) and ‘Acknowledgements’ section (e.g., writing assistance and input from all individuals who did not meet the authorship criteria). The final part of the presentation was devoted to thesis writing, and Dr. Prakash provided the audience with a list of common mistakes that are frequently encountered when writing a manuscript.

The backbone of a study is description of results through Text, Tables, and Figures. Dr. S. B. Deshpande (Institute of Medical Sciences, Banaras Hindu University, Varanasi, India) spoke on ‘ Effective Presentation of Results .’ The Results section deals with the observations made by the authors and thus, is not hypothetical. This section is subdivided into three segments, that is, descriptive form of the Text, providing numerical data in Tables, and visualizing the observations in Graphs or Figures. All these are arranged in a sequential order to address the question hypothesized in the Introduction. The description in Text provides clear content of the findings highlighting the observations. It should not be the repetition of facts in tables or graphs. Tables are used to summarize or emphasize descriptive content in the text or to present the numerical data that are unrelated. Illustrations should be used when the evidence bearing on the conclusions of a paper cannot be adequately presented in a written description or in a Table. Tables or Figures should relate to each other logically in sequence and should be clear by themselves. Furthermore, the discussion is based entirely on these observations. Additionally, how the results are applied to further research in the field to advance our understanding of research questions was discussed.

Dr. Peush Sahni (All-India Institute of Medical Sciences, New Delhi) spoke on effectively ‘ structuring the Discussion ’ for a research paper. The Discussion section deals with a systematic interpretation of study results within the available knowledge. He said the section should begin with the most important point relating to the subject studied, focusing on key issues, providing link sentences between paragraphs, and ensuring the flow of text. Points were made to avoid history, not repeat all the results, and provide limitations of the study. The strengths and novel findings of the study should be provided in the discussion, and it should open avenues for future research and new questions. The Discussion section should end with a conclusion stating the summary of key findings. Dr. Sahni gave an example from a published paper for writing a Discussion. In another presentation titled ‘ Writing an effective title and the abstract ,’ Dr. Sahni described the important components of a good title, such as, it should be simple, concise, informative, interesting and eye-catching, accurate and specific about the paper's content, and should state the subject in full indicating study design and animal species. Dr. Sahni explained structured (IMRaD) and unstructured abstracts and discussed a few selected examples with the audience.

Language and style in publication

The next lecture of Dr. Amitabh Prakash on ‘ Language and style in scientific writing: Importance of terseness, shortness and clarity in writing ’ focused on the actual sentence construction, language, grammar and punctuation in scientific manuscripts. His presentation emphasized the importance of brevity and clarity in the writing of manuscripts describing biomedical research. Starting with a guide to the appropriate construction of sentences and paragraphs, attendees were given a brief overview of the correct use of punctuation with interactive examples. Dr. Prakash discussed common errors in grammar and proactively sought audience participation in correcting some examples. Additional discussion was centered on discouraging the use of redundant and expendable words, jargon, and the use of adjectives with incomparable words. The session ended with a discussion of words and phrases that are commonly misused (e.g., data vs . datum, affect vs . effect, among vs . between, dose vs . dosage, and efficacy/efficacious vs . effective/effectiveness) in biomedical research manuscripts.

Working with journals

The appropriateness in selecting the journal for submission and acceptance of the manuscript should be determined by the experience of an author. The corresponding author must have a rationale in choosing the appropriate journal, and this depends upon the scope of the study and the quality of work performed. Dr. Amitabh Prakash spoke on ‘ Working with journals: Selecting a journal, cover letter, peer review process and impact factor ’ by instructing the audience in assessing the true value of a journal, understanding principles involved in the peer review processes, providing tips on making an initial approach to the editorial office, and drafting an appropriate cover letter to accompany the submission. His presentation defined the metrics that are most commonly used to measure journal quality (e.g., impact factor™, Eigenfactor™ score, Article Influence™ score, SCOPUS 2-year citation data, SCImago Journal Rank, h-Index, etc.) and guided attendees on the relative advantages and disadvantages of using each metric. Factors to consider when assessing journal quality were discussed, and the audience was educated on the ‘green’ and ‘gold’ open access publication models. Various peer review models (e.g., double-blind, single-blind, non-blind) were described together with the role of the journal editor in assessing manuscripts and selecting suitable reviewers. A typical checklist sent to referees was shared with the attendees, and clear guidance was provided on the best way to address referee feedback. The session concluded with a discussion of the potential drawbacks of the current peer review system.

Poster and oral presentations at conferences

Posters have become an increasingly popular mode of presentation at conferences, as it can accommodate more papers per meeting, has no time constraint, provides a better presenter-audience interaction, and allows one to select and attend papers of interest. In Figure 2 , we provide instructions, design, and layout in preparing a scientific poster. In the final presentation, Dr. Sahni provided the audience with step-by-step instructions on how to write and format posters for layout, content, font size, color, and graphics. Attendees were given specific guidance on the format of text on slides, the use of color, font type and size, and the use of illustrations and multimedia effects. Moreover, the importance of practical tips while delivering oral or poster presentation was provided to the audience, such as speak slowly and clearly, be informative, maintain eye contact, and listen to the questions from judges/audience carefully before coming up with an answer.

An external file that holds a picture, illustration, etc.
Object name is JPP-4-130-g004.jpg

Guidelines and design to scientific poster presentation. The objective of scientific posters is to present laboratory work in scientific meetings. A poster is an excellent means of communicating scientific work, because it is a graphic representation of data. Posters should have focus points, and the intended message should be clearly conveyed through simple sections: Text, Tables, and Graphs. Posters should be clear, succinct, striking, and eye-catching. Colors should be used only where necessary. Use one font (Arial or Times New Roman) throughout. Fancy fonts should be avoided. All headings should have font size of 44, and be in bold capital letters. Size of Title may be a bit larger; subheading: Font size of 36, bold and caps. References and Acknowledgments, if any, should have font size of 24. Text should have font size between 24 and 30, in order to be legible from a distance of 3 to 6 feet. Do not use lengthy notes

PANEL DISCUSSION: FEEDBACK AND COMMENTS BY PARTICIPANTS

After all the presentations were made, Dr. Jagadeesh began a panel discussion that included all speakers. The discussion was aimed at what we do currently and could do in the future with respect to ‘developing a research question and then writing an effective thesis proposal/protocol followed by publication.’ Dr. Jagadeesh asked the following questions to the panelists, while receiving questions/suggestions from the participants and panelists.

  • Does a Post-Graduate or Ph.D. student receive adequate training, either through an institutional course, a workshop of the present nature, or from the guide?
  • Are these Post-Graduates self-taught (like most of us who learnt the hard way)?
  • How are these guides trained? How do we train them to become more efficient mentors?
  • Does a Post-Graduate or Ph.D. student struggle to find a method (s) to carry out studies? To what extent do seniors/guides help a post graduate overcome technical difficulties? How difficult is it for a student to find chemicals, reagents, instruments, and technical help in conducting studies?
  • Analyses of data and interpretation: Most students struggle without adequate guidance.
  • Thesis and publications frequently feature inadequate/incorrect statistical analyses and representation of data in tables/graphs. The student, their guide, and the reviewers all share equal responsibility.
  • Who initiates and drafts the research paper? The Post-Graduate or their guide?
  • What kind of assistance does a Post-Graduate get from the guide in finalizing a paper for publication?
  • Does the guide insist that each Post-Graduate thesis yield at least one paper, and each Ph.D. thesis more than two papers, plus a review article?

The panelists and audience expressed a variety of views, but were unable to arrive at a decisive conclusion.

WHAT HAVE THE PARTICIPANTS LEARNED?

At the end of this fast-moving two-day workshop, the participants had opportunities in learning the following topics:

  • Sequential steps in developing a study protocol, from choosing a research topic to developing research questions and a hypothesis.
  • Study protocols on different topics in their subject of specialization
  • Searching and reviewing the literature
  • Appropriate statistical analyses in biomedical research
  • Scientific ethics in publication
  • Writing and understanding the components of a research paper (IMRaD)
  • Recognizing the value of good title, running title, abstract, key words, etc
  • Importance of Tables and Figures in the Results section, and their importance in describing findings
  • Evidence-based Discussion in a research paper
  • Language and style in writing a paper and expert tips on getting it published
  • Presentation of research findings at a conference (oral and poster).

Overall, the workshop was deemed very helpful to participants. The participants rated the quality of workshop from “ satisfied ” to “ very satisfied .” A significant number of participants were of the opinion that the time allotted for each presentation was short and thus, be extended from the present two days to four days with adequate time to ask questions. In addition, a ‘hands-on’ session should be introduced for writing a proposal and manuscript. A large number of attendees expressed their desire to attend a similar workshop, if conducted, in the near future.

ACKNOWLEDGMENT

We gratefully express our gratitude to the Organizing Committee, especially Professors K. Chinnasamy, B. G. Shivananda, N. Udupa, Jerad Suresh, Padma Parekh, A. P. Basavarajappa, Mr. S. V. Veerramani, Mr. J. Jayaseelan, and all volunteers of the SRM University. We thank Dr. Thomas Papoian (US FDA) for helpful comments on the manuscript.

The opinions expressed herein are those of Gowraganahalli Jagadeesh and do not necessarily reflect those of the US Food and Drug Administration

Source of Support: Nil

Conflict of Interest: None declared.

significance of a research work

  • Translation

Writing the Significance of a Study

By charlesworth author services.

  • Charlesworth Author Services
  • 20 July, 2022

The significance of a study is its importance . It refers to the contribution(s) to and impact of the study on a research field. The significance also signals who benefits from the research findings and how.

Purpose of writing the significance of a study

A study’s significance should spark the interest of the reader. Researchers will be able to appreciate your work better when they understand the relevance and its (potential) impact. Peer reviewers also assess the significance of the work, which will influence the decision made (acceptance/rejection) on the manuscript. 

Sections in which the significance of the study is written

Introduction.

In the Introduction of your paper, the significance appears where you talk about the potential importance and impact of the study. It should flow naturally from the problem , aims and objectives, and rationale .

The significance is described in more detail in the concluding paragraph(s) of the Discussion or the dedicated Conclusions section. Here, you put the findings into perspective and outline the contributions of the findings in terms of implications and applications.

The significance may or may not appear in the abstract . When it does, it is written in the concluding lines of the abstract.

Significance vs. other introductory elements of your paper

In the Introduction…

  • The problem statement outlines the concern that needs to be addressed.
  • The research aim describes the purpose of the study.
  • The objectives indicate how that aim will be achieved.
  • The rationale explains why you are performing the study.
  • The significance tells the reader how the findings affect the topic/broad field. In other words, the significance is about how much the findings matter.

How to write the significance of the study

A good significance statement may be written in different ways. The approach to writing it also depends on the study area. In the arts and humanities , the significance statement might be longer and more descriptive. In applied sciences , it might be more direct.

a. Suggested sequence for writing the significance statement

  • Think of the gaps your study is setting out to address.
  • Look at your research from general and specific angles in terms of its (potential) contribution .
  • Once you have these points ready, start writing them, connecting them to your study as a whole.

b. Some ways to begin your statement(s) of significance

Here are some opening lines to build on:

  • The particular significance of this study lies in the… 
  • We argue that this study moves the field forward because…
  • This study makes some important contributions to…
  • Our findings deepen the current understanding about…

c. Don’ts of writing a significance statement

  • Don’t make it too long .
  • Don’t repeat any information that has been presented in other sections.
  • Don’t overstate or exaggerat e the importance; it should match your actual findings.

Example of significance of a study

Note the significance statements highlighted in the following fictional study.

Significance in the Introduction

The effects of Miyawaki forests on local biodiversity in urban housing complexes remain poorly understood. No formal studies on negative impacts on insect activity, populations or diversity have been undertaken thus far. In this study, we compared the effects that Miyawaki forests in urban dwellings have on local pollinator activity. The findings of this study will help improve the design of this afforestation technique in a way that balances local fauna, particularly pollinators, which are highly sensitive to microclimatic changes.

Significance in the Conclusion

[…] The findings provide valuable insights for guiding and informing Miyawaki afforestation in urban dwellings. We demonstrate that urban planning and landscaping policies need to consider potential declines.

A study’s significance usually appears at the end of the Introduction and in the Conclusion to describe the importance of the research findings. A strong and clear significance statement will pique the interest of readers, as well as that of relevant stakeholders.

Maximise your publication success with Charlesworth Author Services.

Charlesworth Author Services, a trusted brand supporting the world’s leading academic publishers, institutions and authors since 1928.

To know more about our services, visit: Our Services

Share with your colleagues

cwg logo

Scientific Editing Services

Sign up – stay updated.

We use cookies to offer you a personalized experience. By continuing to use this website, you consent to the use of cookies in accordance with our Cookie Policy.

Work Abroad

Study abroad.

  • Citizenship

Logo

Discover the world's research

  • 25+ million members
  • 160+ million publication pages
  • 2.3+ billion citations

Asmat Ismail

  • Anh Thanh Nguyet Le
  • Hien Thi Tran
  • Thao Thi Mai
  • Vy Phuong Vo
  • Recruit researchers
  • Join for free
  • Login Email Tip: Most researchers use their institutional email address as their ResearchGate login Password Forgot password? Keep me logged in Log in or Continue with Google Welcome back! Please log in. Email · Hint Tip: Most researchers use their institutional email address as their ResearchGate login Password Forgot password? Keep me logged in Log in or Continue with Google No account? Sign up

Significance of Research Process in Research Work

15 Pages Posted: 30 Mar 2021

Patna University

Date Written: March 29, 2021

Research process consists of a series of steps or actions required for effectively conducting research while formulating the research problem, extensive literature survey, developing hypothesis, preparing the research design, determining sample design, collecting data, execution of the project, analysis of data, hypothesis testing, generalization and interpretation, and preparation of the report or presentation of the results. Research encourages scientific and inductive thinking, besides promoting the development of logical habits of thinking and organisation. According to Clifford woody, research comprises defining and redefining problems, formulating hypothesis or suggested solutions collecting, organising and evaluating data, making deductions and reaching conclusions; to determine whether they fit the formulating hypothesis.

Keywords: Research, Classification, Design, Sampling, Hypothesis, Testing, Data Collection

Suggested Citation: Suggested Citation

Ajit Singh (Contact Author)

Patna university ( email ).

Ashok Rajpath Patna, Bihar 800005 India

Do you have a job opening that you would like to promote on SSRN?

Paper statistics, related ejournals, social sciences education ejournal.

Subscribe to this fee journal for more curated articles on this topic

Humanities Education eJournal

Educational administration & leadership ejournal, engineering & applied sciences education ejournal, educational impact & evaluation research ejournal.

Subscribe to this free journal for more curated articles on this topic

Education Research Negative Results eJournal

significance of a research work

Academic Integrity vs Academic Dishonesty: Types & Examples

academic dishonesty

Table of Contents

Academic integrity and honesty are foundational elements for academic and research work. It is not just the process of completing an academic assignment but how you approach it is equally important. Irrespective of the pressures of work and time or any other challenges, a student or researcher is expected to engage in their work in an ethical and honest manner . Students and researchers should, therefore, develop an understanding of what constitutes good academic practices early on in their academic journey. The unfamiliarity with what academic dishonesty means and its consequences can even unintentionally lead to engaging in such practices. These need to be avoided by students.  

What is academic integrity?  

Academic integrity is the act of being honest, fair, ethical, and responsible in your academic work while engaging with others’ work. This should be reflected in the choices and decisions you make in your work. 

What is academic dishonesty?  

Academic dishonesty or academic misconduct refers to any form of behavior aimed at cheating, gaining an unauthorized and unfair advantage, or using dubious measures in completing one’s scholarly work.  

Types of academic dishonesty   

Academic dishonesty can be of various types, and these are outlined below.  

  • Cheating: This is the unauthorized use of materials, sources, devices, or information for an academic activity for which academic credit is provided. Examples of cheating include copying another student’s test answers or assignments, unauthorized use of text, notes, or electronic devices while giving an exam, and so forth. There are also instances of contract cheating where test answers or essays are purchased to enable one to cheat. 
  • Plagiarism: if you use another person’s published or unpublished work without proper citations, thereby conveying that it’s your work, it amounts to plagiarism. This is irrespective of whether it is direct quotes from another person’s work or paraphrasing the same without proper credit. Such materials can include another person’s paper, oral works, ideas, music, or art. Hence, copying and pasting parts or the whole of written material or from an online source in the absence of full citation amounts to plagiarism. 
  •   Fabrication: if you alter or misrepresent the results from a lab experiment or in an academic document, it is termed as fabrication. For instance, if you artificially create data without actually collecting it or modify data in lab experiments to align with your arguments, these amount to the fabrication of data. 
  • Collusion: Sometimes, students work together on an assignment that requires individual work. The intention is to complete an academic activity through unfair means, benefitting a few individuals over others. For example, sharing answers among group members for online assessments or tests is a form of collusion. 
  • Sabotage: This involves causing intentional harm or disruption to another person’s work that prevents its successful completion. For instance, destroying another student’s or researcher’s experiment can be classified as sabotage.  
  • Facilitation of academic dishonesty: Allowing another student to copy your test answers is considered facilitating academic dishonesty. For example, by sharing exam answers with others during an exam, taking an exam, or completing an assignment for another student, a person is engaging in facilitating academic dishonesty. 

Consequences for academics if and when academic dishonesty is discovered in their work  

Most institutions have developed rules or handbooks establishing what constitutes academic dishonesty, preventive measures to be taken, consequences for academic dishonesty, and the importance of upholding academic integrity. Depending on the severity of the offense, the consequences can vary with university penalties from suspension and dismissal of the student to having to re-do the work with a reduced grade or receiving a failed grade. 

Academic integrity should be the foundational hallmark of every student. This aspect has to be embedded across all their study and research pursuits. As we have seen, any breach in this regard can affect and derail their academic and professional careers. Academic integrity has a significant impact across the academic sphere of individuals, the faculty, and the institutions with which they are affiliated, especially if the offense is grave. With the ever-evolving technology and artificial intelligence landscape to contend with, it is even more critical that a culture of academic honesty and integrity is actively ingrained in students.  

Paperpal is a comprehensive AI writing toolkit that helps students and researchers achieve 2x the writing in half the time. It leverages 21+ years of STM experience and insights from millions of research articles to provide in-depth academic writing, language editing, and submission readiness support to help you write better, faster.  

Get accurate academic translations, rewriting support, grammar checks, vocabulary suggestions, and generative AI assistance that delivers human precision at machine speed. Try for free or upgrade to Paperpal Prime starting at US$19 a month to access premium features, including consistency, plagiarism, and 30+ submission readiness checks to help you succeed.  

Experience the future of academic writing – Sign up to Paperpal and start writing for free!  

Related Reads:

  • Dangling Modifiers and How to Avoid Them in Your Writing 
  • 8 Most Effective Ways to Increase Motivation for Thesis Writing 
  • 6 Tips for Post-Doc Researchers to Take Their Career to the Next Level
  • Is It Ethical to Use AI-Generated Abstracts Without Altering It?

Dissertation Printing and Binding | Types & Comparison 

How paperpal enhances english writing quality and improves productivity for japanese academics, you may also like, the ai revolution: authors’ role in upholding academic..., the future of academia: how ai tools are..., how to write your research paper in apa..., five things authors need to know when using..., 7 best referencing tools and citation management software..., what’s the best chatgpt alternative for academic writing, addressing peer review feedback and mastering manuscript revisions..., what is the importance of a concept paper..., how to write a high-quality conference paper, how paperpal’s research feature helps you develop and....

What is Creative Research?

What is "creative" or "artistic" research how is it defined and evaluated how is it different from other kinds of research who participates and in what ways - and how are its impacts understood across various fields of inquiry.

After more than two decades of investigation, there is no singular definition of “creative research,” no prescribed or prevailing methodology for yielding practice-based research outcomes, and no universally applied or accepted methodology for assessing such outcomes. Nor do we think there should be.

photo from *this is not a drill* exhibit

We can all agree that any type of serious, thoughtful creative production is vital

But institutions need rubrics against which to assess outcomes. So, with the help of the Faculty Research Working Group, we have developed a working definition of creative research which centers inquiry while remaining as broad as possible:

Creative research is creative production that produces new knowledge through an interrogation/disruption of form vs. creative production that refines existing knowledge through an adaptation of convention. It is often characterized by innovation, sustained collaboration and inter/trans-disciplinary or hybrid praxis, challenging conventional rubrics of evaluation and assessment within traditional academic environments.

Image from The Fire Bird by Fernando Gregório

This is where Tisch can lead

Artists are natural adapters and translators in the work of interpretation and meaning-making, so we are uniquely qualified to create NEW research paradigms along with appropriate and rigorous methods of assessment. At the same time, because of Tisch's unique position as a professional arts-training school within an R1 university, any consideration of "artistic" or "creative research" always references the rigorous standards of the traditional scholarship also produced here.

photo from *this is not a drill* exhibit

The long-term challenge is two-fold

Over the long-term, Tisch will continue to refine its evaluative processes that reward innovation, collaboration, inter/trans-disciplinary and hybrid praxis. At the same time, we must continue to incentivize faculty and student work that is visionary and transcends the obstacles of convention.

As the research nexus for Tisch, our responsibility is to support the Tisch community as it embraces these challenges and continues to educate the next generation of global arts citizens.

More From Forbes

A psychologist explains how the ‘lion’s gate portal’ can benefit you.

  • Share to Facebook
  • Share to Twitter
  • Share to Linkedin

Days like 8/8 can benefit you regardless of your belief in them as they create the perfect storm of ... [+] positivity, placebo and manifestation practice.

Research has confirmed time and again that the gaps between psychological science and spirituality are wide. While one uses treatment modalities developed through scientific rigor, the other banks on faith, belief and optimism.

Paradoxically, however, psychological healing often intersects with spirituality in the realm of practice. “Manifestation” exercises such as meditation and chanting, positive visualization, journaling and affirmations are prescribed in both spaces regularly and are often rooted in gaining more knowledge of and control over the subconscious and unconscious mind.

Research published in 2023 also indicates that certain psychological constructs, like being in a “flow state,” mirror spiritual experiences. The study further argues that incorporating spirituality into your life may enhance self-understanding and potential through self-belief, a goal therapists often set for clients they treat.

All of this is to say that there are many paths that lead to a desired destination. Whether you are a realist with elaborate plans for the future or you’re a spiritual soul building a deeper connection with the universe, manifestation exercises can help you break substantial ground on the journey you’re already on.

And while there is no perfect time to start this journey, many swear by certain fated days, meant to be more powerful and “bountiful” than others. Today is supposed to be one such day, marking the opening of the “Lion’s Gate portal.” Here’s the lore behind the popular legend.

Today’s NYT Mini Crossword Clues And Answers For Wednesday, August 14

Starbucks ceo is tossed out like a poorly made latte, twisters and its marketing campaign storms the box office, the astrological tale behind lion’s gate portal.

Spiritual practitioners claim the eighth of August to be the day the universe supposedly opens a cosmic gateway known as the Lion’s Gate Portal. With Sirius rising and the Sun in Leo, believers claim this is a magical window for transformation and manifestation, as if the universe itself is conspiring to grant all wishes.

For those who believe the lore, it presents a tantalizing chance to harness the universe’s supposed powers. Whether it’s celestial truth or just a fanciful story lacking scientific or cosmic corroboration, the intent to start manifesting in your life is never unuseful. Regardless of these beliefs, manifestation can always help people achieve their best potential.

Why Does Manifestation Work Well With Spirituality?

While they may use vastly different language, construct different arguments and are trying to prove different things—spiritual healing and psychological healing often coincide when it comes to execution. Here’s a psychologist’s take on why manifestation works in both worlds:

  • The placebo effect of faith and positive outcomes. Research published in Philosophical Transactions of the Royal Society B suggests that belief systems, including spiritual practices, can impact physical health and well-being. Another study examining the Covid-19 pandemic found that patients with higher emotional, social, physical and spiritual resilience experienced less severe symptoms and recovered more quickly, illustrating how faith can influence outcomes through the placebo effect. And finally, in a 2020 article discussing the power of religious practices, psychiatrist Harold Koening notes: “Placebos have been used in medicine since antiquity and may have significantly improved health and quality of life when little was known about the causes of most illnesses. Many outcomes were likely due to the placebo effect, as available treatments were either unproven or later disproven.” In the same vein, practices like manifestation may rely on the placebo effect, where believing in positive outcomes creates a psychological environment that supports achieving those outcomes.
  • The powerful role of self-efficacy. Prolific researcher Albert Bandura's work on self-efficacy highlights the power of one’s belief in their own ability to succeed. When individuals engage in manifestation practices, spiritual or not, they are essentially boosting their self-efficacy—which can lead to better performance and greater resilience in the face of challenges. This helps in building a positive self-image and enhances strength to take righteous actions towards one's ambitions.
  • Principles of Cognitive Behavioral Therapy (CBT). CBT , a well-established psychological treatment modality, emphasizes the importance of changing negative thought patterns to improve mental health. Manifestation techniques, such as affirmations and visualization, align closely with CBT principles by encouraging individuals to focus on positive thoughts and outcomes, thereby reducing anxiety and self-sabotaging thoughts.

How You Can Harness The “Magic” Of Days Like 8/8

Whether ordained by the universe or not, there may not be a better time than now to channelize your mental and spiritual energy toward manifesting the goals you desire to achieve. Here’s why the efficacy of these tools can feel like magic:

  • Meditation and visualization. Meditation and visualization are powerful tools that help individuals focus their intentions and reduce stress. Research led by epidemiologists at West Virginia University shows that regular meditation can enhance cognitive function and emotional regulation.
  • Journaling. Writing down aspirations and goals can clarify intentions and create a tangible blueprint for success. Journaling has been shown to improve mental health by allowing individuals to process emotions and articulate their own thoughts.
  • Environmental enhancements. Creating a conducive environment for manifestation, such as lighting candles or using fragrances, can enhance mood and focus. Research published in Scientia Pharmaceutica suggests that certain olfactory stimulation can positively affect mood and cognitive function.
  • Affirmations. Repeating affirmations can reinforce positive beliefs and motivate individuals to pursue their goals. A 2015 study indicates that affirmations, when practiced consistently and spoken as if true, can improve performance and self-perception through a sense of achieving rewards.

While the myths surrounding events like the Lion’s Gate portal may blend astrological assumptions into daily life, the practice of manifestation itself holds significant psychological value at all times in life. The power of intention, belief and structured practice can have profound effects on cognitive health and personal growth. By understanding and harnessing these psychological techniques, individuals can achieve positive transformations, regardless of their spiritual beliefs.

Test your levels of spirituality by taking the science-backed Ego Dissolution Scale, here .

Mark Travers

  • Editorial Standards
  • Reprints & Permissions

Join The Conversation

One Community. Many Voices. Create a free account to share your thoughts. 

Forbes Community Guidelines

Our community is about connecting people through open and thoughtful conversations. We want our readers to share their views and exchange ideas and facts in a safe space.

In order to do so, please follow the posting rules in our site's  Terms of Service.   We've summarized some of those key rules below. Simply put, keep it civil.

Your post will be rejected if we notice that it seems to contain:

  • False or intentionally out-of-context or misleading information
  • Insults, profanity, incoherent, obscene or inflammatory language or threats of any kind
  • Attacks on the identity of other commenters or the article's author
  • Content that otherwise violates our site's  terms.

User accounts will be blocked if we notice or believe that users are engaged in:

  • Continuous attempts to re-post comments that have been previously moderated/rejected
  • Racist, sexist, homophobic or other discriminatory comments
  • Attempts or tactics that put the site security at risk
  • Actions that otherwise violate our site's  terms.

So, how can you be a power user?

  • Stay on topic and share your insights
  • Feel free to be clear and thoughtful to get your point across
  • ‘Like’ or ‘Dislike’ to show your point of view.
  • Protect your community.
  • Use the report tool to alert us when someone breaks the rules.

Thanks for reading our community guidelines. Please read the full list of posting rules found in our site's  Terms of Service.

Five decades after its birth in the basements of the Bronx, breaking is at the Olympic Games for the first time.

Ahead of the long awaited opening event in Paris, here’s all you need to get ready for the sport’s Olympic debut.

NBC Olympics Research contributed to this guide.

Origin story of breaking

Breaking originated in the Bronx, New York, in the early 1970s, after DJ Kool Herc (Clive Campbell), a Jamaican American DJ, noticed that young people tended to dance more energetically during the instrumental section (the "break") of a song. He pioneered the technique of mixing and producing a continuous danceable beat, or a "breakbeat". Campbell, commonly known simply as "Herc", emphasized the instrumental portion of a record, particularly the percussion and the bass, and his breaks helped form the basis of hip-hop music. The birth of hip-hop and breaking are closely intertwined, and hip-hop culture remains an integral part of breaking culture.

Using two turntables and a mixer, a 16-year-old Herc isolated the instrumental grooves from existing records, which he referred to as "the get down part" of the records. Herc and his younger sister Cindy hosted a "Back to School Jam" on Aug. 11, 1973, in the Bronx, where Herc debuted his new breaks drawn from James Brown's 1970 album "Sex Machine". Herc charged 25 cents for girls and 50 cents for boys who came to the party. "Once they heard that, there was no turning back," Herc said in 1998. "They always wanted to hear breaks after breaks after breaks."

Demand grew for Herc to host more parties and events, and he soon hosted a dance contest where the winning couple earned $25. He called the dancers break-boys and break-girls and coined the terms B-Boy and B-Girl, which are used today in breaking. Herc said that the term breaking was 1970s slang for "getting excited", "acting energetically", or "causing a disturbance."

Breaking began as toprock, performed standing up. By the mid-1970s, breakers incorporated freeze, in which they halted movement while balancing in a stylish or difficult position. By the early 1980s, downrock became a part of breaking, where breakers showcased their footwork with their bodies close to the floor. Early downrock was drawn from the Ukrainian Tropak dance. By 1983, a B-Boy named Powerful PEX, along with the New York City Breakers, added power moves, which are the most prominent, flashy and acrobatic moves that the sport is widely known for today. In the 1990s, Euro-style and Toronto-style downrocks added more complex moves to breaking. Toprock, downrock, power moves and freezes form the basis of breaking today.

Breaking spread through the New York City boroughs in the 1970s, popular especially among Black and Puerto Rican youths, and it gained exposure on television and in Hollywood movies in the 1980s, which helped it spread worldwide.

Competition history

The longest-running breaking competition in the world is Battle of the Year, which has been held annually since its debut in Germany in 1990 (it was then called the International Breakdance Cup). The World DanceSport Federation was officially recognized by the IOC in 1997, and the WDSF initially tried unsuccessfully to push other forms of dance into the Olympics. Then, seeing the appeal of breaking among younger fans, as well as its relatively low cost with few competitors needed, the WDSF succeeded in getting breaking added to the 2018 Youth Olympic program. After breaking was successful in 2018 in Buenos Aires, the sport was officially added to the Olympic program on Dec. 7, 2021, set to make its Olympic debut at the 2024 Paris Games. Breaking is not scheduled to be included on the Los Angeles 2028 Olympic program.

How does Olympic breaking work?

Sixteen men and 17 women will compete in Paris. In the women's event, the 16th- and 17th-seeded athletes will face each other in a pre-qualifier battle, with the winner advancing to the round robin and the loser being eliminated. The men's event begins immediately with the round robin. From that point on, the format is the same for both events.

Each battle in the round robin (which features four groups of four athletes each) consists of two rounds. A round robin battle can end in a 1-1 tie. After each breaker faces the other three athletes in their group once, breakers are ranked by number of rounds won, with the top two in each group advancing to the quarterfinals (the first tiebreaker is judges' votes collected, followed by pre-competition seeding).

In the quarterfinals, semifinals, and medal battles, each battle is a three-round one-on-one contest. The semifinal winners face off for gold, while the semifinal losers face each other for bronze.

How is Olympic breaking judged?

Nine judges score the battles on five criteria — technique, vocabulary, execution, musicality, and originality, which all constitute 20 percent of the total score. They make these judgments on a sliding scale to determine a winner, meaning that they judge each competitor relative to their opponent in each category rather than assigning them raw individual scores. So, for instance, if a judge deems two competitors evenly matched in technique, vocabulary and execution, but the first athlete has much better musicality and slightly worse originality, the 20% available in each category might be split 10/10 for the first three, 16/4 for musicality and 9/11 for originality, with the judge deeming the first athlete the overall winner with 55% of the total score (10+10+10+16+9 / 100). Whichever competitor is deemed the winner by the majority of judges wins the round.

Competitors do not know what music they will be dancing to in advance of the competition. Each round lasts approximately one minute (there is no explicit penalty for going too long or too short, but rounds are typically within 15 seconds of that guideline). When one breaker completes their round, their opponent goes immediately into their set. Judges promptly make their decisions after the conclusion of the set amount of rounds (two in the round robin, three for the rest of the competition).

Olympic breaking schedule

Breaking at the 2024 Paris Olympics
August 9 Women (B-Girl), Qualification
Women (B-Girl), Final
10a-12p
2p-4p
August 10 Men (B-Boy), Qualification
Men (B-Boy), Final
10a-12p
2p-4p

Where is Olympic breaking happening?

The breaking competitions will take place at La Concorde Urban Park in the heart of Paris. The public square will be temporarily transformed into a venue for multiple sports, and a space to highlight the cultures of Paris. The park will be a hub for the Summer Games, with areas for visitors to enjoy live DJs, sport demonstrations, dining areas and more.

Along with breaking, La Concorde Urban Park will be home to skateboarding, basketball 3x3 and BMX freestyle. 

A rendering of how the Place de la Concorde will look during the Olympic Games

Naming conventions

An important note on breaking names: In breaking, you will often see references to athletes with "B-Boy" or "B-Girl" in front of their names (ex. B-Boy Phil Wizard, B-Girl Logistx). However, while it is accurate to call Phil Wizard a B-Boy and Logistx a B-Girl, some athletes have said that they prefer not to have that moniker included as part of their breaking names, so it is NBC's style to honor that and call them by their breaking names: Phil Wizard , Logistx , Sunny , etc.

When you watch breaking, you might hear some unfamiliar terms, if you haven't watch before. Here's a quick-and-dirty guide:

Power head : A power head is someone who loves to practice and perform mostly power moves in their breaking. Power moves are acrobatic moves that require momentum, speed, endurance, strength, flexibility and control. The breaker is generally supported by their upper body, while the rest of their body creates circular momentum. 

Footwork cat : A footwork cat is someone who loves to practice and perform footwork in their breaking. This describes any movement on the floor with the hands supporting the dancer as much as the feet.

Popping : A continuous flexing of the muscles to the beat. Some moves include arm and body waves that look like an electric current has passed through the body.

Locking : Freezing from a fast movement and "locking" into a certain position, holding it, and then continuing at the same speed as before.

Headspin : In a headstand position, the breaker spins by pushing with their hands.

Heelspin : Breaker puts their weight on one heel and initiates a spin by swinging their leg.

Windmill : Breaker rotates continuously on one shoulder with their feet in the air and legs apart.

Backspin : Breaker balances weight on their upper back and goes into a spin by pushing with their hands or swinging the legs across the body.

Throw down : When the B-Girl or B-Boy hits the floor and starts breaking, they are doing a throw down. 

Set : A set is a breaker's prepared round or combination of moves.

Repeating : When a breaker reuses a move that they've already done during the competition, they are considered to have been "repeating." Twenty percent of a breaker's score is originality, and repeating can negatively impact that score. 

Bite/biter/biting : When a breaker is accused of 'biting' or being a 'biter,' it means that they have either stolen or copied moves/style from another breaker. Similar to "repeating," this can also affect a breaker's originality score.

Crashing : If a breaker 'crashes,' it means they failed an attempted move and fell during or at the end of their attempt. This may be the most common cause of a breaker losing a battle. The best breakers, however, know how to turn a crash into a move and can control the crash enough to continue their flow into something else.

Women's event: Who to watch for

Tops among medal contenders is 17- year-old  Dominika Banevic (“Nicka”) of Lithuania, who broke through to win the 2023 world title at age 16. While some of her challengers, such as  Ayumi Fukushima (“Ayumi”) of Japan and American Sunny Choi (“Sunny”) didn't start breaking until their early 20s, Nicka started breaking in her living room as a 5-year-old after discovering the sport on YouTube. That early start helped her develop an extremely well-rounded style.

Sunny, the 2019 world silver medalist and 2023 U.S. champion, quit her job as the Director of Global Creative Operations at skincare and makeup company Estee Lauder in January 2023 to focus on breaking full-time. She clinched a spot in the Olympics by winning the 2023 Pan American Games title.

Logan Edra (“Logistx”) , 2023 world quarterfinalist,   won the Red Bull BC One World Final in 2021 and finished second at the 2023 U.S. Championships. She earned the second and final U.S. women's Olympic spot at the Olympic Qualifier Series, which ended in June. Sunny and Logistx are both outside medal contenders. Logistx, born to Filipino parents in California, was given her breaking name by her father, who said she always needed a logistical plan for everything she did. 

Nicka defeated  Ayumi , a 42-year-old Japanese breaking legend, in the final at 2023 Worlds. Ayumi, the 2021 world champion, leads a strong Japanese contingent. Both legs of the Olympic Qualifier Series were Japanese podium sweeps, with Ayumi beating 2022 world champion  Ami Yuasa ("Ami") in the Shanghai final and Ami avenging the loss in the Budapest final, ensuring qualification for both as the top two finishers in the series.

Riko Tsuhako ("Riko") finished third in both events and was the only woman who finished top-10 in the series but failed to qualify. Ayumi and Ami are both solid medal contenders with a shot at gold. Ayumi came from humble beginnings in the sport, with her first battle coming as a 21-year-old against an elementary school girl.

Nicka may be challenged further by 2022 world runner-up  Liu Qingyi (“671”) of China and 2022 European and Red Bull BC One champion  India Sardjoe (“India”) of the Netherlands. 

French teenager Sya Dembele (“Syssy”) finished third at 2023 Worlds, and she has also emerged as a medal contender for the host nation.

Men's event: Who to watch for

Victor Montalvo (“Victor”)  is considered by many to be the most successful competitor in the sport's history, and he is the gold medal favorite. His 2023 world title (his second in three years) clinched his spot in the 2024 Paris Olympics. Victor got his start in the sport at age 6, following in the footsteps of his father, who was a B-Boy in Mexico. Victor's father was also a member of a death metal band in Mexico before he ultimately moved to the U.S. for better opportunities to raise a family.

Jeffrey Louis (“Jeffro”) , who lost to Victor in the 2022 World Games final, is the second U.S. man to qualify for breaking and is a medal contender. He enters Paris ranked No. 4 in the World DanceSport Federation rankings.

Philip Kim (“Phil Wizard”) defeated  Shigeyuki Nakarai (“Shigekix”) to win the 2022 world title, and he finished second to Victor at 2023 Worlds. Phil Wizard, who qualified for the Games with his 2023 Pan American Games title, is expected to be Victor’s top challenger for gold. Shigekix, a bronze medalist at the 2018 Youth Olympics, 2022 World Games, and 2023 World Championships, is close behind.

Danis Civil (“Dany Dann”) , 2022 European champion, is the top medal hope for the French. Dany Dann left his home country of French Guiana (in South America) in 2008 to further his breaking career in Paris. He married a B-Girl, Marion, and they worked as nurses in a hospital together before he began focusing on breaking full-time in the lead-up to the Games.

Another potential medal contender is 2021 Red Bull BC One World Final champion  Amir Zakirov ("Amir") of Kazakhstan.

Note: Some components of NBCOlympics.com may not be optimized for users browsing with Internet Explorer 11, 10 or older browsers or systems.

IMAGES

  1. PPT

    significance of a research work

  2. PPT

    significance of a research work

  3. (PDF) Significance of Research Process in Research Work

    significance of a research work

  4. Research

    significance of a research work

  5. How To Make Significance Of The Study In Research Paper

    significance of a research work

  6. Research Significance Example

    significance of a research work

COMMENTS

  1. What is the Significance of a Study? Examples and Guide

    Looking beyond writing impact statements within papers, sometimes you'll want to quantify the long term research significance of your work. For instance when applying for jobs. The most obvious measure of a study's long term research significance is the number of citations it receives from future publications.

  2. Significance of the Study

    Study on the Impact of Remote Work on Employee Productivity: Given the shift towards remote work due to recent events such as the COVID-19 pandemic, this study is of considerable significance.Findings could help organizations better structure their remote work policies and offer insights on how to maximize employee productivity, wellbeing, and job satisfaction.

  3. How To Write Significance of the Study (With Examples)

    4. Mention the Specific Persons or Institutions Who Will Benefit From Your Study. 5. Indicate How Your Study May Help Future Studies in the Field. Tips and Warnings. Significance of the Study Examples. Example 1: STEM-Related Research. Example 2: Business and Management-Related Research.

  4. How To Write a Significance Statement for Your Research

    A significance statement is an essential part of a research paper. It explains the importance and relevance of the study to the academic community and the world at large. ... or practical significance. Editors or reviewers in the social sciences might also evaluate your work's social or political significance. Statistical significance means ...

  5. What is the Significance of the Study?

    The significance of the study, also known as the rationale of the study, is important to convey to the reader why the research work was important. This may be an academic reviewer assessing your manuscript under peer-review, an examiner reading your PhD thesis, a funder reading your grant application or another research group reading your ...

  6. 7 Reasons Why Research Is Important

    Studies and Articles About the Importance of Research. In his article "Epistemology," Yale University's David Truncellito identifies three kinds of knowledge: procedural (competence or know-how), acquaintance (familiarity), and propositional (description of "a fact or a state of affairs").. Brain Research UK (formerly Brain Research Trust), a medical research charity based in the United ...

  7. How to Discuss the Significance of Your Research

    Step 1: The Research Problem. The problem statement can reveal clues about the outcome of your research. Your research should provide answers to the problem, which is beneficial to all those concerned. For example, imagine the problem statement is, "To what extent do elementary and high school teachers believe cyberbullying affects student ...

  8. The Why: Explaining the significance of your research

    In addition to the importance stated through the above examples, Leann Zarah offered 7 Reasons Why Research Is Important, as follows: A Tool for Building Knowledge and for Facilitating Learning. Means to Understand Various Issues and Increase Public Awareness. An Aid to Business Success.

  9. PDF Why research is important

    en research and learning. Experiential knowing, or 'knowing how', can be a valuable outcome of an inquiry process, but research always involves. ommunication with others. Learning can occur at an individual, intuitive level, but research requires the sym-bolisation and transmission of these understand.

  10. Significance of a Study: Revisiting the "So What" Question

    Signi cance of a study is established by making a case for. it, not by simply choosing hypotheses everyone already thinks are important. Although you might believe the signi cance of your study is ...

  11. Scope of the Research

    Scope of research refers to the range of topics, areas, and subjects that a research project intends to cover. It is the extent and limitations of the study, defining what is included and excluded in the research. The scope of a research project depends on various factors, such as the research questions, objectives, methodology, and available ...

  12. Q: What is significance of the study in research?

    Answer: In simple terms, the significance of the study is basically the importance of your research. The significance of a study must be stated in the Introduction section of your research paper. While stating the significance, you must highlight how your research will be beneficial to the development of science and the society in general.

  13. How to Write Significance of the Study in a Project Research ...

    Tips for writing the significance of the study. Reflect on the Problem Statement. When writing this section of your paper, first reflect on what contribution your research is making to your field, the gaps in knowledge in your research field, and why your work should be published. Your problem statement should be reflected in the introduction ...

  14. What is Research

    Research is the careful consideration of study regarding a particular concern or research problemusing scientific methods. According to the American sociologist Earl Robert Babbie, "research is a systematic inquiry to describe, explain, predict, and control the observed phenomenon. It involves inductive and deductive methods.".

  15. What Is Research, and Why Do People Do It?

    Abstractspiepr Abs1. Every day people do research as they gather information to learn about something of interest. In the scientific world, however, research means something different than simply gathering information. Scientific research is characterized by its careful planning and observing, by its relentless efforts to understand and explain ...

  16. Six Reasons Why Research Is Important

    2- Research Helps in Problem-solving. The goal of the research is to broaden our understanding. Research gives us the information and knowledge to solve problems and make decisions. To differentiate between research that attempts to advance our knowledge and research that seeks to apply pre-existing information to real-world situations.

  17. The critical steps for successful research: The research proposal and

    INTRODUCTION. Creativity and critical thinking are of particular importance in scientific research. Basically, research is original investigation undertaken to gain knowledge and understand concepts in major subject areas of specialization, and includes the generation of ideas and information leading to new or substantially improved scientific insights with relevance to the needs of society.

  18. Definition, Meaning, Objectives, and Significance of Research

    In general, research aims to expand our understanding of the world and to answer questions that are important to society. The objectives of the research are to identify new knowledge, establish facts, and test hypotheses, and to solve problems. Research also aims to provide evidence to support decisions and to improve understanding of a ...

  19. How to write the significance of a study?

    A study's significance usually appears at the end of the Introduction and in the Conclusion to describe the importance of the research findings. A strong and clear significance statement will pique the interest of readers, as well as that of relevant stakeholders. Maximise your publication success with Charlesworth Author Services.

  20. Significance of Research: Meaning, Importance & Examples

    The Significance of Research in the Development of New Technologies. The development of new technologies would not be possible without research. By definition, research is the systematic investigation into a particular subject to find new information or verify existing knowledge. ... With careful planning and hard work, anyone can be a ...

  21. The Role Of Research At Universities: Why It Matters

    Strength in research helps to define a university's "brand" in the national and international marketplace, impacting everything from student recruitment, to faculty retention, to attracting ...

  22. (PDF) Significance of Research Process in Research Work

    hypothesis or suggested so lutions collecting, organising and evaluating dat a, making deductions. and reaching conclusions; to determine whether they fi t the formulating hypothesis. According to ...

  23. Significance of Research Process in Research Work

    Abstract. Research process consists of a series of steps or actions required for effectively conducting research while formulating the research problem, extensive literature survey, developing hypothesis, preparing the research design, determining sample design, collecting data, execution of the project, analysis of data, hypothesis testing ...

  24. Academic Integrity vs Academic Dishonesty: Types & Examples

    Academic integrity and honesty are foundational elements for academic and research work. It is not just the process of completing an academic assignment but how you approach it is equally important. ... and the importance of upholding academic integrity. Depending on the severity of the offense, the consequences can vary with university ...

  25. What is Creative Research?

    At the same time, we must continue to incentivize faculty and student work that is visionary and transcends the obstacles of convention. As the research nexus for Tisch, our responsibility is to support the Tisch community as it embraces these challenges and continues to educate the next generation of global arts citizens.

  26. A Psychologist Explains How The 'Lion's Gate Portal' Can ...

    Research published in 2023 also indicates that certain psychological constructs, like being in a "flow state," mirror spiritual experiences. The study further argues that incorporating ...

  27. Unveiling Feature Importance in Methanol Reforming Systems through the

    This work leverages machine learning... There is a common challenge in the research of methanol reforming, as the development of new catalysts requires a significant amount of time and material costs. ... The prediction reveals the importance of some previously overlooked physical properties, as well as seven potential elements that were not ...

  28. A popular trading strategy just blew up in investors' faces

    Sometimes, markets tumble because of a big real-life event, like a pandemic or a war or a souring labor market. Sometimes, they fall because of less visible forces, like high-level financial ...

  29. CFP

    CALL FOR PAPERS DEADLINE: 13 SEPTEMBER 2024 This workshop is organized by the Asia Research Institute, National University of Singapore and the Qualification and Skill in the Migration Process of Foreign Workers in Asia (QuaMaFA) project funded by the Federal Ministry of Education and Research in Germany (BMBF). The meaning of 'skilled' or 'white-collar' work,

  30. Everything you need to know about breaking's Olympic debut

    NBC Olympics Research contributed to this guide. Origin story of breaking Breaking originated in the Bronx, New York, in the early 1970s, after DJ Kool Herc (Clive Campbell), a Jamaican American DJ, noticed that young people tended to dance more energetically during the instrumental section (the "break") of a song.