6.1 Solving Problems with Newton’s Laws

Learning objectives.

By the end of this section, you will be able to:

  • Apply problem-solving techniques to solve for quantities in more complex systems of forces
  • Use concepts from kinematics to solve problems using Newton’s laws of motion
  • Solve more complex equilibrium problems
  • Solve more complex acceleration problems
  • Apply calculus to more advanced dynamics problems

Success in problem solving is necessary to understand and apply physical principles. We developed a pattern of analyzing and setting up the solutions to problems involving Newton’s laws in Newton’s Laws of Motion ; in this chapter, we continue to discuss these strategies and apply a step-by-step process.

Problem-Solving Strategies

We follow here the basics of problem solving presented earlier in this text, but we emphasize specific strategies that are useful in applying Newton’s laws of motion . Once you identify the physical principles involved in the problem and determine that they include Newton’s laws of motion, you can apply these steps to find a solution. These techniques also reinforce concepts that are useful in many other areas of physics. Many problem-solving strategies are stated outright in the worked examples, so the following techniques should reinforce skills you have already begun to develop.

Problem-Solving Strategy

Applying newton’s laws of motion.

  • Identify the physical principles involved by listing the givens and the quantities to be calculated.
  • Sketch the situation, using arrows to represent all forces.
  • Determine the system of interest. The result is a free-body diagram that is essential to solving the problem.
  • Apply Newton’s second law to solve the problem. If necessary, apply appropriate kinematic equations from the chapter on motion along a straight line.
  • Check the solution to see whether it is reasonable.

Let’s apply this problem-solving strategy to the challenge of lifting a grand piano into a second-story apartment. Once we have determined that Newton’s laws of motion are involved (if the problem involves forces), it is particularly important to draw a careful sketch of the situation. Such a sketch is shown in Figure 6.2 (a). Then, as in Figure 6.2 (b), we can represent all forces with arrows. Whenever sufficient information exists, it is best to label these arrows carefully and make the length and direction of each correspond to the represented force.

As with most problems, we next need to identify what needs to be determined and what is known or can be inferred from the problem as stated, that is, make a list of knowns and unknowns. It is particularly crucial to identify the system of interest, since Newton’s second law involves only external forces. We can then determine which forces are external and which are internal, a necessary step to employ Newton’s second law. (See Figure 6.2 (c).) Newton’s third law may be used to identify whether forces are exerted between components of a system (internal) or between the system and something outside (external). As illustrated in Newton’s Laws of Motion , the system of interest depends on the question we need to answer. Only forces are shown in free-body diagrams, not acceleration or velocity. We have drawn several free-body diagrams in previous worked examples. Figure 6.2 (c) shows a free-body diagram for the system of interest. Note that no internal forces are shown in a free-body diagram.

Once a free-body diagram is drawn, we apply Newton’s second law. This is done in Figure 6.2 (d) for a particular situation. In general, once external forces are clearly identified in free-body diagrams, it should be a straightforward task to put them into equation form and solve for the unknown, as done in all previous examples. If the problem is one-dimensional—that is, if all forces are parallel—then the forces can be handled algebraically. If the problem is two-dimensional, then it must be broken down into a pair of one-dimensional problems. We do this by projecting the force vectors onto a set of axes chosen for convenience. As seen in previous examples, the choice of axes can simplify the problem. For example, when an incline is involved, a set of axes with one axis parallel to the incline and one perpendicular to it is most convenient. It is almost always convenient to make one axis parallel to the direction of motion, if this is known. Generally, just write Newton’s second law in components along the different directions. Then, you have the following equations:

(If, for example, the system is accelerating horizontally, then you can then set a y = 0 . a y = 0 . ) We need this information to determine unknown forces acting on a system.

As always, we must check the solution. In some cases, it is easy to tell whether the solution is reasonable. For example, it is reasonable to find that friction causes an object to slide down an incline more slowly than when no friction exists. In practice, intuition develops gradually through problem solving; with experience, it becomes progressively easier to judge whether an answer is reasonable. Another way to check a solution is to check the units. If we are solving for force and end up with units of millimeters per second, then we have made a mistake.

There are many interesting applications of Newton’s laws of motion, a few more of which are presented in this section. These serve also to illustrate some further subtleties of physics and to help build problem-solving skills. We look first at problems involving particle equilibrium, which make use of Newton’s first law, and then consider particle acceleration, which involves Newton’s second law.

Particle Equilibrium

Recall that a particle in equilibrium is one for which the external forces are balanced. Static equilibrium involves objects at rest, and dynamic equilibrium involves objects in motion without acceleration, but it is important to remember that these conditions are relative. For example, an object may be at rest when viewed from our frame of reference, but the same object would appear to be in motion when viewed by someone moving at a constant velocity. We now make use of the knowledge attained in Newton’s Laws of Motion , regarding the different types of forces and the use of free-body diagrams, to solve additional problems in particle equilibrium .

Example 6.1

Different tensions at different angles.

Thus, as you might expect,

This gives us the following relationship:

Note that T 1 T 1 and T 2 T 2 are not equal in this case because the angles on either side are not equal. It is reasonable that T 2 T 2 ends up being greater than T 1 T 1 because it is exerted more vertically than T 1 . T 1 .

Now consider the force components along the vertical or y -axis:

This implies

Substituting the expressions for the vertical components gives

There are two unknowns in this equation, but substituting the expression for T 2 T 2 in terms of T 1 T 1 reduces this to one equation with one unknown:

which yields

Solving this last equation gives the magnitude of T 1 T 1 to be

Finally, we find the magnitude of T 2 T 2 by using the relationship between them, T 2 = 1.225 T 1 T 2 = 1.225 T 1 , found above. Thus we obtain

Significance

Particle acceleration.

We have given a variety of examples of particles in equilibrium. We now turn our attention to particle acceleration problems, which are the result of a nonzero net force. Refer again to the steps given at the beginning of this section, and notice how they are applied to the following examples.

Example 6.2

Drag force on a barge.

The drag of the water F → D F → D is in the direction opposite to the direction of motion of the boat; this force thus works against F → app , F → app , as shown in the free-body diagram in Figure 6.4 (b). The system of interest here is the barge, since the forces on it are given as well as its acceleration. Because the applied forces are perpendicular, the x - and y -axes are in the same direction as F → 1 F → 1 and F → 2 . F → 2 . The problem quickly becomes a one-dimensional problem along the direction of F → app F → app , since friction is in the direction opposite to F → app . F → app . Our strategy is to find the magnitude and direction of the net applied force F → app F → app and then apply Newton’s second law to solve for the drag force F → D . F → D .

The angle is given by

From Newton’s first law, we know this is the same direction as the acceleration. We also know that F → D F → D is in the opposite direction of F → app , F → app , since it acts to slow down the acceleration. Therefore, the net external force is in the same direction as F → app , F → app , but its magnitude is slightly less than F → app . F → app . The problem is now one-dimensional. From the free-body diagram, we can see that

However, Newton’s second law states that

This can be solved for the magnitude of the drag force of the water F D F D in terms of known quantities:

Substituting known values gives

The direction of F → D F → D has already been determined to be in the direction opposite to F → app , F → app , or at an angle of 53 ° 53 ° south of west.

In Newton’s Laws of Motion , we discussed the normal force , which is a contact force that acts normal to the surface so that an object does not have an acceleration perpendicular to the surface. The bathroom scale is an excellent example of a normal force acting on a body. It provides a quantitative reading of how much it must push upward to support the weight of an object. But can you predict what you would see on the dial of a bathroom scale if you stood on it during an elevator ride? Will you see a value greater than your weight when the elevator starts up? What about when the elevator moves upward at a constant speed? Take a guess before reading the next example.

Example 6.3

What does the bathroom scale read in an elevator.

From the free-body diagram, we see that F → net = F → s − w → , F → net = F → s − w → , so we have

Solving for F s F s gives us an equation with only one unknown:

or, because w = m g , w = m g , simply

No assumptions were made about the acceleration, so this solution should be valid for a variety of accelerations in addition to those in this situation. ( Note: We are considering the case when the elevator is accelerating upward. If the elevator is accelerating downward, Newton’s second law becomes F s − w = − m a . F s − w = − m a . )

  • We have a = 1.20 m/s 2 , a = 1.20 m/s 2 , so that F s = ( 75.0 kg ) ( 9.80 m/s 2 ) + ( 75.0 kg ) ( 1.20 m/s 2 ) F s = ( 75.0 kg ) ( 9.80 m/s 2 ) + ( 75.0 kg ) ( 1.20 m/s 2 ) yielding F s = 825 N . F s = 825 N .
  • Now, what happens when the elevator reaches a constant upward velocity? Will the scale still read more than his weight? For any constant velocity—up, down, or stationary—acceleration is zero because a = Δ v Δ t a = Δ v Δ t and Δ v = 0 . Δ v = 0 . Thus, F s = m a + m g = 0 + m g F s = m a + m g = 0 + m g or F s = ( 75.0 kg ) ( 9.80 m/s 2 ) , F s = ( 75.0 kg ) ( 9.80 m/s 2 ) , which gives F s = 735 N . F s = 735 N .

Thus, the scale reading in the elevator is greater than his 735-N (165-lb.) weight. This means that the scale is pushing up on the person with a force greater than his weight, as it must in order to accelerate him upward. Clearly, the greater the acceleration of the elevator, the greater the scale reading, consistent with what you feel in rapidly accelerating versus slowly accelerating elevators. In Figure 6.5 (b), the scale reading is 735 N, which equals the person’s weight. This is the case whenever the elevator has a constant velocity—moving up, moving down, or stationary.

Check Your Understanding 6.1

Now calculate the scale reading when the elevator accelerates downward at a rate of 1.20 m/s 2 . 1.20 m/s 2 .

The solution to the previous example also applies to an elevator accelerating downward, as mentioned. When an elevator accelerates downward, a is negative, and the scale reading is less than the weight of the person. If a constant downward velocity is reached, the scale reading again becomes equal to the person’s weight. If the elevator is in free fall and accelerating downward at g , then the scale reading is zero and the person appears to be weightless.

Example 6.4

Two attached blocks.

For block 1: T → + w → 1 + N → = m 1 a → 1 T → + w → 1 + N → = m 1 a → 1

For block 2: T → + w → 2 = m 2 a → 2 . T → + w → 2 = m 2 a → 2 .

Notice that T → T → is the same for both blocks. Since the string and the pulley have negligible mass, and since there is no friction in the pulley, the tension is the same throughout the string. We can now write component equations for each block. All forces are either horizontal or vertical, so we can use the same horizontal/vertical coordinate system for both objects

When block 1 moves to the right, block 2 travels an equal distance downward; thus, a 1 x = − a 2 y . a 1 x = − a 2 y . Writing the common acceleration of the blocks as a = a 1 x = − a 2 y , a = a 1 x = − a 2 y , we now have

From these two equations, we can express a and T in terms of the masses m 1 and m 2 , and g : m 1 and m 2 , and g :

Check Your Understanding 6.2

Calculate the acceleration of the system, and the tension in the string, when the masses are m 1 = 5.00 kg m 1 = 5.00 kg and m 2 = 3.00 kg . m 2 = 3.00 kg .

Example 6.5

Atwood machine.

  • We have For m 1 , ∑ F y = T − m 1 g = m 1 a . For m 2 , ∑ F y = T − m 2 g = − m 2 a . For m 1 , ∑ F y = T − m 1 g = m 1 a . For m 2 , ∑ F y = T − m 2 g = − m 2 a . (The negative sign in front of m 2 a m 2 a indicates that m 2 m 2 accelerates downward; both blocks accelerate at the same rate, but in opposite directions.) Solve the two equations simultaneously (subtract them) and the result is ( m 2 − m 1 ) g = ( m 1 + m 2 ) a . ( m 2 − m 1 ) g = ( m 1 + m 2 ) a . Solving for a : a = m 2 − m 1 m 1 + m 2 g = 4 kg − 2 kg 4 kg + 2 kg ( 9.8 m/s 2 ) = 3.27 m/s 2 . a = m 2 − m 1 m 1 + m 2 g = 4 kg − 2 kg 4 kg + 2 kg ( 9.8 m/s 2 ) = 3.27 m/s 2 .
  • Observing the first block, we see that T − m 1 g = m 1 a T = m 1 ( g + a ) = ( 2 kg ) ( 9.8 m/s 2 + 3.27 m/s 2 ) = 26.1 N . T − m 1 g = m 1 a T = m 1 ( g + a ) = ( 2 kg ) ( 9.8 m/s 2 + 3.27 m/s 2 ) = 26.1 N .

Check Your Understanding 6.3

Determine a general formula in terms of m 1 , m 2 m 1 , m 2 and g for calculating the tension in the string for the Atwood machine shown above.

Newton’s Laws of Motion and Kinematics

Physics is most interesting and most powerful when applied to general situations that involve more than a narrow set of physical principles. Newton’s laws of motion can also be integrated with other concepts that have been discussed previously in this text to solve problems of motion. For example, forces produce accelerations, a topic of kinematics , and hence the relevance of earlier chapters.

When approaching problems that involve various types of forces, acceleration, velocity, and/or position, listing the givens and the quantities to be calculated will allow you to identify the principles involved. Then, you can refer to the chapters that deal with a particular topic and solve the problem using strategies outlined in the text. The following worked example illustrates how the problem-solving strategy given earlier in this chapter, as well as strategies presented in other chapters, is applied to an integrated concept problem.

Example 6.6

What force must a soccer player exert to reach top speed.

  • We are given the initial and final velocities (zero and 8.00 m/s forward); thus, the change in velocity is Δ v = 8.00 m/s Δ v = 8.00 m/s . We are given the elapsed time, so Δ t = 2.50 s . Δ t = 2.50 s . The unknown is acceleration, which can be found from its definition: a = Δ v Δ t . a = Δ v Δ t . Substituting the known values yields a = 8.00 m/s 2.50 s = 3.20 m/s 2 . a = 8.00 m/s 2.50 s = 3.20 m/s 2 .
  • Here we are asked to find the average force the ground exerts on the runner to produce this acceleration. (Remember that we are dealing with the force or forces acting on the object of interest.) This is the reaction force to that exerted by the player backward against the ground, by Newton’s third law. Neglecting air resistance, this would be equal in magnitude to the net external force on the player, since this force causes her acceleration. Since we now know the player’s acceleration and are given her mass, we can use Newton’s second law to find the force exerted. That is, F net = m a . F net = m a . Substituting the known values of m and a gives F net = ( 70.0 kg ) ( 3.20 m/s 2 ) = 224 N . F net = ( 70.0 kg ) ( 3.20 m/s 2 ) = 224 N .

This is a reasonable result: The acceleration is attainable for an athlete in good condition. The force is about 50 pounds, a reasonable average force.

Check Your Understanding 6.4

The soccer player stops after completing the play described above, but now notices that the ball is in position to be stolen. If she now experiences a force of 126 N to attempt to steal the ball, which is 2.00 m away from her, how long will it take her to get to the ball?

Example 6.7

What force acts on a model helicopter.

The magnitude of the force is now easily found:

Check Your Understanding 6.5

Find the direction of the resultant for the 1.50-kg model helicopter.

Example 6.8

Baggage tractor.

  • ∑ F x = m system a x ∑ F x = m system a x and ∑ F x = 820.0 t , ∑ F x = 820.0 t , so 820.0 t = ( 650.0 + 250.0 + 150.0 ) a a = 0.7809 t . 820.0 t = ( 650.0 + 250.0 + 150.0 ) a a = 0.7809 t . Since acceleration is a function of time, we can determine the velocity of the tractor by using a = d v d t a = d v d t with the initial condition that v 0 = 0 v 0 = 0 at t = 0 . t = 0 . We integrate from t = 0 t = 0 to t = 3 : t = 3 : d v = a d t , ∫ 0 3 d v = ∫ 0 3.00 a d t = ∫ 0 3.00 0.7809 t d t , v = 0.3905 t 2 ] 0 3.00 = 3.51 m/s . d v = a d t , ∫ 0 3 d v = ∫ 0 3.00 a d t = ∫ 0 3.00 0.7809 t d t , v = 0.3905 t 2 ] 0 3.00 = 3.51 m/s .
  • Refer to the free-body diagram in Figure 6.8 (b). ∑ F x = m tractor a x 820.0 t − T = m tractor ( 0.7805 ) t ( 820.0 ) ( 3.00 ) − T = ( 650.0 ) ( 0.7805 ) ( 3.00 ) T = 938 N . ∑ F x = m tractor a x 820.0 t − T = m tractor ( 0.7805 ) t ( 820.0 ) ( 3.00 ) − T = ( 650.0 ) ( 0.7805 ) ( 3.00 ) T = 938 N .

Recall that v = d s d t v = d s d t and a = d v d t a = d v d t . If acceleration is a function of time, we can use the calculus forms developed in Motion Along a Straight Line , as shown in this example. However, sometimes acceleration is a function of displacement. In this case, we can derive an important result from these calculus relations. Solving for dt in each, we have d t = d s v d t = d s v and d t = d v a . d t = d v a . Now, equating these expressions, we have d s v = d v a . d s v = d v a . We can rearrange this to obtain a d s = v d v . a d s = v d v .

Example 6.9

Motion of a projectile fired vertically.

The acceleration depends on v and is therefore variable. Since a = f ( v ) , a = f ( v ) , we can relate a to v using the rearrangement described above,

We replace ds with dy because we are dealing with the vertical direction,

We now separate the variables ( v ’s and dv ’s on one side; dy on the other):

Thus, h = 114 m . h = 114 m .

Check Your Understanding 6.6

If atmospheric resistance is neglected, find the maximum height for the mortar shell. Is calculus required for this solution?

Interactive

Explore the forces at work in this simulation when you try to push a filing cabinet. Create an applied force and see the resulting frictional force and total force acting on the cabinet. Charts show the forces, position, velocity, and acceleration vs. time. View a free-body diagram of all the forces (including gravitational and normal forces).

This book may not be used in the training of large language models or otherwise be ingested into large language models or generative AI offerings without OpenStax's permission.

Want to cite, share, or modify this book? This book uses the Creative Commons Attribution License and you must attribute OpenStax.

Access for free at https://openstax.org/books/university-physics-volume-1/pages/1-introduction
  • Authors: William Moebs, Samuel J. Ling, Jeff Sanny
  • Publisher/website: OpenStax
  • Book title: University Physics Volume 1
  • Publication date: Sep 19, 2016
  • Location: Houston, Texas
  • Book URL: https://openstax.org/books/university-physics-volume-1/pages/1-introduction
  • Section URL: https://openstax.org/books/university-physics-volume-1/pages/6-1-solving-problems-with-newtons-laws

© Jul 23, 2024 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution License . The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.

Status.net

What is Problem Solving? (Steps, Techniques, Examples)

By Status.net Editorial Team on May 7, 2023 — 5 minutes to read

What Is Problem Solving?

Definition and importance.

Problem solving is the process of finding solutions to obstacles or challenges you encounter in your life or work. It is a crucial skill that allows you to tackle complex situations, adapt to changes, and overcome difficulties with ease. Mastering this ability will contribute to both your personal and professional growth, leading to more successful outcomes and better decision-making.

Problem-Solving Steps

The problem-solving process typically includes the following steps:

  • Identify the issue : Recognize the problem that needs to be solved.
  • Analyze the situation : Examine the issue in depth, gather all relevant information, and consider any limitations or constraints that may be present.
  • Generate potential solutions : Brainstorm a list of possible solutions to the issue, without immediately judging or evaluating them.
  • Evaluate options : Weigh the pros and cons of each potential solution, considering factors such as feasibility, effectiveness, and potential risks.
  • Select the best solution : Choose the option that best addresses the problem and aligns with your objectives.
  • Implement the solution : Put the selected solution into action and monitor the results to ensure it resolves the issue.
  • Review and learn : Reflect on the problem-solving process, identify any improvements or adjustments that can be made, and apply these learnings to future situations.

Defining the Problem

To start tackling a problem, first, identify and understand it. Analyzing the issue thoroughly helps to clarify its scope and nature. Ask questions to gather information and consider the problem from various angles. Some strategies to define the problem include:

  • Brainstorming with others
  • Asking the 5 Ws and 1 H (Who, What, When, Where, Why, and How)
  • Analyzing cause and effect
  • Creating a problem statement

Generating Solutions

Once the problem is clearly understood, brainstorm possible solutions. Think creatively and keep an open mind, as well as considering lessons from past experiences. Consider:

  • Creating a list of potential ideas to solve the problem
  • Grouping and categorizing similar solutions
  • Prioritizing potential solutions based on feasibility, cost, and resources required
  • Involving others to share diverse opinions and inputs

Evaluating and Selecting Solutions

Evaluate each potential solution, weighing its pros and cons. To facilitate decision-making, use techniques such as:

  • SWOT analysis (Strengths, Weaknesses, Opportunities, Threats)
  • Decision-making matrices
  • Pros and cons lists
  • Risk assessments

After evaluating, choose the most suitable solution based on effectiveness, cost, and time constraints.

Implementing and Monitoring the Solution

Implement the chosen solution and monitor its progress. Key actions include:

  • Communicating the solution to relevant parties
  • Setting timelines and milestones
  • Assigning tasks and responsibilities
  • Monitoring the solution and making adjustments as necessary
  • Evaluating the effectiveness of the solution after implementation

Utilize feedback from stakeholders and consider potential improvements. Remember that problem-solving is an ongoing process that can always be refined and enhanced.

Problem-Solving Techniques

During each step, you may find it helpful to utilize various problem-solving techniques, such as:

  • Brainstorming : A free-flowing, open-minded session where ideas are generated and listed without judgment, to encourage creativity and innovative thinking.
  • Root cause analysis : A method that explores the underlying causes of a problem to find the most effective solution rather than addressing superficial symptoms.
  • SWOT analysis : A tool used to evaluate the strengths, weaknesses, opportunities, and threats related to a problem or decision, providing a comprehensive view of the situation.
  • Mind mapping : A visual technique that uses diagrams to organize and connect ideas, helping to identify patterns, relationships, and possible solutions.

Brainstorming

When facing a problem, start by conducting a brainstorming session. Gather your team and encourage an open discussion where everyone contributes ideas, no matter how outlandish they may seem. This helps you:

  • Generate a diverse range of solutions
  • Encourage all team members to participate
  • Foster creative thinking

When brainstorming, remember to:

  • Reserve judgment until the session is over
  • Encourage wild ideas
  • Combine and improve upon ideas

Root Cause Analysis

For effective problem-solving, identifying the root cause of the issue at hand is crucial. Try these methods:

  • 5 Whys : Ask “why” five times to get to the underlying cause.
  • Fishbone Diagram : Create a diagram representing the problem and break it down into categories of potential causes.
  • Pareto Analysis : Determine the few most significant causes underlying the majority of problems.

SWOT Analysis

SWOT analysis helps you examine the Strengths, Weaknesses, Opportunities, and Threats related to your problem. To perform a SWOT analysis:

  • List your problem’s strengths, such as relevant resources or strong partnerships.
  • Identify its weaknesses, such as knowledge gaps or limited resources.
  • Explore opportunities, like trends or new technologies, that could help solve the problem.
  • Recognize potential threats, like competition or regulatory barriers.

SWOT analysis aids in understanding the internal and external factors affecting the problem, which can help guide your solution.

Mind Mapping

A mind map is a visual representation of your problem and potential solutions. It enables you to organize information in a structured and intuitive manner. To create a mind map:

  • Write the problem in the center of a blank page.
  • Draw branches from the central problem to related sub-problems or contributing factors.
  • Add more branches to represent potential solutions or further ideas.

Mind mapping allows you to visually see connections between ideas and promotes creativity in problem-solving.

Examples of Problem Solving in Various Contexts

In the business world, you might encounter problems related to finances, operations, or communication. Applying problem-solving skills in these situations could look like:

  • Identifying areas of improvement in your company’s financial performance and implementing cost-saving measures
  • Resolving internal conflicts among team members by listening and understanding different perspectives, then proposing and negotiating solutions
  • Streamlining a process for better productivity by removing redundancies, automating tasks, or re-allocating resources

In educational contexts, problem-solving can be seen in various aspects, such as:

  • Addressing a gap in students’ understanding by employing diverse teaching methods to cater to different learning styles
  • Developing a strategy for successful time management to balance academic responsibilities and extracurricular activities
  • Seeking resources and support to provide equal opportunities for learners with special needs or disabilities

Everyday life is full of challenges that require problem-solving skills. Some examples include:

  • Overcoming a personal obstacle, such as improving your fitness level, by establishing achievable goals, measuring progress, and adjusting your approach accordingly
  • Navigating a new environment or city by researching your surroundings, asking for directions, or using technology like GPS to guide you
  • Dealing with a sudden change, like a change in your work schedule, by assessing the situation, identifying potential impacts, and adapting your plans to accommodate the change.
  • How to Resolve Employee Conflict at Work [Steps, Tips, Examples]
  • How to Write Inspiring Core Values? 5 Steps with Examples
  • 30 Employee Feedback Examples (Positive & Negative)

Top 20 Problem Solving Interview Questions (Example Answers Included)

Mike Simpson 0 Comments

problem solving examples with solutions pdf

By Mike Simpson

When candidates prepare for interviews, they usually focus on highlighting their leadership, communication, teamwork, and similar crucial soft skills . However, not everyone gets ready for problem-solving interview questions. And that can be a big mistake.

Problem-solving is relevant to nearly any job on the planet. Yes, it’s more prevalent in certain industries, but it’s helpful almost everywhere.

Regardless of the role you want to land, you may be asked to provide problem-solving examples or describe how you would deal with specific situations. That’s why being ready to showcase your problem-solving skills is so vital.

If you aren’t sure who to tackle problem-solving questions, don’t worry, we have your back. Come with us as we explore this exciting part of the interview process, as well as some problem-solving interview questions and example answers.

What Is Problem-Solving?

When you’re trying to land a position, there’s a good chance you’ll face some problem-solving interview questions. But what exactly is problem-solving? And why is it so important to hiring managers?

Well, the good folks at Merriam-Webster define problem-solving as “the process or act of finding a solution to a problem.” While that may seem like common sense, there’s a critical part to that definition that should catch your eye.

What part is that? The word “process.”

In the end, problem-solving is an activity. It’s your ability to take appropriate steps to find answers, determine how to proceed, or otherwise overcome the challenge.

Being great at it usually means having a range of helpful problem-solving skills and traits. Research, diligence, patience, attention-to-detail , collaboration… they can all play a role. So can analytical thinking , creativity, and open-mindedness.

But why do hiring managers worry about your problem-solving skills? Well, mainly, because every job comes with its fair share of problems.

While problem-solving is relevant to scientific, technical, legal, medical, and a whole slew of other careers. It helps you overcome challenges and deal with the unexpected. It plays a role in troubleshooting and innovation. That’s why it matters to hiring managers.

How to Answer Problem-Solving Interview Questions

Okay, before we get to our examples, let’s take a quick second to talk about strategy. Knowing how to answer problem-solving interview questions is crucial. Why? Because the hiring manager might ask you something that you don’t anticipate.

Problem-solving interview questions are all about seeing how you think. As a result, they can be a bit… unconventional.

These aren’t your run-of-the-mill job interview questions . Instead, they are tricky behavioral interview questions . After all, the goal is to find out how you approach problem-solving, so most are going to feature scenarios, brainteasers, or something similar.

So, having a great strategy means knowing how to deal with behavioral questions. Luckily, there are a couple of tools that can help.

First, when it comes to the classic approach to behavioral interview questions, look no further than the STAR Method . With the STAR method, you learn how to turn your answers into captivating stories. This makes your responses tons more engaging, ensuring you keep the hiring manager’s attention from beginning to end.

Now, should you stop with the STAR Method? Of course not. If you want to take your answers to the next level, spend some time with the Tailoring Method , too.

With the Tailoring Method, it’s all about relevance. So, if you get a chance to choose an example that demonstrates your problem-solving skills, this is really the way to go.

We also wanted to let you know that we created an amazing free cheat sheet that will give you word-for-word answers for some of the toughest interview questions you are going to face in your upcoming interview. After all, hiring managers will often ask you more generalized interview questions!

Click below to get your free PDF now:

Get Our Job Interview Questions & Answers Cheat Sheet!

FREE BONUS PDF CHEAT SHEET: Get our " Job Interview Questions & Answers PDF Cheat Sheet " that gives you " word-word sample answers to the most common job interview questions you'll face at your next interview .

CLICK HERE TO GET THE JOB INTERVIEW QUESTIONS CHEAT SHEET

Top 3 Problem-Solving-Based Interview Questions

Alright, here is what you’ve been waiting for: the problem-solving questions and sample answers.

While many questions in this category are job-specific, these tend to apply to nearly any job. That means there’s a good chance you’ll come across them at some point in your career, making them a great starting point when you’re practicing for an interview.

So, let’s dive in, shall we? Here’s a look at the top three problem-solving interview questions and example responses.

1. Can you tell me about a time when you had to solve a challenging problem?

In the land of problem-solving questions, this one might be your best-case scenario. It lets you choose your own problem-solving examples to highlight, putting you in complete control.

When you choose an example, go with one that is relevant to what you’ll face in the role. The closer the match, the better the answer is in the eyes of the hiring manager.

EXAMPLE ANSWER:

“While working as a mobile telecom support specialist for a large organization, we had to transition our MDM service from one vendor to another within 45 days. This personally physically handling 500 devices within the agency. Devices had to be gathered from the headquarters and satellite offices, which were located all across the state, something that was challenging even without the tight deadline. I approached the situation by identifying the location assignment of all personnel within the organization, enabling me to estimate transit times for receiving the devices. Next, I timed out how many devices I could personally update in a day. Together, this allowed me to create a general timeline. After that, I coordinated with each location, both expressing the urgency of adhering to deadlines and scheduling bulk shipping options. While there were occasional bouts of resistance, I worked with location leaders to calm concerns and facilitate action. While performing all of the updates was daunting, my approach to organizing the event made it a success. Ultimately, the entire transition was finished five days before the deadline, exceeding the expectations of many.”

2. Describe a time where you made a mistake. What did you do to fix it?

While this might not look like it’s based on problem-solving on the surface, it actually is. When you make a mistake, it creates a challenge, one you have to work your way through. At a minimum, it’s an opportunity to highlight problem-solving skills, even if you don’t address the topic directly.

When you choose an example, you want to go with a situation where the end was positive. However, the issue still has to be significant, causing something negative to happen in the moment that you, ideally, overcame.

“When I first began in a supervisory role, I had trouble setting down my individual contributor hat. I tried to keep up with my past duties while also taking on the responsibilities of my new role. As a result, I began rushing and introduced an error into the code of the software my team was updating. The error led to a memory leak. We became aware of the issue when the performance was hindered, though we didn’t immediately know the cause. I dove back into the code, reviewing recent changes, and, ultimately, determined the issue was a mistake on my end. When I made that discovery, I took several steps. First, I let my team know that the error was mine and let them know its nature. Second, I worked with my team to correct the issue, resolving the memory leak. Finally, I took this as a lesson about delegation. I began assigning work to my team more effectively, a move that allowed me to excel as a manager and help them thrive as contributors. It was a crucial learning moment, one that I have valued every day since.”

3. If you identify a potential risk in a project, what steps do you take to prevent it?

Yes, this is also a problem-solving question. The difference is, with this one, it’s not about fixing an issue; it’s about stopping it from happening. Still, you use problem-solving skills along the way, so it falls in this question category.

If you can, use an example of a moment when you mitigated risk in the past. If you haven’t had that opportunity, approach it theoretically, discussing the steps you would take to prevent an issue from developing.

“If I identify a potential risk in a project, my first step is to assess the various factors that could lead to a poor outcome. Prevention requires analysis. Ensuring I fully understand what can trigger the undesired event creates the right foundation, allowing me to figure out how to reduce the likelihood of those events occurring. Once I have the right level of understanding, I come up with a mitigation plan. Exactly what this includes varies depending on the nature of the issue, though it usually involves various steps and checks designed to monitor the project as it progresses to spot paths that may make the problem more likely to happen. I find this approach effective as it combines knowledge and ongoing vigilance. That way, if the project begins to head into risky territory, I can correct its trajectory.”

17 More Problem-Solving-Based Interview Questions

In the world of problem-solving questions, some apply to a wide range of jobs, while others are more niche. For example, customer service reps and IT helpdesk professionals both encounter challenges, but not usually the same kind.

As a result, some of the questions in this list may be more relevant to certain careers than others. However, they all give you insights into what this kind of question looks like, making them worth reviewing.

Here are 17 more problem-solving interview questions you might face off against during your job search:

  • How would you describe your problem-solving skills?
  • Can you tell me about a time when you had to use creativity to deal with an obstacle?
  • Describe a time when you discovered an unmet customer need while assisting a customer and found a way to meet it.
  • If you were faced with an upset customer, how would you diffuse the situation?
  • Tell me about a time when you had to troubleshoot a complex issue.
  • Imagine you were overseeing a project and needed a particular item. You have two choices of vendors: one that can deliver on time but would be over budget, and one that’s under budget but would deliver one week later than you need it. How do you figure out which approach to use?
  • Your manager wants to upgrade a tool you regularly use for your job and wants your recommendation. How do you formulate one?
  • A supplier has said that an item you need for a project isn’t going to be delivered as scheduled, something that would cause your project to fall behind schedule. What do you do to try and keep the timeline on target?
  • Can you share an example of a moment where you encountered a unique problem you and your colleagues had never seen before? How did you figure out what to do?
  • Imagine you were scheduled to give a presentation with a colleague, and your colleague called in sick right before it was set to begin. What would you do?
  • If you are given two urgent tasks from different members of the leadership team, both with the same tight deadline, how do you choose which to tackle first?
  • Tell me about a time you and a colleague didn’t see eye-to-eye. How did you decide what to do?
  • Describe your troubleshooting process.
  • Tell me about a time where there was a problem that you weren’t able to solve. What happened?
  • In your opening, what skills or traits make a person an exceptional problem-solver?
  • When you face a problem that requires action, do you usually jump in or take a moment to carefully assess the situation?
  • When you encounter a new problem you’ve never seen before, what is the first step that you take?

Putting It All Together

At this point, you should have a solid idea of how to approach problem-solving interview questions. Use the tips above to your advantage. That way, you can thrive during your next interview.

FREE : Job Interview Questions & Answers PDF Cheat Sheet!

Download our " Job Interview Questions & Answers PDF Cheat Sheet " that gives you word-for-word sample answers to some of the most common interview questions including:

  • What Is Your Greatest Weakness?
  • What Is Your Greatest Strength?
  • Tell Me About Yourself
  • Why Should We Hire You?

Click Here To Get The Job Interview Questions & Answers Cheat Sheet

problem solving examples with solutions pdf

Co-Founder and CEO of TheInterviewGuys.com. Mike is a job interview and career expert and the head writer at TheInterviewGuys.com.

His advice and insights have been shared and featured by publications such as Forbes , Entrepreneur , CNBC and more as well as educational institutions such as the University of Michigan , Penn State , Northeastern and others.

Learn more about The Interview Guys on our About Us page .

About The Author

Mike simpson.

' src=

Co-Founder and CEO of TheInterviewGuys.com. Mike is a job interview and career expert and the head writer at TheInterviewGuys.com. His advice and insights have been shared and featured by publications such as Forbes , Entrepreneur , CNBC and more as well as educational institutions such as the University of Michigan , Penn State , Northeastern and others. Learn more about The Interview Guys on our About Us page .

Copyright © 2024 · TheInterviewguys.com · All Rights Reserved

  • Our Products
  • Case Studies
  • Interview Questions
  • Jobs Articles
  • Members Login

problem solving examples with solutions pdf

IMAGES

  1. 4+ Business Problem Solving Proposal Templates

    problem solving examples with solutions pdf

  2. Problem Solving Steps Pdf

    problem solving examples with solutions pdf

  3. Problem-Solving Steps

    problem solving examples with solutions pdf

  4. DBT Problem Solving Worksheet Editable Fillable Printable PDF

    problem solving examples with solutions pdf

  5. Sample Problem Solving In Math

    problem solving examples with solutions pdf

  6. 5 Step Problem Solving Process

    problem solving examples with solutions pdf

COMMENTS

  1. PDF 3000 Solved Problems in Calculus

    The printed solution that immediately follows a problem statement gives you all the details of one way to solve the problem. You might wish to delay consulting that solution until you have outlined an attack in your own mind. You might even disdain to read it until, with pencil and paper, you have solved the problem yourself (or failed gloriously).

  2. PDF 1. Understand Polya's problem-solving method. 2. State and apply

    Step 1: Understand the problem. It would seem unnecessary to state this obvious advice, but yet in my years of teaching, I have seen many students try to solve a problem before they completely understand it. The techniques that we will explain shortly will help you to avoid this critical mistake. Step 2: Devise a plan.

  3. PDF Chapter 1: Problem Solving: Strategies and Principles

    Example of a Problem How many quarters - placed one on top of the other - would it take to reach the top of the ... Solution: In Nico's decision, we see that there are four cases. Choose none . or . one . or . two . or . ... Chapter 1: Problem Solving: Strategies and Principles Author: Thomas Pirnot 6th Edition

  4. PDF ANALYTICAL THINKING AND PROBLEM-SOLVING

    lowest score is the least important.6. Act - Now start looking. for solutions for your biggest problem. Use brainstorming, IDEAL, group disc. ssion and other strategies to solve it. It is possible that you will find that the rest of the problems will no longer be an is. gest problem.EXAMPLE.

  5. PDF Creative Problem Solving

    CPS is a comprehensive system built on our own natural thinking processes that deliberately ignites creative thinking and produces innovative solutions. Through alternating phases of divergent and convergent thinking, CPS provides a process for managing thinking and action, while avoiding premature or inappropriate judgment. It is built upon a ...

  6. PDF Problem Solving and Critical Thinking

    more of these problem solving strategies: Use inductive reasoning to look for a pattern. Make a systematic list or table. Use estimation to make an educated guess at the solution. Check the guess against the problem's conditions and work backward to eventually determine the solution. Try expressing the problem more simply and solve a

  7. PDF Problem-solving strategies

    Problem-solving strategies From Problems and Solutions in Introductory Mechanics (Draft version, August 2014) David Morin, [email protected] TO THE READER: This book is available as both a paperback and an eBook. I have made a few chapters available on the web, but it is possible (based on past experience) that a pirated

  8. PDF Problem Solving: Nine Case Studies and Lessons Learned

    5When possible, do not shift the entire burden of addressing a particular problem to others; officers must agree to be part of the solution to increase acceptance of problem solving efforts. With the Lox Stock Billiards and Sports Bar, officers agreed to increase their patrol presence in the area at the time of closing.

  9. PDF Introduction to Problem Solving

    to apply problem solving techniques. Problem solving begins with the precise identification of the problem and ends with a complete working solution in terms of a program or software. Key steps required for solving a problem using a computer are shown in Figure 4.1 and are discussed in following subsections. 4.2.1 Analysing the problem

  10. PDF Introduction to Problem-Solving Strategies

    Write the problem on one side of the card. On the other side, write the solution or solutions, the strategy or strategies used to solve the problem, the correct answer, and wher. the problem may fit into your curric. As a means of introducing a topic. As a means of reviewing a topic taught earlier.

  11. PDF Wellness Module 4: Problem-Solving

    We end up feeling frustrated, stressed or maybe even depressed and hopeless. Problem-solving may have a number of benefits, including: • Beter functioning at work or school. • More satisfying relationships with friends, family and co-workers. • Higher self-esteem. • Higher life satisfaction. WELLNESS MODULE 4.

  12. PDF Introduction to Engineering Design and Problem Solving

    Engineering design is the creative process of identifying needs and then devising a solution to fill those needs. This solution may be a product, a technique, a structure, a project, a method, or many other things depending on the problem. The general procedure for completing a good engineering design can be called the Engineering Method of ...

  13. (PDF) Problem Solving Skills: Essential Skills in Providing Solutions

    In problem-solving, the brain uses all its cognitive abilities such as critical thinking, decision-making, and reflective thinking to process the information and provide resolutions to the ...

  14. PDF Notes, Examples, and practice (with solutions)

    Example: 8x 8x 3x Solving Rational Equalities/Equations Cross Multiply Check: 5x + 15 15 Important: Check your answers! Sometimes, math techniques produce extraneous solutions Example: Cross Multiply 4: 3X + 3 Check solutions: (substitute in the original equation) x = -1 is an extraneous solution... I(x (x 0 0 3x — 4 (-1)

  15. Module 1: Problem Solving Strategies

    Problem Solving Strategy 8 (Process of Elimination) This strategy can be used when there is only one possible solution. Example: I'm thinking of a number. The number is odd. It is more than 1 but less than 100. It is greater than 20. It is less than 5 times 7. The sum of the digits is 7. It is evenly divisible by 5. a.

  16. PDF Compiled and Solved Problems in Geometry and Trigonometry

    Solution to Problem 2. 3. Show that in a convex quadrilateral the bisector of two consecutive angles forms an angle whose measure is equal to half the sum of the measures of the other two angles. Solution to Problem 3 . 4. Show that the surface of a convex pentagon can be decomposed into two quadrilateral surfaces. Solution to Problem 4. 5.

  17. PDF 500+ Solved Physics Homework and Exam Problems

    Physics Problems and Solutions: Homework and Exam Physexams.com 1 Vectors 1.1 Unit Vectors 1. Find the unit vector in the direction w⃗= (5,2). Solution: A unit vector in physics is defined as a dimensionless vector whose magnitude is exactly 1. A unit vector that points in the direction of A⃗is determined by formula Aˆ = A⃗ |A⃗|

  18. 6.1 Solving Problems with Newton's Laws

    The solutions to each part of the example illustrate how to apply specific problem-solving steps. In this case, we do not need to use all of the steps. We simply identify the physical principles, and thus the knowns and unknowns; apply Newton's second law; and check to see whether the answer is reasonable.

  19. What is Problem Solving? (Steps, Techniques, Examples)

    The problem-solving process typically includes the following steps: Identify the issue: Recognize the problem that needs to be solved. Analyze the situation: Examine the issue in depth, gather all relevant information, and consider any limitations or constraints that may be present. Generate potential solutions: Brainstorm a list of possible ...

  20. PDF Introductory Physics: Problems solving

    Its purpose is to show the right way to solve physics problems. Here some useful tips. 1. Always try to find out what a problem is about, which part of the physics course is in question 2. Drawings are very helpful in most cases. They help to understand the problem and its solution 3. Write down basic formulas that will be used in the solution 4.

  21. Problem-Solving Strategies: Definition and 5 Techniques to Try

    In general, effective problem-solving strategies include the following steps: Define the problem. Come up with alternative solutions. Decide on a solution. Implement the solution. Problem-solving ...

  22. PDF Problem Solution Papers

    The Process for Writing the Problem/Solution Essay. I. Prewriting steps, including critical reading, critical thinking, journaling, listing, outlining (think through the organization and development (supporting. II. facts) of the paper. Drafting, writing a rough draft which follows pattern suggested above. If.

  23. Top 20 Problem Solving Interview Questions (Example Answers Included)

    MIKE'S TIP: When you're answering this question, quantify the details. This gives your answer critical context and scale, showcasing the degree of challenge and strength of the accomplishment. That way, your answer is powerful, compelling, and, above all, thorough. 2. Describe a time where you made a mistake.