Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base

Hypothesis Testing | A Step-by-Step Guide with Easy Examples

Published on November 8, 2019 by Rebecca Bevans . Revised on June 22, 2023.

Hypothesis testing is a formal procedure for investigating our ideas about the world using statistics . It is most often used by scientists to test specific predictions, called hypotheses, that arise from theories.

There are 5 main steps in hypothesis testing:

  • State your research hypothesis as a null hypothesis and alternate hypothesis (H o ) and (H a  or H 1 ).
  • Collect data in a way designed to test the hypothesis.
  • Perform an appropriate statistical test .
  • Decide whether to reject or fail to reject your null hypothesis.
  • Present the findings in your results and discussion section.

Though the specific details might vary, the procedure you will use when testing a hypothesis will always follow some version of these steps.

Table of contents

Step 1: state your null and alternate hypothesis, step 2: collect data, step 3: perform a statistical test, step 4: decide whether to reject or fail to reject your null hypothesis, step 5: present your findings, other interesting articles, frequently asked questions about hypothesis testing.

After developing your initial research hypothesis (the prediction that you want to investigate), it is important to restate it as a null (H o ) and alternate (H a ) hypothesis so that you can test it mathematically.

The alternate hypothesis is usually your initial hypothesis that predicts a relationship between variables. The null hypothesis is a prediction of no relationship between the variables you are interested in.

  • H 0 : Men are, on average, not taller than women. H a : Men are, on average, taller than women.

Receive feedback on language, structure, and formatting

Professional editors proofread and edit your paper by focusing on:

  • Academic style
  • Vague sentences
  • Style consistency

See an example

how to set up a hypothesis

For a statistical test to be valid , it is important to perform sampling and collect data in a way that is designed to test your hypothesis. If your data are not representative, then you cannot make statistical inferences about the population you are interested in.

There are a variety of statistical tests available, but they are all based on the comparison of within-group variance (how spread out the data is within a category) versus between-group variance (how different the categories are from one another).

If the between-group variance is large enough that there is little or no overlap between groups, then your statistical test will reflect that by showing a low p -value . This means it is unlikely that the differences between these groups came about by chance.

Alternatively, if there is high within-group variance and low between-group variance, then your statistical test will reflect that with a high p -value. This means it is likely that any difference you measure between groups is due to chance.

Your choice of statistical test will be based on the type of variables and the level of measurement of your collected data .

  • an estimate of the difference in average height between the two groups.
  • a p -value showing how likely you are to see this difference if the null hypothesis of no difference is true.

Based on the outcome of your statistical test, you will have to decide whether to reject or fail to reject your null hypothesis.

In most cases you will use the p -value generated by your statistical test to guide your decision. And in most cases, your predetermined level of significance for rejecting the null hypothesis will be 0.05 – that is, when there is a less than 5% chance that you would see these results if the null hypothesis were true.

In some cases, researchers choose a more conservative level of significance, such as 0.01 (1%). This minimizes the risk of incorrectly rejecting the null hypothesis ( Type I error ).

Here's why students love Scribbr's proofreading services

Discover proofreading & editing

The results of hypothesis testing will be presented in the results and discussion sections of your research paper , dissertation or thesis .

In the results section you should give a brief summary of the data and a summary of the results of your statistical test (for example, the estimated difference between group means and associated p -value). In the discussion , you can discuss whether your initial hypothesis was supported by your results or not.

In the formal language of hypothesis testing, we talk about rejecting or failing to reject the null hypothesis. You will probably be asked to do this in your statistics assignments.

However, when presenting research results in academic papers we rarely talk this way. Instead, we go back to our alternate hypothesis (in this case, the hypothesis that men are on average taller than women) and state whether the result of our test did or did not support the alternate hypothesis.

If your null hypothesis was rejected, this result is interpreted as “supported the alternate hypothesis.”

These are superficial differences; you can see that they mean the same thing.

You might notice that we don’t say that we reject or fail to reject the alternate hypothesis . This is because hypothesis testing is not designed to prove or disprove anything. It is only designed to test whether a pattern we measure could have arisen spuriously, or by chance.

If we reject the null hypothesis based on our research (i.e., we find that it is unlikely that the pattern arose by chance), then we can say our test lends support to our hypothesis . But if the pattern does not pass our decision rule, meaning that it could have arisen by chance, then we say the test is inconsistent with our hypothesis .

If you want to know more about statistics , methodology , or research bias , make sure to check out some of our other articles with explanations and examples.

  • Normal distribution
  • Descriptive statistics
  • Measures of central tendency
  • Correlation coefficient

Methodology

  • Cluster sampling
  • Stratified sampling
  • Types of interviews
  • Cohort study
  • Thematic analysis

Research bias

  • Implicit bias
  • Cognitive bias
  • Survivorship bias
  • Availability heuristic
  • Nonresponse bias
  • Regression to the mean

Hypothesis testing is a formal procedure for investigating our ideas about the world using statistics. It is used by scientists to test specific predictions, called hypotheses , by calculating how likely it is that a pattern or relationship between variables could have arisen by chance.

A hypothesis states your predictions about what your research will find. It is a tentative answer to your research question that has not yet been tested. For some research projects, you might have to write several hypotheses that address different aspects of your research question.

A hypothesis is not just a guess — it should be based on existing theories and knowledge. It also has to be testable, which means you can support or refute it through scientific research methods (such as experiments, observations and statistical analysis of data).

Null and alternative hypotheses are used in statistical hypothesis testing . The null hypothesis of a test always predicts no effect or no relationship between variables, while the alternative hypothesis states your research prediction of an effect or relationship.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the “Cite this Scribbr article” button to automatically add the citation to our free Citation Generator.

Bevans, R. (2023, June 22). Hypothesis Testing | A Step-by-Step Guide with Easy Examples. Scribbr. Retrieved July 30, 2024, from https://www.scribbr.com/statistics/hypothesis-testing/

Is this article helpful?

Rebecca Bevans

Rebecca Bevans

Other students also liked, choosing the right statistical test | types & examples, understanding p values | definition and examples, what is your plagiarism score.

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, automatically generate references for free.

  • Knowledge Base
  • Methodology
  • How to Write a Strong Hypothesis | Guide & Examples

How to Write a Strong Hypothesis | Guide & Examples

Published on 6 May 2022 by Shona McCombes .

A hypothesis is a statement that can be tested by scientific research. If you want to test a relationship between two or more variables, you need to write hypotheses before you start your experiment or data collection.

Table of contents

What is a hypothesis, developing a hypothesis (with example), hypothesis examples, frequently asked questions about writing hypotheses.

A hypothesis states your predictions about what your research will find. It is a tentative answer to your research question that has not yet been tested. For some research projects, you might have to write several hypotheses that address different aspects of your research question.

A hypothesis is not just a guess – it should be based on existing theories and knowledge. It also has to be testable, which means you can support or refute it through scientific research methods (such as experiments, observations, and statistical analysis of data).

Variables in hypotheses

Hypotheses propose a relationship between two or more variables . An independent variable is something the researcher changes or controls. A dependent variable is something the researcher observes and measures.

In this example, the independent variable is exposure to the sun – the assumed cause . The dependent variable is the level of happiness – the assumed effect .

Prevent plagiarism, run a free check.

Step 1: ask a question.

Writing a hypothesis begins with a research question that you want to answer. The question should be focused, specific, and researchable within the constraints of your project.

Step 2: Do some preliminary research

Your initial answer to the question should be based on what is already known about the topic. Look for theories and previous studies to help you form educated assumptions about what your research will find.

At this stage, you might construct a conceptual framework to identify which variables you will study and what you think the relationships are between them. Sometimes, you’ll have to operationalise more complex constructs.

Step 3: Formulate your hypothesis

Now you should have some idea of what you expect to find. Write your initial answer to the question in a clear, concise sentence.

Step 4: Refine your hypothesis

You need to make sure your hypothesis is specific and testable. There are various ways of phrasing a hypothesis, but all the terms you use should have clear definitions, and the hypothesis should contain:

  • The relevant variables
  • The specific group being studied
  • The predicted outcome of the experiment or analysis

Step 5: Phrase your hypothesis in three ways

To identify the variables, you can write a simple prediction in if … then form. The first part of the sentence states the independent variable and the second part states the dependent variable.

In academic research, hypotheses are more commonly phrased in terms of correlations or effects, where you directly state the predicted relationship between variables.

If you are comparing two groups, the hypothesis can state what difference you expect to find between them.

Step 6. Write a null hypothesis

If your research involves statistical hypothesis testing , you will also have to write a null hypothesis. The null hypothesis is the default position that there is no association between the variables. The null hypothesis is written as H 0 , while the alternative hypothesis is H 1 or H a .

Research question Hypothesis Null hypothesis
What are the health benefits of eating an apple a day? Increasing apple consumption in over-60s will result in decreasing frequency of doctor’s visits. Increasing apple consumption in over-60s will have no effect on frequency of doctor’s visits.
Which airlines have the most delays? Low-cost airlines are more likely to have delays than premium airlines. Low-cost and premium airlines are equally likely to have delays.
Can flexible work arrangements improve job satisfaction? Employees who have flexible working hours will report greater job satisfaction than employees who work fixed hours. There is no relationship between working hour flexibility and job satisfaction.
How effective is secondary school sex education at reducing teen pregnancies? Teenagers who received sex education lessons throughout secondary school will have lower rates of unplanned pregnancy than teenagers who did not receive any sex education. Secondary school sex education has no effect on teen pregnancy rates.
What effect does daily use of social media have on the attention span of under-16s? There is a negative correlation between time spent on social media and attention span in under-16s. There is no relationship between social media use and attention span in under-16s.

Hypothesis testing is a formal procedure for investigating our ideas about the world using statistics. It is used by scientists to test specific predictions, called hypotheses , by calculating how likely it is that a pattern or relationship between variables could have arisen by chance.

A hypothesis is not just a guess. It should be based on existing theories and knowledge. It also has to be testable, which means you can support or refute it through scientific research methods (such as experiments, observations, and statistical analysis of data).

A research hypothesis is your proposed answer to your research question. The research hypothesis usually includes an explanation (‘ x affects y because …’).

A statistical hypothesis, on the other hand, is a mathematical statement about a population parameter. Statistical hypotheses always come in pairs: the null and alternative hypotheses. In a well-designed study , the statistical hypotheses correspond logically to the research hypothesis.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the ‘Cite this Scribbr article’ button to automatically add the citation to our free Reference Generator.

McCombes, S. (2022, May 06). How to Write a Strong Hypothesis | Guide & Examples. Scribbr. Retrieved 30 July 2024, from https://www.scribbr.co.uk/research-methods/hypothesis-writing/

Is this article helpful?

Shona McCombes

Shona McCombes

Other students also liked, operationalisation | a guide with examples, pros & cons, what is a conceptual framework | tips & examples, a quick guide to experimental design | 5 steps & examples.

Educational resources and simple solutions for your research journey

Research hypothesis: What it is, how to write it, types, and examples

What is a Research Hypothesis: How to Write it, Types, and Examples

how to set up a hypothesis

Any research begins with a research question and a research hypothesis . A research question alone may not suffice to design the experiment(s) needed to answer it. A hypothesis is central to the scientific method. But what is a hypothesis ? A hypothesis is a testable statement that proposes a possible explanation to a phenomenon, and it may include a prediction. Next, you may ask what is a research hypothesis ? Simply put, a research hypothesis is a prediction or educated guess about the relationship between the variables that you want to investigate.  

It is important to be thorough when developing your research hypothesis. Shortcomings in the framing of a hypothesis can affect the study design and the results. A better understanding of the research hypothesis definition and characteristics of a good hypothesis will make it easier for you to develop your own hypothesis for your research. Let’s dive in to know more about the types of research hypothesis , how to write a research hypothesis , and some research hypothesis examples .  

Table of Contents

What is a hypothesis ?  

A hypothesis is based on the existing body of knowledge in a study area. Framed before the data are collected, a hypothesis states the tentative relationship between independent and dependent variables, along with a prediction of the outcome.  

What is a research hypothesis ?  

Young researchers starting out their journey are usually brimming with questions like “ What is a hypothesis ?” “ What is a research hypothesis ?” “How can I write a good research hypothesis ?”   

A research hypothesis is a statement that proposes a possible explanation for an observable phenomenon or pattern. It guides the direction of a study and predicts the outcome of the investigation. A research hypothesis is testable, i.e., it can be supported or disproven through experimentation or observation.     

how to set up a hypothesis

Characteristics of a good hypothesis  

Here are the characteristics of a good hypothesis :  

  • Clearly formulated and free of language errors and ambiguity  
  • Concise and not unnecessarily verbose  
  • Has clearly defined variables  
  • Testable and stated in a way that allows for it to be disproven  
  • Can be tested using a research design that is feasible, ethical, and practical   
  • Specific and relevant to the research problem  
  • Rooted in a thorough literature search  
  • Can generate new knowledge or understanding.  

How to create an effective research hypothesis  

A study begins with the formulation of a research question. A researcher then performs background research. This background information forms the basis for building a good research hypothesis . The researcher then performs experiments, collects, and analyzes the data, interprets the findings, and ultimately, determines if the findings support or negate the original hypothesis.  

Let’s look at each step for creating an effective, testable, and good research hypothesis :  

  • Identify a research problem or question: Start by identifying a specific research problem.   
  • Review the literature: Conduct an in-depth review of the existing literature related to the research problem to grasp the current knowledge and gaps in the field.   
  • Formulate a clear and testable hypothesis : Based on the research question, use existing knowledge to form a clear and testable hypothesis . The hypothesis should state a predicted relationship between two or more variables that can be measured and manipulated. Improve the original draft till it is clear and meaningful.  
  • State the null hypothesis: The null hypothesis is a statement that there is no relationship between the variables you are studying.   
  • Define the population and sample: Clearly define the population you are studying and the sample you will be using for your research.  
  • Select appropriate methods for testing the hypothesis: Select appropriate research methods, such as experiments, surveys, or observational studies, which will allow you to test your research hypothesis .  

Remember that creating a research hypothesis is an iterative process, i.e., you might have to revise it based on the data you collect. You may need to test and reject several hypotheses before answering the research problem.  

How to write a research hypothesis  

When you start writing a research hypothesis , you use an “if–then” statement format, which states the predicted relationship between two or more variables. Clearly identify the independent variables (the variables being changed) and the dependent variables (the variables being measured), as well as the population you are studying. Review and revise your hypothesis as needed.  

An example of a research hypothesis in this format is as follows:  

“ If [athletes] follow [cold water showers daily], then their [endurance] increases.”  

Population: athletes  

Independent variable: daily cold water showers  

Dependent variable: endurance  

You may have understood the characteristics of a good hypothesis . But note that a research hypothesis is not always confirmed; a researcher should be prepared to accept or reject the hypothesis based on the study findings.  

how to set up a hypothesis

Research hypothesis checklist  

Following from above, here is a 10-point checklist for a good research hypothesis :  

  • Testable: A research hypothesis should be able to be tested via experimentation or observation.  
  • Specific: A research hypothesis should clearly state the relationship between the variables being studied.  
  • Based on prior research: A research hypothesis should be based on existing knowledge and previous research in the field.  
  • Falsifiable: A research hypothesis should be able to be disproven through testing.  
  • Clear and concise: A research hypothesis should be stated in a clear and concise manner.  
  • Logical: A research hypothesis should be logical and consistent with current understanding of the subject.  
  • Relevant: A research hypothesis should be relevant to the research question and objectives.  
  • Feasible: A research hypothesis should be feasible to test within the scope of the study.  
  • Reflects the population: A research hypothesis should consider the population or sample being studied.  
  • Uncomplicated: A good research hypothesis is written in a way that is easy for the target audience to understand.  

By following this research hypothesis checklist , you will be able to create a research hypothesis that is strong, well-constructed, and more likely to yield meaningful results.  

Research hypothesis: What it is, how to write it, types, and examples

Types of research hypothesis  

Different types of research hypothesis are used in scientific research:  

1. Null hypothesis:

A null hypothesis states that there is no change in the dependent variable due to changes to the independent variable. This means that the results are due to chance and are not significant. A null hypothesis is denoted as H0 and is stated as the opposite of what the alternative hypothesis states.   

Example: “ The newly identified virus is not zoonotic .”  

2. Alternative hypothesis:

This states that there is a significant difference or relationship between the variables being studied. It is denoted as H1 or Ha and is usually accepted or rejected in favor of the null hypothesis.  

Example: “ The newly identified virus is zoonotic .”  

3. Directional hypothesis :

This specifies the direction of the relationship or difference between variables; therefore, it tends to use terms like increase, decrease, positive, negative, more, or less.   

Example: “ The inclusion of intervention X decreases infant mortality compared to the original treatment .”   

4. Non-directional hypothesis:

While it does not predict the exact direction or nature of the relationship between the two variables, a non-directional hypothesis states the existence of a relationship or difference between variables but not the direction, nature, or magnitude of the relationship. A non-directional hypothesis may be used when there is no underlying theory or when findings contradict previous research.  

Example, “ Cats and dogs differ in the amount of affection they express .”  

5. Simple hypothesis :

A simple hypothesis only predicts the relationship between one independent and another independent variable.  

Example: “ Applying sunscreen every day slows skin aging .”  

6 . Complex hypothesis :

A complex hypothesis states the relationship or difference between two or more independent and dependent variables.   

Example: “ Applying sunscreen every day slows skin aging, reduces sun burn, and reduces the chances of skin cancer .” (Here, the three dependent variables are slowing skin aging, reducing sun burn, and reducing the chances of skin cancer.)  

7. Associative hypothesis:  

An associative hypothesis states that a change in one variable results in the change of the other variable. The associative hypothesis defines interdependency between variables.  

Example: “ There is a positive association between physical activity levels and overall health .”  

8 . Causal hypothesis:

A causal hypothesis proposes a cause-and-effect interaction between variables.  

Example: “ Long-term alcohol use causes liver damage .”  

Note that some of the types of research hypothesis mentioned above might overlap. The types of hypothesis chosen will depend on the research question and the objective of the study.  

how to set up a hypothesis

Research hypothesis examples  

Here are some good research hypothesis examples :  

“The use of a specific type of therapy will lead to a reduction in symptoms of depression in individuals with a history of major depressive disorder.”  

“Providing educational interventions on healthy eating habits will result in weight loss in overweight individuals.”  

“Plants that are exposed to certain types of music will grow taller than those that are not exposed to music.”  

“The use of the plant growth regulator X will lead to an increase in the number of flowers produced by plants.”  

Characteristics that make a research hypothesis weak are unclear variables, unoriginality, being too general or too vague, and being untestable. A weak hypothesis leads to weak research and improper methods.   

Some bad research hypothesis examples (and the reasons why they are “bad”) are as follows:  

“This study will show that treatment X is better than any other treatment . ” (This statement is not testable, too broad, and does not consider other treatments that may be effective.)  

“This study will prove that this type of therapy is effective for all mental disorders . ” (This statement is too broad and not testable as mental disorders are complex and different disorders may respond differently to different types of therapy.)  

“Plants can communicate with each other through telepathy . ” (This statement is not testable and lacks a scientific basis.)  

Importance of testable hypothesis  

If a research hypothesis is not testable, the results will not prove or disprove anything meaningful. The conclusions will be vague at best. A testable hypothesis helps a researcher focus on the study outcome and understand the implication of the question and the different variables involved. A testable hypothesis helps a researcher make precise predictions based on prior research.  

To be considered testable, there must be a way to prove that the hypothesis is true or false; further, the results of the hypothesis must be reproducible.  

Research hypothesis: What it is, how to write it, types, and examples

Frequently Asked Questions (FAQs) on research hypothesis  

1. What is the difference between research question and research hypothesis ?  

A research question defines the problem and helps outline the study objective(s). It is an open-ended statement that is exploratory or probing in nature. Therefore, it does not make predictions or assumptions. It helps a researcher identify what information to collect. A research hypothesis , however, is a specific, testable prediction about the relationship between variables. Accordingly, it guides the study design and data analysis approach.

2. When to reject null hypothesis ?

A null hypothesis should be rejected when the evidence from a statistical test shows that it is unlikely to be true. This happens when the test statistic (e.g., p -value) is less than the defined significance level (e.g., 0.05). Rejecting the null hypothesis does not necessarily mean that the alternative hypothesis is true; it simply means that the evidence found is not compatible with the null hypothesis.  

3. How can I be sure my hypothesis is testable?  

A testable hypothesis should be specific and measurable, and it should state a clear relationship between variables that can be tested with data. To ensure that your hypothesis is testable, consider the following:  

  • Clearly define the key variables in your hypothesis. You should be able to measure and manipulate these variables in a way that allows you to test the hypothesis.  
  • The hypothesis should predict a specific outcome or relationship between variables that can be measured or quantified.   
  • You should be able to collect the necessary data within the constraints of your study.  
  • It should be possible for other researchers to replicate your study, using the same methods and variables.   
  • Your hypothesis should be testable by using appropriate statistical analysis techniques, so you can draw conclusions, and make inferences about the population from the sample data.  
  • The hypothesis should be able to be disproven or rejected through the collection of data.  

4. How do I revise my research hypothesis if my data does not support it?  

If your data does not support your research hypothesis , you will need to revise it or develop a new one. You should examine your data carefully and identify any patterns or anomalies, re-examine your research question, and/or revisit your theory to look for any alternative explanations for your results. Based on your review of the data, literature, and theories, modify your research hypothesis to better align it with the results you obtained. Use your revised hypothesis to guide your research design and data collection. It is important to remain objective throughout the process.  

5. I am performing exploratory research. Do I need to formulate a research hypothesis?  

As opposed to “confirmatory” research, where a researcher has some idea about the relationship between the variables under investigation, exploratory research (or hypothesis-generating research) looks into a completely new topic about which limited information is available. Therefore, the researcher will not have any prior hypotheses. In such cases, a researcher will need to develop a post-hoc hypothesis. A post-hoc research hypothesis is generated after these results are known.  

6. How is a research hypothesis different from a research question?

A research question is an inquiry about a specific topic or phenomenon, typically expressed as a question. It seeks to explore and understand a particular aspect of the research subject. In contrast, a research hypothesis is a specific statement or prediction that suggests an expected relationship between variables. It is formulated based on existing knowledge or theories and guides the research design and data analysis.

7. Can a research hypothesis change during the research process?

Yes, research hypotheses can change during the research process. As researchers collect and analyze data, new insights and information may emerge that require modification or refinement of the initial hypotheses. This can be due to unexpected findings, limitations in the original hypotheses, or the need to explore additional dimensions of the research topic. Flexibility is crucial in research, allowing for adaptation and adjustment of hypotheses to align with the evolving understanding of the subject matter.

8. How many hypotheses should be included in a research study?

The number of research hypotheses in a research study varies depending on the nature and scope of the research. It is not necessary to have multiple hypotheses in every study. Some studies may have only one primary hypothesis, while others may have several related hypotheses. The number of hypotheses should be determined based on the research objectives, research questions, and the complexity of the research topic. It is important to ensure that the hypotheses are focused, testable, and directly related to the research aims.

9. Can research hypotheses be used in qualitative research?

Yes, research hypotheses can be used in qualitative research, although they are more commonly associated with quantitative research. In qualitative research, hypotheses may be formulated as tentative or exploratory statements that guide the investigation. Instead of testing hypotheses through statistical analysis, qualitative researchers may use the hypotheses to guide data collection and analysis, seeking to uncover patterns, themes, or relationships within the qualitative data. The emphasis in qualitative research is often on generating insights and understanding rather than confirming or rejecting specific research hypotheses through statistical testing.

Editage All Access is a subscription-based platform that unifies the best AI tools and services designed to speed up, simplify, and streamline every step of a researcher’s journey. The Editage All Access Pack is a one-of-a-kind subscription that unlocks full access to an AI writing assistant, literature recommender, journal finder, scientific illustration tool, and exclusive discounts on professional publication services from Editage.  

Based on 22+ years of experience in academia, Editage All Access empowers researchers to put their best research forward and move closer to success. Explore our top AI Tools pack, AI Tools + Publication Services pack, or Build Your Own Plan. Find everything a researcher needs to succeed, all in one place –  Get All Access now starting at just $14 a month !    

Related Posts

article processing charges

What is Thematic Analysis and How to Do It (with Examples)

skills for academic writing

What Skills are Required for Academic Writing

  • Research Process
  • Manuscript Preparation
  • Manuscript Review
  • Publication Process
  • Publication Recognition
  • Language Editing Services
  • Translation Services

Elsevier QRcode Wechat

What is and How to Write a Good Hypothesis in Research?

  • 4 minute read
  • 343.6K views

Table of Contents

One of the most important aspects of conducting research is constructing a strong hypothesis. But what makes a hypothesis in research effective? In this article, we’ll look at the difference between a hypothesis and a research question, as well as the elements of a good hypothesis in research. We’ll also include some examples of effective hypotheses, and what pitfalls to avoid.

What is a Hypothesis in Research?

Simply put, a hypothesis is a research question that also includes the predicted or expected result of the research. Without a hypothesis, there can be no basis for a scientific or research experiment. As such, it is critical that you carefully construct your hypothesis by being deliberate and thorough, even before you set pen to paper. Unless your hypothesis is clearly and carefully constructed, any flaw can have an adverse, and even grave, effect on the quality of your experiment and its subsequent results.

Research Question vs Hypothesis

It’s easy to confuse research questions with hypotheses, and vice versa. While they’re both critical to the Scientific Method, they have very specific differences. Primarily, a research question, just like a hypothesis, is focused and concise. But a hypothesis includes a prediction based on the proposed research, and is designed to forecast the relationship of and between two (or more) variables. Research questions are open-ended, and invite debate and discussion, while hypotheses are closed, e.g. “The relationship between A and B will be C.”

A hypothesis is generally used if your research topic is fairly well established, and you are relatively certain about the relationship between the variables that will be presented in your research. Since a hypothesis is ideally suited for experimental studies, it will, by its very existence, affect the design of your experiment. The research question is typically used for new topics that have not yet been researched extensively. Here, the relationship between different variables is less known. There is no prediction made, but there may be variables explored. The research question can be casual in nature, simply trying to understand if a relationship even exists, descriptive or comparative.

How to Write Hypothesis in Research

Writing an effective hypothesis starts before you even begin to type. Like any task, preparation is key, so you start first by conducting research yourself, and reading all you can about the topic that you plan to research. From there, you’ll gain the knowledge you need to understand where your focus within the topic will lie.

Remember that a hypothesis is a prediction of the relationship that exists between two or more variables. Your job is to write a hypothesis, and design the research, to “prove” whether or not your prediction is correct. A common pitfall is to use judgments that are subjective and inappropriate for the construction of a hypothesis. It’s important to keep the focus and language of your hypothesis objective.

An effective hypothesis in research is clearly and concisely written, and any terms or definitions clarified and defined. Specific language must also be used to avoid any generalities or assumptions.

Use the following points as a checklist to evaluate the effectiveness of your research hypothesis:

  • Predicts the relationship and outcome
  • Simple and concise – avoid wordiness
  • Clear with no ambiguity or assumptions about the readers’ knowledge
  • Observable and testable results
  • Relevant and specific to the research question or problem

Research Hypothesis Example

Perhaps the best way to evaluate whether or not your hypothesis is effective is to compare it to those of your colleagues in the field. There is no need to reinvent the wheel when it comes to writing a powerful research hypothesis. As you’re reading and preparing your hypothesis, you’ll also read other hypotheses. These can help guide you on what works, and what doesn’t, when it comes to writing a strong research hypothesis.

Here are a few generic examples to get you started.

Eating an apple each day, after the age of 60, will result in a reduction of frequency of physician visits.

Budget airlines are more likely to receive more customer complaints. A budget airline is defined as an airline that offers lower fares and fewer amenities than a traditional full-service airline. (Note that the term “budget airline” is included in the hypothesis.

Workplaces that offer flexible working hours report higher levels of employee job satisfaction than workplaces with fixed hours.

Each of the above examples are specific, observable and measurable, and the statement of prediction can be verified or shown to be false by utilizing standard experimental practices. It should be noted, however, that often your hypothesis will change as your research progresses.

Language Editing Plus

Elsevier’s Language Editing Plus service can help ensure that your research hypothesis is well-designed, and articulates your research and conclusions. Our most comprehensive editing package, you can count on a thorough language review by native-English speakers who are PhDs or PhD candidates. We’ll check for effective logic and flow of your manuscript, as well as document formatting for your chosen journal, reference checks, and much more.

Systematic Literature Review or Literature Review

Systematic Literature Review or Literature Review?

Problem Statement

How to Write an Effective Problem Statement for Your Research Paper

You may also like.

Academic paper format

Submission 101: What format should be used for academic papers?

Being Mindful of Tone and Structure in Artilces

Page-Turner Articles are More Than Just Good Arguments: Be Mindful of Tone and Structure!

How to Ensure Inclusivity in Your Scientific Writing

A Must-see for Researchers! How to Ensure Inclusivity in Your Scientific Writing

impactful introduction section

Make Hook, Line, and Sinker: The Art of Crafting Engaging Introductions

Limitations of a Research

Can Describing Study Limitations Improve the Quality of Your Paper?

Guide to Crafting Impactful Sentences

A Guide to Crafting Shorter, Impactful Sentences in Academic Writing

Write an Excellent Discussion in Your Manuscript

6 Steps to Write an Excellent Discussion in Your Manuscript

How to Write Clear Civil Engineering Papers

How to Write a Hypothesis

Last Updated: May 2, 2023 Fact Checked

This article was co-authored by Bess Ruff, MA . Bess Ruff is a Geography PhD student at Florida State University. She received her MA in Environmental Science and Management from the University of California, Santa Barbara in 2016. She has conducted survey work for marine spatial planning projects in the Caribbean and provided research support as a graduate fellow for the Sustainable Fisheries Group. There are 9 references cited in this article, which can be found at the bottom of the page. This article has been fact-checked, ensuring the accuracy of any cited facts and confirming the authority of its sources. This article has been viewed 1,034,419 times.

A hypothesis is a description of a pattern in nature or an explanation about some real-world phenomenon that can be tested through observation and experimentation. The most common way a hypothesis is used in scientific research is as a tentative, testable, and falsifiable statement that explains some observed phenomenon in nature. [1] X Research source Many academic fields, from the physical sciences to the life sciences to the social sciences, use hypothesis testing as a means of testing ideas to learn about the world and advance scientific knowledge. Whether you are a beginning scholar or a beginning student taking a class in a science subject, understanding what hypotheses are and being able to generate hypotheses and predictions yourself is very important. These instructions will help get you started.

Preparing to Write a Hypothesis

Step 1 Select a topic.

  • If you are writing a hypothesis for a school assignment, this step may be taken care of for you.

Step 2 Read existing research.

  • Focus on academic and scholarly writing. You need to be certain that your information is unbiased, accurate, and comprehensive. Scholarly search databases such as Google Scholar and Web of Science can help you find relevant articles from reputable sources.
  • You can find information in textbooks, at a library, and online. If you are in school, you can also ask for help from teachers, librarians, and your peers.

Step 3 Analyze the literature.

  • For example, if you are interested in the effects of caffeine on the human body, but notice that nobody seems to have explored whether caffeine affects males differently than it does females, this could be something to formulate a hypothesis about. Or, if you are interested in organic farming, you might notice that no one has tested whether organic fertilizer results in different growth rates for plants than non-organic fertilizer.
  • You can sometimes find holes in the existing literature by looking for statements like “it is unknown” in scientific papers or places where information is clearly missing. You might also find a claim in the literature that seems far-fetched, unlikely, or too good to be true, like that caffeine improves math skills. If the claim is testable, you could provide a great service to scientific knowledge by doing your own investigation. If you confirm the claim, the claim becomes even more credible. If you do not find support for the claim, you are helping with the necessary self-correcting aspect of science.
  • Examining these types of questions provides an excellent way for you to set yourself apart by filling in important gaps in a field of study.

Step 4 Generate questions.

  • Following the examples above, you might ask: "How does caffeine affect females as compared to males?" or "How does organic fertilizer affect plant growth compared to non-organic fertilizer?" The rest of your research will be aimed at answering these questions.

Step 5 Look for clues as to what the answer might be.

  • Following the examples above, if you discover in the literature that there is a pattern that some other types of stimulants seem to affect females more than males, this could be a clue that the same pattern might be true for caffeine. Similarly, if you observe the pattern that organic fertilizer seems to be associated with smaller plants overall, you might explain this pattern with the hypothesis that plants exposed to organic fertilizer grow more slowly than plants exposed to non-organic fertilizer.

Formulating Your Hypothesis

Step 1 Determine your variables.

  • You can think of the independent variable as the one that is causing some kind of difference or effect to occur. In the examples, the independent variable would be biological sex, i.e. whether a person is male or female, and fertilizer type, i.e. whether the fertilizer is organic or non-organically-based.
  • The dependent variable is what is affected by (i.e. "depends" on) the independent variable. In the examples above, the dependent variable would be the measured impact of caffeine or fertilizer.
  • Your hypothesis should only suggest one relationship. Most importantly, it should only have one independent variable. If you have more than one, you won't be able to determine which one is actually the source of any effects you might observe.

Step 2 Generate a simple hypothesis.

  • Don't worry too much at this point about being precise or detailed.
  • In the examples above, one hypothesis would make a statement about whether a person's biological sex might impact the way the person is affected by caffeine; for example, at this point, your hypothesis might simply be: "a person's biological sex is related to how caffeine affects his or her heart rate." The other hypothesis would make a general statement about plant growth and fertilizer; for example your simple explanatory hypothesis might be "plants given different types of fertilizer are different sizes because they grow at different rates."

Step 3 Decide on direction.

  • Using our example, our non-directional hypotheses would be "there is a relationship between a person's biological sex and how much caffeine increases the person's heart rate," and "there is a relationship between fertilizer type and the speed at which plants grow."
  • Directional predictions using the same example hypotheses above would be : "Females will experience a greater increase in heart rate after consuming caffeine than will males," and "plants fertilized with non-organic fertilizer will grow faster than those fertilized with organic fertilizer." Indeed, these predictions and the hypotheses that allow for them are very different kinds of statements. More on this distinction below.
  • If the literature provides any basis for making a directional prediction, it is better to do so, because it provides more information. Especially in the physical sciences, non-directional predictions are often seen as inadequate.

Step 4 Get specific.

  • Where necessary, specify the population (i.e. the people or things) about which you hope to uncover new knowledge. For example, if you were only interested the effects of caffeine on elderly people, your prediction might read: "Females over the age of 65 will experience a greater increase in heart rate than will males of the same age." If you were interested only in how fertilizer affects tomato plants, your prediction might read: "Tomato plants treated with non-organic fertilizer will grow faster in the first three months than will tomato plants treated with organic fertilizer."

Step 5 Make sure it is testable.

  • For example, you would not want to make the hypothesis: "red is the prettiest color." This statement is an opinion and it cannot be tested with an experiment. However, proposing the generalizing hypothesis that red is the most popular color is testable with a simple random survey. If you do indeed confirm that red is the most popular color, your next step may be to ask: Why is red the most popular color? The answer you propose is your explanatory hypothesis .

Step 6 Write a research hypothesis.

  • An easy way to get to the hypothesis for this method and prediction is to ask yourself why you think heart rates will increase if children are given caffeine. Your explanatory hypothesis in this case may be that caffeine is a stimulant. At this point, some scientists write a research hypothesis , a statement that includes the hypothesis, the experiment, and the prediction all in one statement.
  • For example, If caffeine is a stimulant, and some children are given a drink with caffeine while others are given a drink without caffeine, then the heart rates of those children given a caffeinated drink will increase more than the heart rate of children given a non-caffeinated drink.

Step 7 Contextualize your hypothesis.

  • Using the above example, if you were to test the effects of caffeine on the heart rates of children, evidence that your hypothesis is not true, sometimes called the null hypothesis , could occur if the heart rates of both the children given the caffeinated drink and the children given the non-caffeinated drink (called the placebo control) did not change, or lowered or raised with the same magnitude, if there was no difference between the two groups of children.
  • It is important to note here that the null hypothesis actually becomes much more useful when researchers test the significance of their results with statistics. When statistics are used on the results of an experiment, a researcher is testing the idea of the null statistical hypothesis. For example, that there is no relationship between two variables or that there is no difference between two groups. [8] X Research source

Step 8 Test your hypothesis.

Hypothesis Examples

how to set up a hypothesis

Community Q&A

Community Answer

  • Remember that science is not necessarily a linear process and can be approached in various ways. [10] X Research source Thanks Helpful 0 Not Helpful 0
  • When examining the literature, look for research that is similar to what you want to do, and try to build on the findings of other researchers. But also look for claims that you think are suspicious, and test them yourself. Thanks Helpful 0 Not Helpful 0
  • Be specific in your hypotheses, but not so specific that your hypothesis can't be applied to anything outside your specific experiment. You definitely want to be clear about the population about which you are interested in drawing conclusions, but nobody (except your roommates) will be interested in reading a paper with the prediction: "my three roommates will each be able to do a different amount of pushups." Thanks Helpful 0 Not Helpful 0

how to set up a hypothesis

You Might Also Like

Write Electron Configurations for Atoms of Any Element

  • ↑ https://undsci.berkeley.edu/for-educators/prepare-and-plan/correcting-misconceptions/#a4
  • ↑ https://owl.purdue.edu/owl/general_writing/common_writing_assignments/research_papers/choosing_a_topic.html
  • ↑ https://owl.purdue.edu/owl/subject_specific_writing/writing_in_the_social_sciences/writing_in_psychology_experimental_report_writing/experimental_reports_1.html
  • ↑ https://www.grammarly.com/blog/how-to-write-a-hypothesis/
  • ↑ https://grammar.yourdictionary.com/for-students-and-parents/how-create-hypothesis.html
  • ↑ https://flexbooks.ck12.org/cbook/ck-12-middle-school-physical-science-flexbook-2.0/section/1.19/primary/lesson/hypothesis-ms-ps/
  • ↑ https://iastate.pressbooks.pub/preparingtopublish/chapter/goal-1-contextualize-the-studys-methods/
  • ↑ http://mathworld.wolfram.com/NullHypothesis.html
  • ↑ http://undsci.berkeley.edu/article/scienceflowchart

About This Article

Bess Ruff, MA

Before writing a hypothesis, think of what questions are still unanswered about a specific subject and make an educated guess about what the answer could be. Then, determine the variables in your question and write a simple statement about how they might be related. Try to focus on specific predictions and variables, such as age or segment of the population, to make your hypothesis easier to test. For tips on how to test your hypothesis, read on! Did this summary help you? Yes No

  • Send fan mail to authors

Reader Success Stories

Onyia Maxwell

Onyia Maxwell

Sep 13, 2016

Did this article help you?

how to set up a hypothesis

Nov 26, 2017

ABEL SHEWADEG

ABEL SHEWADEG

Jun 12, 2018

Connor Gilligan

Connor Gilligan

Jan 2, 2017

Georgia

Dec 30, 2017

Do I Have a Dirty Mind Quiz

Featured Articles

What Is My Color Season Quiz

Trending Articles

Am I Gaining Weight Due To Menopause Quiz

Watch Articles

Make Body Oil

  • Terms of Use
  • Privacy Policy
  • Do Not Sell or Share My Info
  • Not Selling Info

Don’t miss out! Sign up for

wikiHow’s newsletter

  • How it works

researchprospect post subheader

How to Write a Hypothesis – Steps & Tips

Published by Alaxendra Bets at August 14th, 2021 , Revised On October 26, 2023

What is a Research Hypothesis?

You can test a research statement with the help of experimental or theoretical research, known as a hypothesis.

If you want to find out the similarities, differences, and relationships between variables, you must write a testable hypothesis before compiling the data, performing analysis, and generating results to complete.

The data analysis and findings will help you test the hypothesis and see whether it is true or false. Here is all you need to know about how to write a hypothesis for a  dissertation .

Research Hypothesis Definition

Not sure what the meaning of the research hypothesis is?

A research hypothesis predicts an answer to the research question  based on existing theoretical knowledge or experimental data.

Some studies may have multiple hypothesis statements depending on the research question(s).  A research hypothesis must be based on formulas, facts, and theories. It should be testable by data analysis, observations, experiments, or other scientific methodologies that can refute or support the statement.

Variables in Hypothesis

Developing a hypothesis is easy. Most research studies have two or more variables in the hypothesis, particularly studies involving correlational and experimental research. The researcher can control or change the independent variable(s) while measuring and observing the independent variable(s).

“How long a student sleeps affects test scores.”

In the above statement, the dependent variable is the test score, while the independent variable is the length of time spent in sleep. Developing a hypothesis will be easy if you know your research’s dependent and independent variables.

Once you have developed a thesis statement, questions such as how to write a hypothesis for the dissertation and how to test a research hypothesis become pretty straightforward.

Looking for dissertation help?

Researchprospect to the rescue then.

We have expert writers on our team who are skilled at helping students with quantitative dissertations across a variety of STEM disciplines. Guaranteeing 100% satisfaction!

dissertation help

Step-by-Step Guide on How to Write a Hypothesis

Here are the steps involved in how to write a hypothesis for a dissertation.

Step 1: Start with a Research Question

  • Begin by asking a specific question about a topic of interest.
  • This question should be clear, concise, and researchable.

Example: Does exposure to sunlight affect plant growth?

Step 2: Do Preliminary Research

  • Before formulating a hypothesis, conduct background research to understand existing knowledge on the topic.
  • Familiarise yourself with prior studies, theories, or observations related to the research question.

Step 3: Define Variables

  • Independent Variable (IV): The factor that you change or manipulate in an experiment.
  • Dependent Variable (DV): The factor that you measure.

Example: IV: Amount of sunlight exposure (e.g., 2 hours/day, 4 hours/day, 8 hours/day) DV: Plant growth (e.g., height in centimetres)

Step 4: Formulate the Hypothesis

  • A hypothesis is a statement that predicts the relationship between variables.
  • It is often written as an “if-then” statement.

Example: If plants receive more sunlight, then they will grow taller.

Step 5: Ensure it is Testable

A good hypothesis is empirically testable. This means you should be able to design an experiment or observation to test its validity.

Example: You can set up an experiment where plants are exposed to varying amounts of sunlight and then measure their growth over a period of time.

Step 6: Consider Potential Confounding Variables

  • Confounding variables are factors other than the independent variable that might affect the outcome.
  • It is important to identify these to ensure that they do not skew your results.

Example: Soil quality, water frequency, or type of plant can all affect growth. Consider keeping these constant in your experiment.

Step 7: Write the Null Hypothesis

  • The null hypothesis is a statement that there is no effect or no relationship between the variables.
  • It is what you aim to disprove or reject through your research.

Example: There is no difference in plant growth regardless of the amount of sunlight exposure.

Step 8: Test your Hypothesis

Design an experiment or conduct observations to test your hypothesis.

Example: Grow three sets of plants: one set exposed to 2 hours of sunlight daily, another exposed to 4 hours, and a third exposed to 8 hours. Measure and compare their growth after a set period.

Step 9: Analyse the Results

After testing, review your data to determine if it supports your hypothesis.

Step 10: Draw Conclusions

  • Based on your findings, determine whether you can accept or reject the hypothesis.
  • Remember, even if you reject your hypothesis, it’s a valuable result. It can guide future research and refine questions.

Three Ways to Phrase a Hypothesis

Try to use “if”… and “then”… to identify the variables. The independent variable should be present in the first part of the hypothesis, while the dependent variable will form the second part of the statement. Consider understanding the below research hypothesis example to create a specific, clear, and concise research hypothesis;

If an obese lady starts attending Zomba fitness classes, her health will improve.

In academic research, you can write the predicted variable relationship directly because most research studies correlate terms.

The number of Zomba fitness classes attended by the obese lady has a positive effect on health.

If your research compares two groups, then you can develop a hypothesis statement on their differences.

An obese lady who attended most Zumba fitness classes will have better health than those who attended a few.

How to Write a Null Hypothesis

If a statistical analysis is involved in your research, then you must create a null hypothesis. If you find any relationship between the variables, then the null hypothesis will be the default position that there is no relationship between them. H0 is the symbol for the null hypothesis, while the hypothesis is represented as H1. The null hypothesis will also answer your question, “How to test the research hypothesis in the dissertation.”

H0: The number of Zumba fitness classes attended by the obese lady does not affect her health.

H1: The number of Zumba fitness classes attended by obese lady positively affects health.

Also see:  Your Dissertation in Education

Hypothesis Examples

Research Question: Does the amount of sunlight a plant receives affect its growth? Hypothesis: Plants that receive more sunlight will grow taller than plants that receive less sunlight.

Research Question: Do students who eat breakfast perform better in school exams than those who don’t? Hypothesis: Students who eat a morning breakfast will score higher on school exams compared to students who skip breakfast.

Research Question: Does listening to music while studying impact a student’s ability to retain information? Hypothesis 1 (Directional): Students who listen to music while studying will retain less information than those who study in silence. Hypothesis 2 (Non-directional): There will be a difference in information retention between students who listen to music while studying and those who study in silence.

How can ResearchProspect Help?

If you are unsure about how to rest a research hypothesis in a dissertation or simply unsure about how to develop a hypothesis for your research, then you can take advantage of our dissertation services which cover every tiny aspect of a dissertation project you might need help with including but not limited to setting up a hypothesis and research questions,  help with individual chapters ,  full dissertation writing ,  statistical analysis , and much more.

Frequently Asked Questions

What are the 5 rules for writing a good hypothesis.

  • Clear Statement: State a clear relationship between variables.
  • Testable: Ensure it can be investigated and measured.
  • Specific: Avoid vague terms, be precise in predictions.
  • Falsifiable: Design to allow potential disproof.
  • Relevant: Address research question and align with existing knowledge.

What is a hypothesis in simple words?

A hypothesis is an educated guess or prediction about something that can be tested. It is a statement that suggests a possible explanation for an event or phenomenon based on prior knowledge or observation. Scientists use hypotheses as a starting point for experiments to discover if they are true or false.

What is the hypothesis and examples?

A hypothesis is a testable prediction or explanation for an observation or phenomenon. For example, if plants are given sunlight, then they will grow. In this case, the hypothesis suggests that sunlight has a positive effect on plant growth. It can be tested by experimenting with plants in varying light conditions.

What is the hypothesis in research definition?

A hypothesis in research is a clear, testable statement predicting the possible outcome of a study based on prior knowledge and observation. It serves as the foundation for conducting experiments or investigations. Researchers test the validity of the hypothesis to draw conclusions and advance knowledge in a particular field.

Why is it called a hypothesis?

The term “hypothesis” originates from the Greek word “hypothesis,” which means “base” or “foundation.” It’s used to describe a foundational statement or proposition that can be tested. In scientific contexts, it denotes a tentative explanation for a phenomenon, serving as a starting point for investigation or experimentation.

You May Also Like

Penning your dissertation proposal can be a rather daunting task. Here are comprehensive guidelines on how to write a dissertation proposal.

To help students organise their dissertation proposal paper correctly, we have put together detailed guidelines on how to structure a dissertation proposal.

Here we explore what is research problem in dissertation with research problem examples to help you understand how and when to write a research problem.

USEFUL LINKS

LEARNING RESOURCES

researchprospect-reviews-trust-site

COMPANY DETAILS

Research-Prospect-Writing-Service

  • How It Works

Article Categories

Book categories, collections.

  • Academics & The Arts Articles
  • Math Articles
  • Statistics Articles

How to Set Up a Hypothesis Test: Null versus Alternative

Statistics for dummies.

Book image

Sign up for the Dummies Beta Program to try Dummies' newest way to learn.

When you set up a hypothesis test to determine the validity of a statistical claim, you need to define both a null hypothesis and an alternative hypothesis.

Typically in a hypothesis test, the claim being made is about a population parameter (one number that characterizes the entire population). Because parameters tend to be unknown quantities, everyone wants to make claims about what their values may be. For example, the claim that 25% (or 0.25) of all women have varicose veins is a claim about the proportion (that’s the parameter ) of all women (that’s the population ) who have varicose veins (that’s the variable — having or not having varicose veins).

Researchers often challenge claims about population parameters. You may hypothesize, for example, that the actual proportion of women who have varicose veins is lower than 0.25, based on your observations. Or you may hypothesize that due to the popularity of high heeled shoes, the proportion may be higher than 0.25. Or if you’re simply questioning whether the actual proportion is 0.25, your alternative hypothesis is: “No, it isn’t 0.25.”

How to define a null hypothesis

Every hypothesis test contains a set of two opposing statements, or hypotheses, about a population parameter. The first hypothesis is called the null hypothesis, denoted H 0 . The null hypothesis always states that the population parameter is equal to the claimed value. For example, if the claim is that the average time to make a name-brand ready-mix pie is five minutes, the statistical shorthand notation for the null hypothesis in this case would be as follows:

image0.png

(That is, the population mean is 5 minutes.)

All null hypotheses include an equal sign in them.

How to define an alternative hypothesis

Before actually conducting a hypothesis test, you have to put two possible hypotheses on the table — the null hypothesis is one of them. But, if the null hypothesis is rejected (that is, there was sufficient evidence against it), what’s your alternative going to be? Actually, three possibilities exist for the second (or alternative) hypothesis, denoted H a . Here they are, along with their shorthand notations in the context of the pie example:

The population parameter is not equal to the claimed value

image1.png

The population parameter is greater than the claimed value

image2.png

The population parameter is less than the claimed value

image3.png

Which alternative hypothesis you choose in setting up your hypothesis test depends on what you’re interested in concluding, should you have enough evidence to refute the null hypothesis (the claim). The alternative hypothesis should be decided upon before collecting or looking at any data, so as not to influence the results.

For example, if you want to test whether a company is correct in claiming its pie takes five minutes to make and it doesn’t matter whether the actual average time is more or less than that, you use the not-equal-to alternative. Your hypotheses for that test would be

image4.png

If you only want to see whether the time turns out to be greater than what the company claims (that is, whether the company is falsely advertising its quick prep time), you use the greater-than alternative, and your two hypotheses are

image5.png

Finally, say you work for the company marketing the pie, and you think the pie can be made in less than five minutes (and could be marketed by the company as such). The less-than alternative is the one you want, and your two hypotheses would be

image6.png

How do you know which hypothesis to put in H 0 and which one to put in H a ? Typically, the null hypothesis says that nothing new is happening; the previous result is the same now as it was before, or the groups have the same average (their difference is equal to zero). In general, you assume that people’s claims are true until proven otherwise. So the question becomes: Can you prove otherwise? In other words, can you show sufficient evidence to reject H 0 ?

About This Article

This article is from the book:.

  • Statistics For Dummies ,

About the book author:

Deborah J. Rumsey , PhD, is an Auxiliary Professor and Statistics Education Specialist at The Ohio State University. She is the author of Statistics For Dummies, Statistics II For Dummies, Statistics Workbook For Dummies, and Probability For Dummies.

This article can be found in the category:

  • Statistics ,
  • Statistics For Dummies Cheat Sheet
  • Checking Out Statistical Confidence Interval Critical Values
  • Handling Statistical Hypothesis Tests
  • Statistically Figuring Sample Size
  • Surveying Statistical Confidence Intervals
  • View All Articles From Book

PrepScholar

Choose Your Test

  • Search Blogs By Category
  • College Admissions
  • AP and IB Exams
  • GPA and Coursework

What Is a Hypothesis and How Do I Write One?

author image

General Education

body-glowing-question-mark

Think about something strange and unexplainable in your life. Maybe you get a headache right before it rains, or maybe you think your favorite sports team wins when you wear a certain color. If you wanted to see whether these are just coincidences or scientific fact, you would form a hypothesis, then create an experiment to see whether that hypothesis is true or not.

But what is a hypothesis, anyway? If you’re not sure about what a hypothesis is--or how to test for one!--you’re in the right place. This article will teach you everything you need to know about hypotheses, including: 

  • Defining the term “hypothesis” 
  • Providing hypothesis examples 
  • Giving you tips for how to write your own hypothesis

So let’s get started!

body-picture-ask-sign

What Is a Hypothesis?

Merriam Webster defines a hypothesis as “an assumption or concession made for the sake of argument.” In other words, a hypothesis is an educated guess . Scientists make a reasonable assumption--or a hypothesis--then design an experiment to test whether it’s true or not. Keep in mind that in science, a hypothesis should be testable. You have to be able to design an experiment that tests your hypothesis in order for it to be valid. 

As you could assume from that statement, it’s easy to make a bad hypothesis. But when you’re holding an experiment, it’s even more important that your guesses be good...after all, you’re spending time (and maybe money!) to figure out more about your observation. That’s why we refer to a hypothesis as an educated guess--good hypotheses are based on existing data and research to make them as sound as possible.

Hypotheses are one part of what’s called the scientific method .  Every (good) experiment or study is based in the scientific method. The scientific method gives order and structure to experiments and ensures that interference from scientists or outside influences does not skew the results. It’s important that you understand the concepts of the scientific method before holding your own experiment. Though it may vary among scientists, the scientific method is generally made up of six steps (in order):

  • Observation
  • Asking questions
  • Forming a hypothesis
  • Analyze the data
  • Communicate your results

You’ll notice that the hypothesis comes pretty early on when conducting an experiment. That’s because experiments work best when they’re trying to answer one specific question. And you can’t conduct an experiment until you know what you’re trying to prove!

Independent and Dependent Variables 

After doing your research, you’re ready for another important step in forming your hypothesis: identifying variables. Variables are basically any factor that could influence the outcome of your experiment . Variables have to be measurable and related to the topic being studied.

There are two types of variables:  independent variables and dependent variables. I ndependent variables remain constant . For example, age is an independent variable; it will stay the same, and researchers can look at different ages to see if it has an effect on the dependent variable. 

Speaking of dependent variables... dependent variables are subject to the influence of the independent variable , meaning that they are not constant. Let’s say you want to test whether a person’s age affects how much sleep they need. In that case, the independent variable is age (like we mentioned above), and the dependent variable is how much sleep a person gets. 

Variables will be crucial in writing your hypothesis. You need to be able to identify which variable is which, as both the independent and dependent variables will be written into your hypothesis. For instance, in a study about exercise, the independent variable might be the speed at which the respondents walk for thirty minutes, and the dependent variable would be their heart rate. In your study and in your hypothesis, you’re trying to understand the relationship between the two variables.

Elements of a Good Hypothesis

The best hypotheses start by asking the right questions . For instance, if you’ve observed that the grass is greener when it rains twice a week, you could ask what kind of grass it is, what elevation it’s at, and if the grass across the street responds to rain in the same way. Any of these questions could become the backbone of experiments to test why the grass gets greener when it rains fairly frequently.

As you’re asking more questions about your first observation, make sure you’re also making more observations . If it doesn’t rain for two weeks and the grass still looks green, that’s an important observation that could influence your hypothesis. You'll continue observing all throughout your experiment, but until the hypothesis is finalized, every observation should be noted.

Finally, you should consult secondary research before writing your hypothesis . Secondary research is comprised of results found and published by other people. You can usually find this information online or at your library. Additionally, m ake sure the research you find is credible and related to your topic. If you’re studying the correlation between rain and grass growth, it would help you to research rain patterns over the past twenty years for your county, published by a local agricultural association. You should also research the types of grass common in your area, the type of grass in your lawn, and whether anyone else has conducted experiments about your hypothesis. Also be sure you’re checking the quality of your research . Research done by a middle school student about what minerals can be found in rainwater would be less useful than an article published by a local university.

body-pencil-notebook-writing

Writing Your Hypothesis

Once you’ve considered all of the factors above, you’re ready to start writing your hypothesis. Hypotheses usually take a certain form when they’re written out in a research report.

When you boil down your hypothesis statement, you are writing down your best guess and not the question at hand . This means that your statement should be written as if it is fact already, even though you are simply testing it.

The reason for this is that, after you have completed your study, you'll either accept or reject your if-then or your null hypothesis. All hypothesis testing examples should be measurable and able to be confirmed or denied. You cannot confirm a question, only a statement! 

In fact, you come up with hypothesis examples all the time! For instance, when you guess on the outcome of a basketball game, you don’t say, “Will the Miami Heat beat the Boston Celtics?” but instead, “I think the Miami Heat will beat the Boston Celtics.” You state it as if it is already true, even if it turns out you’re wrong. You do the same thing when writing your hypothesis.

Additionally, keep in mind that hypotheses can range from very specific to very broad.  These hypotheses can be specific, but if your hypothesis testing examples involve a broad range of causes and effects, your hypothesis can also be broad.  

body-hand-number-two

The Two Types of Hypotheses

Now that you understand what goes into a hypothesis, it’s time to look more closely at the two most common types of hypothesis: the if-then hypothesis and the null hypothesis.

#1: If-Then Hypotheses

First of all, if-then hypotheses typically follow this formula:

If ____ happens, then ____ will happen.

The goal of this type of hypothesis is to test the causal relationship between the independent and dependent variable. It’s fairly simple, and each hypothesis can vary in how detailed it can be. We create if-then hypotheses all the time with our daily predictions. Here are some examples of hypotheses that use an if-then structure from daily life: 

  • If I get enough sleep, I’ll be able to get more work done tomorrow.
  • If the bus is on time, I can make it to my friend’s birthday party. 
  • If I study every night this week, I’ll get a better grade on my exam. 

In each of these situations, you’re making a guess on how an independent variable (sleep, time, or studying) will affect a dependent variable (the amount of work you can do, making it to a party on time, or getting better grades). 

You may still be asking, “What is an example of a hypothesis used in scientific research?” Take one of the hypothesis examples from a real-world study on whether using technology before bed affects children’s sleep patterns. The hypothesis read s:

“We hypothesized that increased hours of tablet- and phone-based screen time at bedtime would be inversely correlated with sleep quality and child attention.”

It might not look like it, but this is an if-then statement. The researchers basically said, “If children have more screen usage at bedtime, then their quality of sleep and attention will be worse.” The sleep quality and attention are the dependent variables and the screen usage is the independent variable. (Usually, the independent variable comes after the “if” and the dependent variable comes after the “then,” as it is the independent variable that affects the dependent variable.) This is an excellent example of how flexible hypothesis statements can be, as long as the general idea of “if-then” and the independent and dependent variables are present.

#2: Null Hypotheses

Your if-then hypothesis is not the only one needed to complete a successful experiment, however. You also need a null hypothesis to test it against. In its most basic form, the null hypothesis is the opposite of your if-then hypothesis . When you write your null hypothesis, you are writing a hypothesis that suggests that your guess is not true, and that the independent and dependent variables have no relationship .

One null hypothesis for the cell phone and sleep study from the last section might say: 

“If children have more screen usage at bedtime, their quality of sleep and attention will not be worse.” 

In this case, this is a null hypothesis because it’s asking the opposite of the original thesis! 

Conversely, if your if-then hypothesis suggests that your two variables have no relationship, then your null hypothesis would suggest that there is one. So, pretend that there is a study that is asking the question, “Does the amount of followers on Instagram influence how long people spend on the app?” The independent variable is the amount of followers, and the dependent variable is the time spent. But if you, as the researcher, don’t think there is a relationship between the number of followers and time spent, you might write an if-then hypothesis that reads:

“If people have many followers on Instagram, they will not spend more time on the app than people who have less.”

In this case, the if-then suggests there isn’t a relationship between the variables. In that case, one of the null hypothesis examples might say:

“If people have many followers on Instagram, they will spend more time on the app than people who have less.”

You then test both the if-then and the null hypothesis to gauge if there is a relationship between the variables, and if so, how much of a relationship. 

feature_tips

4 Tips to Write the Best Hypothesis

If you’re going to take the time to hold an experiment, whether in school or by yourself, you’re also going to want to take the time to make sure your hypothesis is a good one. The best hypotheses have four major elements in common: plausibility, defined concepts, observability, and general explanation.

#1: Plausibility

At first glance, this quality of a hypothesis might seem obvious. When your hypothesis is plausible, that means it’s possible given what we know about science and general common sense. However, improbable hypotheses are more common than you might think. 

Imagine you’re studying weight gain and television watching habits. If you hypothesize that people who watch more than  twenty hours of television a week will gain two hundred pounds or more over the course of a year, this might be improbable (though it’s potentially possible). Consequently, c ommon sense can tell us the results of the study before the study even begins.

Improbable hypotheses generally go against  science, as well. Take this hypothesis example: 

“If a person smokes one cigarette a day, then they will have lungs just as healthy as the average person’s.” 

This hypothesis is obviously untrue, as studies have shown again and again that cigarettes negatively affect lung health. You must be careful that your hypotheses do not reflect your own personal opinion more than they do scientifically-supported findings. This plausibility points to the necessity of research before the hypothesis is written to make sure that your hypothesis has not already been disproven.

#2: Defined Concepts

The more advanced you are in your studies, the more likely that the terms you’re using in your hypothesis are specific to a limited set of knowledge. One of the hypothesis testing examples might include the readability of printed text in newspapers, where you might use words like “kerning” and “x-height.” Unless your readers have a background in graphic design, it’s likely that they won’t know what you mean by these terms. Thus, it’s important to either write what they mean in the hypothesis itself or in the report before the hypothesis.

Here’s what we mean. Which of the following sentences makes more sense to the common person?

If the kerning is greater than average, more words will be read per minute.

If the space between letters is greater than average, more words will be read per minute.

For people reading your report that are not experts in typography, simply adding a few more words will be helpful in clarifying exactly what the experiment is all about. It’s always a good idea to make your research and findings as accessible as possible. 

body-blue-eye

Good hypotheses ensure that you can observe the results. 

#3: Observability

In order to measure the truth or falsity of your hypothesis, you must be able to see your variables and the way they interact. For instance, if your hypothesis is that the flight patterns of satellites affect the strength of certain television signals, yet you don’t have a telescope to view the satellites or a television to monitor the signal strength, you cannot properly observe your hypothesis and thus cannot continue your study.

Some variables may seem easy to observe, but if you do not have a system of measurement in place, you cannot observe your hypothesis properly. Here’s an example: if you’re experimenting on the effect of healthy food on overall happiness, but you don’t have a way to monitor and measure what “overall happiness” means, your results will not reflect the truth. Monitoring how often someone smiles for a whole day is not reasonably observable, but having the participants state how happy they feel on a scale of one to ten is more observable. 

In writing your hypothesis, always keep in mind how you'll execute the experiment.

#4: Generalizability 

Perhaps you’d like to study what color your best friend wears the most often by observing and documenting the colors she wears each day of the week. This might be fun information for her and you to know, but beyond you two, there aren’t many people who could benefit from this experiment. When you start an experiment, you should note how generalizable your findings may be if they are confirmed. Generalizability is basically how common a particular phenomenon is to other people’s everyday life.

Let’s say you’re asking a question about the health benefits of eating an apple for one day only, you need to realize that the experiment may be too specific to be helpful. It does not help to explain a phenomenon that many people experience. If you find yourself with too specific of a hypothesis, go back to asking the big question: what is it that you want to know, and what do you think will happen between your two variables?

body-experiment-chemistry

Hypothesis Testing Examples

We know it can be hard to write a good hypothesis unless you’ve seen some good hypothesis examples. We’ve included four hypothesis examples based on some made-up experiments. Use these as templates or launch pads for coming up with your own hypotheses.

Experiment #1: Students Studying Outside (Writing a Hypothesis)

You are a student at PrepScholar University. When you walk around campus, you notice that, when the temperature is above 60 degrees, more students study in the quad. You want to know when your fellow students are more likely to study outside. With this information, how do you make the best hypothesis possible?

You must remember to make additional observations and do secondary research before writing your hypothesis. In doing so, you notice that no one studies outside when it’s 75 degrees and raining, so this should be included in your experiment. Also, studies done on the topic beforehand suggested that students are more likely to study in temperatures less than 85 degrees. With this in mind, you feel confident that you can identify your variables and write your hypotheses:

If-then: “If the temperature in Fahrenheit is less than 60 degrees, significantly fewer students will study outside.”

Null: “If the temperature in Fahrenheit is less than 60 degrees, the same number of students will study outside as when it is more than 60 degrees.”

These hypotheses are plausible, as the temperatures are reasonably within the bounds of what is possible. The number of people in the quad is also easily observable. It is also not a phenomenon specific to only one person or at one time, but instead can explain a phenomenon for a broader group of people.

To complete this experiment, you pick the month of October to observe the quad. Every day (except on the days where it’s raining)from 3 to 4 PM, when most classes have released for the day, you observe how many people are on the quad. You measure how many people come  and how many leave. You also write down the temperature on the hour. 

After writing down all of your observations and putting them on a graph, you find that the most students study on the quad when it is 70 degrees outside, and that the number of students drops a lot once the temperature reaches 60 degrees or below. In this case, your research report would state that you accept or “failed to reject” your first hypothesis with your findings.

Experiment #2: The Cupcake Store (Forming a Simple Experiment)

Let’s say that you work at a bakery. You specialize in cupcakes, and you make only two colors of frosting: yellow and purple. You want to know what kind of customers are more likely to buy what kind of cupcake, so you set up an experiment. Your independent variable is the customer’s gender, and the dependent variable is the color of the frosting. What is an example of a hypothesis that might answer the question of this study?

Here’s what your hypotheses might look like: 

If-then: “If customers’ gender is female, then they will buy more yellow cupcakes than purple cupcakes.”

Null: “If customers’ gender is female, then they will be just as likely to buy purple cupcakes as yellow cupcakes.”

This is a pretty simple experiment! It passes the test of plausibility (there could easily be a difference), defined concepts (there’s nothing complicated about cupcakes!), observability (both color and gender can be easily observed), and general explanation ( this would potentially help you make better business decisions ).

body-bird-feeder

Experiment #3: Backyard Bird Feeders (Integrating Multiple Variables and Rejecting the If-Then Hypothesis)

While watching your backyard bird feeder, you realized that different birds come on the days when you change the types of seeds. You decide that you want to see more cardinals in your backyard, so you decide to see what type of food they like the best and set up an experiment. 

However, one morning, you notice that, while some cardinals are present, blue jays are eating out of your backyard feeder filled with millet. You decide that, of all of the other birds, you would like to see the blue jays the least. This means you'll have more than one variable in your hypothesis. Your new hypotheses might look like this: 

If-then: “If sunflower seeds are placed in the bird feeders, then more cardinals will come than blue jays. If millet is placed in the bird feeders, then more blue jays will come than cardinals.”

Null: “If either sunflower seeds or millet are placed in the bird, equal numbers of cardinals and blue jays will come.”

Through simple observation, you actually find that cardinals come as often as blue jays when sunflower seeds or millet is in the bird feeder. In this case, you would reject your “if-then” hypothesis and “fail to reject” your null hypothesis . You cannot accept your first hypothesis, because it’s clearly not true. Instead you found that there was actually no relation between your different variables. Consequently, you would need to run more experiments with different variables to see if the new variables impact the results.

Experiment #4: In-Class Survey (Including an Alternative Hypothesis)

You’re about to give a speech in one of your classes about the importance of paying attention. You want to take this opportunity to test a hypothesis you’ve had for a while: 

If-then: If students sit in the first two rows of the classroom, then they will listen better than students who do not.

Null: If students sit in the first two rows of the classroom, then they will not listen better or worse than students who do not.

You give your speech and then ask your teacher if you can hand out a short survey to the class. On the survey, you’ve included questions about some of the topics you talked about. When you get back the results, you’re surprised to see that not only do the students in the first two rows not pay better attention, but they also scored worse than students in other parts of the classroom! Here, both your if-then and your null hypotheses are not representative of your findings. What do you do?

This is when you reject both your if-then and null hypotheses and instead create an alternative hypothesis . This type of hypothesis is used in the rare circumstance that neither of your hypotheses is able to capture your findings . Now you can use what you’ve learned to draft new hypotheses and test again! 

Key Takeaways: Hypothesis Writing

The more comfortable you become with writing hypotheses, the better they will become. The structure of hypotheses is flexible and may need to be changed depending on what topic you are studying. The most important thing to remember is the purpose of your hypothesis and the difference between the if-then and the null . From there, in forming your hypothesis, you should constantly be asking questions, making observations, doing secondary research, and considering your variables. After you have written your hypothesis, be sure to edit it so that it is plausible, clearly defined, observable, and helpful in explaining a general phenomenon.

Writing a hypothesis is something that everyone, from elementary school children competing in a science fair to professional scientists in a lab, needs to know how to do. Hypotheses are vital in experiments and in properly executing the scientific method . When done correctly, hypotheses will set up your studies for success and help you to understand the world a little better, one experiment at a time.

body-whats-next-post-it-note

What’s Next?

If you’re studying for the science portion of the ACT, there’s definitely a lot you need to know. We’ve got the tools to help, though! Start by checking out our ultimate study guide for the ACT Science subject test. Once you read through that, be sure to download our recommended ACT Science practice tests , since they’re one of the most foolproof ways to improve your score. (And don’t forget to check out our expert guide book , too.)

If you love science and want to major in a scientific field, you should start preparing in high school . Here are the science classes you should take to set yourself up for success.

If you’re trying to think of science experiments you can do for class (or for a science fair!), here’s a list of 37 awesome science experiments you can do at home

Trending Now

How to Get Into Harvard and the Ivy League

How to Get a Perfect 4.0 GPA

How to Write an Amazing College Essay

What Exactly Are Colleges Looking For?

ACT vs. SAT: Which Test Should You Take?

When should you take the SAT or ACT?

Get Your Free

PrepScholar

Find Your Target SAT Score

Free Complete Official SAT Practice Tests

How to Get a Perfect SAT Score, by an Expert Full Scorer

Score 800 on SAT Math

Score 800 on SAT Reading and Writing

How to Improve Your Low SAT Score

Score 600 on SAT Math

Score 600 on SAT Reading and Writing

Find Your Target ACT Score

Complete Official Free ACT Practice Tests

How to Get a Perfect ACT Score, by a 36 Full Scorer

Get a 36 on ACT English

Get a 36 on ACT Math

Get a 36 on ACT Reading

Get a 36 on ACT Science

How to Improve Your Low ACT Score

Get a 24 on ACT English

Get a 24 on ACT Math

Get a 24 on ACT Reading

Get a 24 on ACT Science

Stay Informed

Get the latest articles and test prep tips!

Follow us on Facebook (icon)

Ashley Sufflé Robinson has a Ph.D. in 19th Century English Literature. As a content writer for PrepScholar, Ashley is passionate about giving college-bound students the in-depth information they need to get into the school of their dreams.

Ask a Question Below

Have any questions about this article or other topics? Ask below and we'll reply!

Learn How To Write A Hypothesis For Your Next Research Project!

blog image

Undoubtedly, research plays a crucial role in substantiating or refuting our assumptions. These assumptions act as potential answers to our questions. Such assumptions, also known as hypotheses, are considered key aspects of research. In this blog, we delve into the significance of hypotheses. And provide insights on how to write them effectively. So, let’s dive in and explore the art of writing hypotheses together.

Table of Contents

What is a Hypothesis?

A hypothesis is a crucial starting point in scientific research. It is an educated guess about the relationship between two or more variables. In other words, a hypothesis acts as a foundation for a researcher to build their study.

Here are some examples of well-crafted hypotheses:

  • Increased exposure to natural sunlight improves sleep quality in adults.

A positive relationship between natural sunlight exposure and sleep quality in adult individuals.

  • Playing puzzle games on a regular basis enhances problem-solving abilities in children.

Engaging in frequent puzzle gameplay leads to improved problem-solving skills in children.

  • Students and improved learning hecks.

S tudents using online  paper writing service  platforms (as a learning tool for receiving personalized feedback and guidance) will demonstrate improved writing skills. (compared to those who do not utilize such platforms).

  • The use of APA format in research papers. 

Using the  APA format  helps students stay organized when writing research papers. Organized students can focus better on their topics and, as a result, produce better quality work.

The Building Blocks of a Hypothesis

To better understand the concept of a hypothesis, let’s break it down into its basic components:

  • Variables . A hypothesis involves at least two variables. An independent variable and a dependent variable. The independent variable is the one being changed or manipulated, while the dependent variable is the one being measured or observed.
  • Relationship : A hypothesis proposes a relationship or connection between the variables. This could be a cause-and-effect relationship or a correlation between them.
  • Testability : A hypothesis should be testable and falsifiable, meaning it can be proven right or wrong through experimentation or observation.

Types of Hypotheses

When learning how to write a hypothesis, it’s essential to understand its main types. These include; alternative hypotheses and null hypotheses. In the following section, we explore both types of hypotheses with examples. 

Alternative Hypothesis (H1)

This kind of hypothesis suggests a relationship or effect between the variables. It is the main focus of the study. The researcher wants to either prove or disprove it. Many research divides this hypothesis into two subsections: 

  • Directional 

This type of H1 predicts a specific outcome. Many researchers use this hypothesis to explore the relationship between variables rather than the groups. 

  • Non-directional

You can take a guess from the name. This type of H1 does not provide a specific prediction for the research outcome. 

Here are some examples for your better understanding of how to write a hypothesis.

  • Consuming caffeine improves cognitive performance.  (This hypothesis predicts that there is a positive relationship between caffeine consumption and cognitive performance.)
  • Aerobic exercise leads to reduced blood pressure.  (This hypothesis suggests that engaging in aerobic exercise results in lower blood pressure readings.)
  • Exposure to nature reduces stress levels among employees.  (Here, the hypothesis proposes that employees exposed to natural environments will experience decreased stress levels.)
  • Listening to classical music while studying increases memory retention.  (This hypothesis speculates that studying with classical music playing in the background boosts students’ ability to retain information.)
  • Early literacy intervention improves reading skills in children.  (This hypothesis claims that providing early literacy assistance to children results in enhanced reading abilities.)
  • Time management in nursing students. ( Students who use a  nursing research paper writing service  have more time to focus on their studies and can achieve better grades in other subjects. )

Null Hypothesis (H0)

A null hypothesis assumes no relationship or effect between the variables. If the alternative hypothesis is proven to be false, the null hypothesis is considered to be true. Usually a null hypothesis shows no direct correlation between the defined variables. 

Here are some of the examples

  • The consumption of herbal tea has no effect on sleep quality.  (This hypothesis assumes that herbal tea consumption does not impact the quality of sleep.)
  • The number of hours spent playing video games is unrelated to academic performance.  (Here, the null hypothesis suggests that no relationship exists between video gameplay duration and academic achievement.)
  • Implementing flexible work schedules has no influence on employee job satisfaction.  (This hypothesis contends that providing flexible schedules does not affect how satisfied employees are with their jobs.)
  • Writing ability of a 7th grader is not affected by reading editorial example. ( There is no relationship between reading an  editorial example  and improving a 7th grader’s writing abilities.) 
  • The type of lighting in a room does not affect people’s mood.  (In this null hypothesis, there is no connection between the kind of lighting in a room and the mood of those present.)
  • The use of social media during break time does not impact productivity at work.  (This hypothesis proposes that social media usage during breaks has no effect on work productivity.)

As you learn how to write a hypothesis, remember that aiming for clarity, testability, and relevance to your research question is vital. By mastering this skill, you’re well on your way to conducting impactful scientific research. Good luck!

Importance of a Hypothesis in Research

A well-structured hypothesis is a vital part of any research project for several reasons:

  • It provides clear direction for the study by setting its focus and purpose.
  • It outlines expectations of the research, making it easier to measure results.
  • It helps identify any potential limitations in the study, allowing researchers to refine their approach.

In conclusion, a hypothesis plays a fundamental role in the research process. By understanding its concept and constructing a well-thought-out hypothesis, researchers lay the groundwork for a successful, scientifically sound investigation.

How to Write a Hypothesis?

Here are five steps that you can follow to write an effective hypothesis. 

Step 1: Identify Your Research Question

The first step in learning how to compose a hypothesis is to clearly define your research question. This question is the central focus of your study and will help you determine the direction of your hypothesis.

Step 2: Determine the Variables

When exploring how to write a hypothesis, it’s crucial to identify the variables involved in your study. You’ll need at least two variables:

  • Independent variable : The factor you manipulate or change in your experiment.
  • Dependent variable : The outcome or result you observe or measure, which is influenced by the independent variable.

Step 3: Build the Hypothetical Relationship

In understanding how to compose a hypothesis, constructing the relationship between the variables is key. Based on your research question and variables, predict the expected outcome or connection. This prediction should be specific, testable, and, if possible, expressed in the “If…then” format.

Step 4: Write the Null Hypothesis

When mastering how to write a hypothesis, it’s important to create a null hypothesis as well. The null hypothesis assumes no relationship or effect between the variables, acting as a counterpoint to your primary hypothesis.

Step 5: Review Your Hypothesis

Finally, when learning how to compose a hypothesis, it’s essential to review your hypothesis for clarity, testability, and relevance to your research question. Make any necessary adjustments to ensure it provides a solid basis for your study.

In conclusion, understanding how to write a hypothesis is crucial for conducting successful scientific research. By focusing on your research question and carefully building relationships between variables, you will lay a strong foundation for advancing research and knowledge in your field.

Hypothesis vs. Prediction: What’s the Difference?

Understanding the differences between a hypothesis and a prediction is crucial in scientific research. Often, these terms are used interchangeably, but they have distinct meanings and functions. This segment aims to clarify these differences and explain how to compose a hypothesis correctly, helping you improve the quality of your research projects.

Hypothesis: The Foundation of Your Research

A hypothesis is an educated guess about the relationship between two or more variables. It provides the basis for your research question and is a starting point for an experiment or observational study.

The critical elements for a hypothesis include:

  • Specificity: A clear and concise statement that describes the relationship between variables.
  • Testability: The ability to test the hypothesis through experimentation or observation.

To learn how to write a hypothesis, it’s essential to identify your research question first and then predict the relationship between the variables.

Prediction: The Expected Outcome

A prediction is a statement about a specific outcome you expect to see in your experiment or observational study. It’s derived from the hypothesis and provides a measurable way to test the relationship between variables.

Here’s an example of how to write a hypothesis and a related prediction:

  • Hypothesis: Consuming a high-sugar diet leads to weight gain.
  • Prediction: People who consume a high-sugar diet for six weeks will gain more weight than those who maintain a low-sugar diet during the same period.

Key Differences Between a Hypothesis and a Prediction

While a hypothesis and prediction are both essential components of scientific research, there are some key differences to keep in mind:

  • A hypothesis is an educated guess that suggests a relationship between variables, while a prediction is a specific and measurable outcome based on that hypothesis.
  • A hypothesis can give rise to multiple experiment or observational study predictions.

To conclude, understanding the differences between a hypothesis and a prediction, and learning how to write a hypothesis, are essential steps to form a robust foundation for your research. By creating clear, testable hypotheses along with specific, measurable predictions, you lay the groundwork for scientifically sound investigations.

Here’s a wrap-up for this guide on how to write a hypothesis. We’re confident this article was helpful for many of you. We understand that many students struggle with writing their school research . However, we hope to continue assisting you through our blog tutorial on writing different aspects of academic assignments.

For further information, you can check out our reverent blog or contact our professionals to avail amazing writing services. Paper perk experts tailor assignments to reflect your unique voice and perspectives. Our professionals make sure to stick around till your satisfaction. So what are you waiting for? Pick your required service and order away!

How to write a good hypothesis?

How to write a hypothesis in science, how to write a research hypothesis, how to write a null hypothesis, what is the format for a scientific hypothesis, how do you structure a proper hypothesis, can you provide an example of a hypothesis, what is the ideal hypothesis structure.

The ideal hypothesis structure includes the following;

  • A clear statement of the relationship between variables.
  • testable prediction.
  • falsifiability.

If your hypothesis has all of these, it is both scientifically sound and effective.

How to write a hypothesis for product management?

Writing a hypothesis for product management involves a simple process:

  • First, identify the problem or question you want to address.
  • State your assumption or belief about the solution to that problem. .
  • Make a hypothesis by predicting a specific outcome based on your assumption.
  • Make sure your hypothesis is specific, measurable, and testable.
  • Use experiments, data analysis, or user feedback to validate your hypothesis.
  • Make informed decisions for product improvement.

Following these steps will help you in effectively formulating hypotheses for product management.

Order Original Papers & Essays

Your First Custom Paper Sample is on Us!

timely deliveries

Timely Deliveries

premium quality

No Plagiarism & AI

unlimited revisions

100% Refund

Try Our Free Paper Writing Service

Related blogs.

blog-img

Connections with Writers and support

safe service

Privacy and Confidentiality Guarantee

quality-score

Average Quality Score

Back to blog home

Hypothesis testing explained in 4 parts, yuzheng sun, phd.

As data scientists, Hypothesis Testing is expected to be well understood, but often not in reality. It is mainly because our textbooks blend two schools of thought – p-value and significance testing vs. hypothesis testing – inconsistently.

For example, some questions are not obvious unless you have thought through them before:

Are power or beta dependent on the null hypothesis?

Can we accept the null hypothesis? Why?

How does MDE change with alpha holding beta constant?

Why do we use standard error in Hypothesis Testing but not the standard deviation?

Why can’t we be specific about the alternative hypothesis so we can properly model it?

Why is the fundamental tradeoff of the Hypothesis Testing about mistake vs. discovery, not about alpha vs. beta?

Addressing this problem is not easy. The topic of Hypothesis Testing is convoluted. In this article, there are 10 concepts that we will introduce incrementally, aid you with visualizations, and include intuitive explanations. After this article, you will have clear answers to the questions above that you truly understand on a first-principle level and explain these concepts well to your stakeholders.

We break this article into four parts.

Set up the question properly using core statistical concepts, and connect them to Hypothesis Testing, while striking a balance between technically correct and simplicity. Specifically, 

We emphasize a clear distinction between the standard deviation and the standard error, and why the latter is used in Hypothesis Testing

We explain fully when can you “accept” a hypothesis, when shall you say “failing to reject” instead of “accept”, and why

Introduce alpha, type I error, and the critical value with the null hypothesis

Introduce beta, type II error, and power with the alternative hypothesis

Introduce minimum detectable effects and the relationship between the factors with power calculations , with a high-level summary and practical recommendations

Part 1 - Hypothesis Testing, the central limit theorem, population, sample, standard deviation, and standard error

In Hypothesis Testing, we begin with a null hypothesis , which generally asserts that there is no effect between our treatment and control groups. Commonly, this is expressed as the difference in means between the treatment and control groups being zero.

The central limit theorem suggests an important property of this difference in means — given a sufficiently large sample size, the underlying distribution of this difference in means will approximate a normal distribution, regardless of the population's original distribution. There are two notes:

1. The distribution of the population for the treatment and control groups can vary, but the observed means (when you observe many samples and calculate many means) are always normally distributed with a large enough sample. Below is a chart, where the n=10 and n=30 correspond to the underlying distribution of the sample means.

Central Limit Theorem

2. Pay attention to “the underlying distribution”. Standard deviation vs. standard error is a potentially confusing concept. Let’s clarify.

Standard deviation vs. Standard error

Let’s declare our null hypothesis as having no treatment effect. Then, to simplify, let’s propose the following normal distribution with a mean of 0 and a standard deviation of 1 as the range of possible outcomes with probabilities associated with this null hypothesis.

Standard Deviation v Standard Error

The language around population, sample, group, and estimators can get confusing. Again, to simplify, let’s forget that the null hypothesis is about the mean estimator, and declare that we can either observe the mean hypothesis once or many times. When we observe it many times, it forms a sample*, and our goal is to make decisions based on this sample.

* For technical folks, the observation is actually about a single sample, many samples are a group, and the difference in groups is the distribution we are talking about as the mean hypothesis. The red curve represents the distribution of the estimator of this difference, and then we can have another sample consisting of many observations of this estimator. In my simplified language, the red curve is the distribution of the estimator, and the blue curve with sample size is the repeated observations of it. If you have a better way to express these concepts without causing confusiongs, please suggest.

This probability density function means if there is one realization from this distribution, the realitization can be anywhere on the x-axis, with the relative likelihood on the y-axis.

If we draw multiple observations , they form a sample . Each observation in this sample follows the property of this underlying distribution – more likely to be close to 0, and equally likely to be on either side, which makes the odds of positive and negative cancel each other out, so the mean of this sample is even more centered around 0.

We use the standard error to represent the error of our “sample mean” . 

The standard error = the standard deviation of the observed sample / sqrt (sample size). 

For a sample size of 30, the standard error is roughly 0.18. Compared with the underlying distribution, the distribution of the sample mean is much narrower.

Standard Deviation and Standard Error 2 Images

In Hypothesis Testing, we try to draw some conclusions – is there a treatment effect or not? – based on a sample. So when we talk about alpha and beta, which are the probabilities of type I and type II errors , we are talking about the probabilities based on the plot of sample means and standard error .

Part 2, The null hypothesis: alpha and the critical value

From Part 1, we stated that a null hypothesis is commonly expressed as the difference in means between the treatment and control groups being zero.

Without loss of generality*, let’s assume the underlying distribution of our null hypothesis is mean 0 and standard deviation 1

Then the sample mean of the null hypothesis is 0 and the standard error of 1/√ n, where n is the sample size.

When the sample size is 30, this distribution has a standard error of ≈0.18 looks like the below. 

Null Hypothesis YZ

*: A note for the technical readers: The null hypothesis is about the difference in means, but here, without complicating things, we made the subtle change to just draw the distribution of this “estimator of this difference in means”. Everything below speaks to this “estimator”.

The reason we have the null hypothesis is that we want to make judgments, particularly whether a  treatment effect exists. But in the world of probabilities, any observation, and any sample mean can happen, with different probabilities. So we need a decision rule to help us quantify our risk of making mistakes.

The decision rule is, let’s set a threshold. When the sample mean is above the threshold, we reject the null hypothesis; when the sample mean is below the threshold, we accept the null hypothesis.

Accepting a hypothesis vs. failing to reject a hypothesis

It’s worth noting that you may have heard of “we never accept a hypothesis, we just fail to reject a hypothesis” and be subconsciously confused by it. The deep reason is that modern textbooks do an inconsistent blend of Fisher’s significance testing and Neyman-Pearson’s Hypothesis Testing definitions and ignore important caveats ( ref ). To clarify:

First of all, we can never “prove” a particular hypothesis given any observations, because there are infinitely many true hypotheses (with different probabilities) given an observation. We will visualize it in Part 3.

Second, “accepting” a hypothesis does not mean that you believe in it, but only that you act as if it were true. So technically, there is no problem with “accepting” a hypothesis.

But, third, when we talk about p-values and confidence intervals, “accepting” the null hypothesis is at best confusing. The reason is that “the p-value above the threshold” just means we failed to reject the null hypothesis. In the strict Fisher’s p-value framework, there is no alternative hypothesis. While we have a clear criterion for rejecting the null hypothesis (p < alpha), we don't have a similar clear-cut criterion for "accepting" the null hypothesis based on beta.

So the dangers in calling “accepting a hypothesis” in the p-value setting are:

Many people misinterpret “accepting” the null hypothesis as “proving” the null hypothesis, which is wrong; 

“Accepting the null hypothesis” is not rigorously defined, and doesn’t speak to the purpose of the test, which is about whether or not we reject the null hypothesis. 

In this article, we will stay consistent within the Neyman-Pearson framework , where “accepting” a hypothesis is legal and necessary. Otherwise, we cannot draw any distributions without acting as if some hypothesis was true.

You don’t need to know the name Neyman-Pearson to understand anything, but pay attention to our language, as we choose our words very carefully to avoid mistakes and confusion.

So far, we have constructed a simple world of one hypothesis as the only truth, and a decision rule with two potential outcomes – one of the outcomes is “reject the null hypothesis when it is true” and the other outcome is “accept the null hypothesis when it is true”. The likelihoods of both outcomes come from the distribution where the null hypothesis is true.

Later, when we introduce the alternative hypothesis and MDE, we will gradually walk into the world of infinitely many alternative hypotheses and visualize why we cannot “prove” a hypothesis.

We save the distinction between the p-value/significance framework vs. Hypothesis Testing in another article where you will have the full picture.

Type I error, alpha, and the critical value

We’re able to construct a distribution of the sample mean for this null hypothesis using the standard error. Since we only have the null hypothesis as the truth of our universe, we can only make one type of mistake – falsely rejecting the null hypothesis when it is true. This is the type I error , and the probability is called alpha . Suppose we want alpha to be 5%. We can calculate the threshold required to make it happen. This threshold is called the critical value . Below is the chart we further constructed with our sample of 30.

Type I Error Alpha Critical Value

In this chart, alpha is the blue area under the curve. The critical value is 0.3. If our sample mean is above 0.3, we reject the null hypothesis. We have a 5% chance of making the type I error.

Type I error: Falsely rejecting the null hypothesis when the null hypothesis is true

Alpha: The probability of making a Type I error

Critical value: The threshold to determine whether the null hypothesis is to be rejected or not

Part 3, The alternative hypothesis: beta and power

You may have noticed in part 2 that we only spoke to Type I error – rejecting the null hypothesis when it is true. What about the Type II error – falsely accepting the null hypothesis when it is not true?

But it is weird to call “accepting” false unless we know the truth. So we need an alternative hypothesis which serves as the alternative truth. 

Alternative hypotheses are theoretical constructs

There is an important concept that most textbooks fail to emphasize – that is, you can have infinitely many alternative hypotheses for a given null hypothesis, we just choose one. None of them are more special or “real” than the others. 

Let’s visualize it with an example. Suppose we observed a sample mean of 0.51, what is the true alternative hypothesis?

Alternative hypotheses theoretical

With this visualization, you can see why we have “infinitely many alternative hypotheses” because, given the observation, there is an infinite number of alternative hypotheses (plus the null hypothesis) that can be true, each with different probabilities. Some are more likely than others, but all are possible.

Remember, alternative hypotheses are a theoretical construct. We choose one particular alternative hypothesis to calculate certain probabilities. By now, we should have more understanding of why we cannot “accept” the null hypothesis given an observation. We can’t prove that the null hypothesis is true, we just fail to accept it given the observation and our pre-determined decision rule. 

We will fully reconcile this idea of picking one alternative hypothesis out of the world of infinite possibilities when we talk about MDE. The idea of “accept” vs. “fail to reject” is deeper, and we won’t cover it fully in this article. We will do so when we have an article about the p-value and the confidence interval.

Type II error and Beta

For the sake of simplicity and easy comparison, let’s choose an alternative hypothesis with a mean of 0.5, and a standard deviation of

1. Again, with a sample size of 30, the standard error ≈0.18. There are now two potential “truths” in our simple universe.

Type II Error and Beta

Remember from the null hypothesis, we want alpha to be 5% so the corresponding critical value is 0.30. We modify our rule as follows:

If the observation is above 0.30, we reject the null hypothesis and accept the alternative hypothesis ; 

If the observation is below 0.30, we accept the null hypothesis and reject the alternative hypothesis .

Reject alternative and accept null

With the introduction of the alternative hypothesis, the alternative “(hypothesized) truth”, we can call “accepting the null hypothesis and rejecting the alternative hypothesis” a mistake – the Type II error. We can also calculate the probability of this mistake. This is called beta, which is illustrated by the red area below.

Null hypothesis alternative hypothesis

From the visualization, we can see that beta is conditional on the alternative hypothesis and the critical value. Let’s elaborate on these two relationships one by one, very explicitly, as both of them are important.

First, Let’s visualize how beta changes with the mean of the alternative hypothesis by setting another alternative hypothesis where mean = 1 instead of 0.5

Sample Size 30 for Null and Alternative Hypothesis

Beta change from 13.7% to 0.0%. Namely, beta is the probability of falsely rejecting a particular alternative hypothesis when we assume it is true. When we assume a different alternative hypothesis is true, we get a different beta. So strictly speaking, beta only speaks to the probability of falsely rejecting a particular alternative hypothesis when it is true . Nothing else. It’s only under other conditions, that “rejecting the alternative hypothesis” implies “accepting” the null hypothesis or “failing to accept the null hypothesis”. We will further elaborate when we talk about p-value and confidence interval in another article. But what we talked about so far is true and enough for understanding power.

Second, there is a relationship between alpha and beta. Namely, given the null hypothesis and the alternative hypothesis, alpha would determine the critical value, and the critical value determines beta. This speaks to the tradeoff between mistake and discovery. 

If we tolerate more alpha, we will have a smaller critical value, and for the same beta, we can detect a smaller alternative hypothesis

If we tolerate more beta, we can also detect a smaller alternative hypothesis. 

In short, if we tolerate more mistakes (either Type I or Type II), we can detect a smaller true effect. Mistake vs. discovery is the fundamental tradeoff of Hypothesis Testing.

So tolerating more mistakes leads to more chance of discovery. This is the concept of MDE that we will elaborate on in part 4.

Finally, we’re ready to define power. Power is an important and fundamental topic in statistical testing, and we’ll explain the concept in three different ways.

Three ways to understand power

First, the technical definition of power is 1−β. It represents that given an alternative hypothesis and given our null, sample size, and decision rule (alpha = 0.05), the probability is that we accept this particular hypothesis. We visualize the yellow area below.

Understand Power Hypothesis

Second, power is really intuitive in its definition. A real-world example is trying to determine the most popular car manufacturer in the world. If I observe one car and see one brand, my observation is not very powerful. But if I observe a million cars, my observation is very powerful. Powerful tests mean that I have a high chance of detecting a true effect.

Third, to illustrate the two concepts concisely, let’s run a visualization by just changing the sample size from 30 to 100 and see how power increases from 86.3% to almost 100%.

Same size from 30 to 100

As the graph shows, we can easily see that power increases with sample size . The reason is that the distribution of both the null hypothesis and the alternative hypothesis became narrower as their sample means got more accurate. We are less likely to make either a type I error (which reduces the critical value) or a type II error.  

Type II error: Failing to reject the null hypothesis when the alternative hypothesis is true

Beta: The probability of making a type II error

Power: The ability of the test to detect a true effect when it’s there

Part 4, Power calculation: MDE

The relationship between mde, alternative hypothesis, and power.

Now, we are ready to tackle the most nuanced definition of them all: Minimum detectable effect (MDE). First, let’s make the sample mean of the alternative hypothesis explicit on the graph with a red dotted line.

Relationship between MDE

What if we keep the same sample size, but want power to be 80%? This is when we recall the previous chapter that “alternative hypotheses are theoretical constructs”. We can have a different alternative that corresponds to 80% power. After some calculations, we discovered that when it’s the alternative hypothesis with mean = 0.45 (if we keep the standard deviation to be 1).

MDE Alternative Hypothesis pt 2

This is where we reconcile the concept of “infinitely many alternative hypotheses” with the concept of minimum detectable delta. Remember that in statistical testing, we want more power. The “ minimum ” in the “ minimum detectable effect”, is the minimum value of the mean of the alternative hypothesis that would give us 80% power. Any alternative hypothesis with a mean to the right of MDE gives us sufficient power.

In other words, there are indeed infinitely many alternative hypotheses to the right of this mean 0.45. The particular alternative hypothesis with a mean of 0.45 gives us the minimum value where power is sufficient. We call it the minimum detectable effect, or MDE.

Not enough power MDE

The complete definition of MDE from scratch

Let’s go through how we derived MDE from the beginning:

We fixed the distribution of sample means of the null hypothesis, and fixed sample size, so we can draw the blue distribution

For our decision rule, we require alpha to be 5%. We derived that the critical value shall be 0.30 to make 5% alpha happen

We fixed the alternative hypothesis to be normally distributed with a standard deviation of 1 so the standard error is 0.18, the mean can be anywhere as there are infinitely many alternative hypotheses

For our decision rule, we require beta to be 20% or less, so our power is 80% or more. 

We derived that the minimum value of the observed mean of the alternative hypothesis that we can detect with our decision rule is 0.45. Any value above 0.45 would give us sufficient power.

How MDE changes with sample size

Now, let’s tie everything together by increasing the sample size, holding alpha and beta constant, and see how MDE changes.

How MDE changes with sample size

Narrower distribution of the sample mean + holding alpha constant -> smaller critical value from 0.3 to 0.16

+ holding beta constant -> MDE decreases from 0.45 to 0.25

This is the other key takeaway:  The larger the sample size, the smaller of an effect we can detect, and the smaller the MDE.

This is a critical takeaway for statistical testing. It suggests that even for companies not with large sample sizes if their treatment effects are large, AB testing can reliably detect it.

Statistical Power Curve

Summary of Hypothesis Testing

Let’s review all the concepts together.

Assuming the null hypothesis is correct:

Alpha: When the null hypothesis is true, the probability of rejecting it

Critical value: The threshold to determine rejecting vs. accepting the null hypothesis

Assuming an alternative hypothesis is correct:

Beta: When the alternative hypothesis is true, the probability of rejecting it

Power: The chance that a real effect will produce significant results

Power calculation:

Minimum detectable effect (MDE): Given sample sizes and distributions, the minimum mean of alternative distribution that would give us the desired alpha and sufficient power (usually alpha = 0.05 and power >= 0.8)

Relationship among the factors, all else equal: Larger sample, more power; Larger sample, smaller MDE

Everything we talk about is under the Neyman-Pearson framework. There is no need to mention the p-value and significance under this framework. Blending the two frameworks is the inconsistency brought by our textbooks. Clarifying the inconsistency and correctly blending them are topics for another day.

Practical recommendations

That’s it. But it’s only the beginning. In practice, there are many crafts in using power well, for example:

Why peeking introduces a behavior bias, and how to use sequential testing to correct it

Why having multiple comparisons affects alpha, and how to use Bonferroni correction

The relationship between sample size, duration of the experiment, and allocation of the experiment?

Treat your allocation as a resource for experimentation, understand when interaction effects are okay, and when they are not okay, and how to use layers to manage

Practical considerations for setting an MDE

Also, in the above examples, we fixed the distribution, but in reality, the variance of the distribution plays an important role. There are different ways of calculating the variance and different ways to reduce variance, such as CUPED, or stratified sampling.

Related resources:

How to calculate power with an uneven split of sample size: https://blog.statsig.com/calculating-sample-sizes-for-a-b-tests-7854d56c2646

Real-life applications: https://blog.statsig.com/you-dont-need-large-sample-sizes-to-run-a-b-tests-6044823e9992

Create a free account

2m events per month, free forever..

Sign up for Statsig and launch your first experiment in minutes.

Build fast?

Try statsig today.

how to set up a hypothesis

Recent Posts

Controlling your type i errors: bonferroni and benjamini-hochberg.

The Benjamini-Hochberg procedure on Statsig reduces false positives in experiments by adjusting significance levels for multiple comparisons, ensuring reliable results.

Top 8 common experimentation mistakes and how to fix them

I discussed 8 A/B testing mistakes with Allon Korem (Bell Statistics) and Tyler VanHaren (Statsig). Learn fixes to improve accuracy and drive better business outcomes.

Introducing Differential Impact Detection

Introducing Differential Impact Detection: Identify how different user groups respond to treatments and gain useful insights from varied experiment results.

Identifying and experimenting with Power Users using Statsig

Identify power users to drive growth and engagement. Learn to pinpoint and leverage these key players with targeted experiments for maximum impact.

How to Ingest Data Into Statsig

Simplify data pipelines with Statsig. Use SDKs, third-party integrations, and Data Warehouse Native Solution for effortless data ingestion at any stage.

A/B Testing performance wins on NestJS API servers

Learn how we use Statsig to enhance our NestJS API servers, reducing request processing time and CPU usage through performance experiments.

User Preferences

Content preview.

Arcu felis bibendum ut tristique et egestas quis:

  • Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris
  • Duis aute irure dolor in reprehenderit in voluptate
  • Excepteur sint occaecat cupidatat non proident

Keyboard Shortcuts

5.3.1- steps in conducting a hypothesis test for \(\mu\).

\( H_0\colon \mu=\mu_0 \)

\( H_a\colon \mu\ne \mu_0 \)

Conditions : The data comes from an approximately normal distribution or the sample size is at least 30

Typically, 5%. If \(\alpha\) is not specified, use 5%

One Mean t-test: \( t^*=\dfrac{\bar{x}-\mu_0}{\frac{s}{\sqrt{n}}} \)

Typically we will let Minitab handle this for us. But if you are really interested, you can look p values up in probability tables found in the appendix of your textbook!

If the p-value is less than the significance level, \(\alpha\), then reject \(H_0\) (and conclude \(H_a \)). If it is greater than the significance level, then do not reject \(H_0 \).

State an overall conclusion.

Minitab 18

Minitab ®

Conduct a one-sample mean t-test section  .

Note that these steps are very similar to those for one-mean confidence interval. The differences occur in steps 4 through 8.

To conduct the one sample mean t-test in Minitab...

  • Choose Stat > Basic Stat > 1 Sample t .
  • In the drop-down box use "One or more samples, each in a column" if you have the raw data, otherwise select "Summarized data" if you only have the sample statistics.
  • If using the raw data, enter the column of interest into the blank variable window below the drop down selection. If using summarized data, enter the sample size, sample mean, and sample standard deviation in their respective fields.
  • Choose the check box for "Perform hypothesis test" and enter the null hypothesis value.
  • Choose Options .
  • Enter the confidence level associated with alpha (e.g. 95% for alpha of 5%).
  • From the drop down list for "Alternative hypothesis" select the correct alternative.
  • Click OK and OK .

Statology

The Complete Guide: Hypothesis Testing in R

A hypothesis test is a formal statistical test we use to reject or fail to reject some statistical hypothesis.

This tutorial explains how to perform the following hypothesis tests in R:

  • One sample t-test
  • Two sample t-test
  • Paired samples t-test

We can use the t.test() function in R to perform each type of test:

  • x, y: The two samples of data.
  • alternative: The alternative hypothesis of the test.
  • mu: The true value of the mean.
  • paired: Whether to perform a paired t-test or not.
  • var.equal: Whether to assume the variances are equal between the samples.
  • conf.level: The confidence level to use.

The following examples show how to use this function in practice.

Example 1: One Sample t-test in R

A one sample t-test is used to test whether or not the mean of a population is equal to some value.

For example, suppose we want to know whether or not the mean weight of a certain species of some turtle is equal to 310 pounds. We go out and collect a simple random sample of turtles with the following weights:

Weights : 300, 315, 320, 311, 314, 309, 300, 308, 305, 303, 305, 301, 303

The following code shows how to perform this one sample t-test in R:

From the output we can see:

  • t-test statistic: -1.5848
  • degrees of freedom:  12
  • p-value:  0.139
  • 95% confidence interval for true mean:  [303.4236, 311.0379]
  • mean of turtle weights:  307.230

Since the p-value of the test (0.139) is not less than .05, we fail to reject the null hypothesis.

This means we do not have sufficient evidence to say that the mean weight of this species of turtle is different from 310 pounds.

Example 2: Two Sample t-test in R

A two sample t-test is used to test whether or not the means of two populations are equal.

For example, suppose we want to know whether or not the mean weight between two different species of turtles is equal. To test this, we collect a simple random sample of turtles from each species with the following weights:

Sample 1 : 300, 315, 320, 311, 314, 309, 300, 308, 305, 303, 305, 301, 303

Sample 2 : 335, 329, 322, 321, 324, 319, 304, 308, 305, 311, 307, 300, 305

The following code shows how to perform this two sample t-test in R:

  • t-test statistic: -2.1009
  • degrees of freedom:  19.112
  • p-value:  0.04914
  • 95% confidence interval for true mean difference: [-14.74, -0.03]
  • mean of sample 1 weights: 307.2308
  • mean of sample 2 weights:  314.6154

Since the p-value of the test (0.04914) is less than .05, we reject the null hypothesis.

This means we have sufficient evidence to say that the mean weight between the two species is not equal.

Example 3: Paired Samples t-test in R

A paired samples t-test is used to compare the means of two samples when each observation in one sample can be paired with an observation in the other sample.

For example, suppose we want to know whether or not a certain training program is able to increase the max vertical jump (in inches) of basketball players.

To test this, we may recruit a simple random sample of 12 college basketball players and measure each of their max vertical jumps. Then, we may have each player use the training program for one month and then measure their max vertical jump again at the end of the month.

The following data shows the max jump height (in inches) before and after using the training program for each player:

Before : 22, 24, 20, 19, 19, 20, 22, 25, 24, 23, 22, 21

After : 23, 25, 20, 24, 18, 22, 23, 28, 24, 25, 24, 20

The following code shows how to perform this paired samples t-test in R:

  • t-test statistic: -2.5289
  • degrees of freedom:  11
  • p-value:  0.02803
  • 95% confidence interval for true mean difference: [-2.34, -0.16]
  • mean difference between before and after: -1.25

Since the p-value of the test (0.02803) is less than .05, we reject the null hypothesis.

This means we have sufficient evidence to say that the mean jump height before and after using the training program is not equal.

Additional Resources

Use the following online calculators to automatically perform various t-tests:

One Sample t-test Calculator Two Sample t-test Calculator Paired Samples t-test Calculator

Featured Posts

how to set up a hypothesis

Hey there. My name is Zach Bobbitt. I have a Masters of Science degree in Applied Statistics and I’ve worked on machine learning algorithms for professional businesses in both healthcare and retail. I’m passionate about statistics, machine learning, and data visualization and I created Statology to be a resource for both students and teachers alike.  My goal with this site is to help you learn statistics through using simple terms, plenty of real-world examples, and helpful illustrations.

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Join the Statology Community

Sign up to receive Statology's exclusive study resource: 100 practice problems with step-by-step solutions. Plus, get our latest insights, tutorials, and data analysis tips straight to your inbox!

By subscribing you accept Statology's Privacy Policy.

  • EXPLORE Random Article
  • Happiness Hub

How to Write a Hypothesis for an Essay

Last Updated: September 16, 2021

wikiHow is a “wiki,” similar to Wikipedia, which means that many of our articles are co-written by multiple authors. To create this article, volunteer authors worked to edit and improve it over time. This article has been viewed 22,165 times.

A hypothesis is an educated guess as to what will happen, given a certain set of circumstances. [1] X Research source Hypotheses are often used in science. Scientists look at a given set of circumstances or parameters and make an educated guess about how those circumstances affect something else. Then, they test that guess. Essays are often used to write up the results of these experiments. But before you ever write this type of essay, you have to choose and write out a hypothesis to test.

Narrowing Down Your Topic

Step 1 Choose a broad category.

  • It’s easy to use the library database at your local library. Once you locate the library’s databases, you should pick out ones that are focused on science articles.
  • Most libraries have some form of EBSCOhost, and if you use advanced search, you can select the databases you want, such as Science and Technology or Science Reference Center.
  • Once you’ve decided on databases, you can use search terms to find what you need. Ask your librarian can help you if you’re having trouble.

Step 3 Choose resources based on your level of study.

  • As a high school student, you’ll want to stick to more basic stuff; you can find databases geared towards your level, and your librarian should be able to point you in the right direction.
  • If you’re a college student, you should be able to use most of what you find in the academic databases. You can also use your textbook to help you decide what you want to study, as well as whose theories you will base your own experiment on.
  • For instance, maybe you want to study Gregor Mendel’s techniques with genetics and plants.

Step 4 Continue to explore the topic.

  • It’s best to keep all of the bibliographical information together so you can find it again. Just make sure you jot down the name of the author when you begin taking notes from a source, so you know what bibliographic entry it came from.
  • You should also note where you found the article or book, as well, so you can go back to it if you need to do further research.

Step 5 Make sure your topic is not too broad, but not too narrow either.

  • It is possible to be too narrow, but it is easier to expand it a bit if you need to rather than to condense it after you’ve tried to tackle too much research. If you are a younger student, such as a high school student, you may just want to repeat Mendel’s experiments to see how they work.
  • If you are an older student, such as a graduate student, your work will need to be more original. You will need to put your own spin on plants and genetics. Maybe you want to study how splicing together two plants changes the genes of the plant over time.

Composing the Hypothesis

Step 1 Begin by organizing your research.

  • That is, with a paper on hybrids, you might want to make one category on Mendel’s research, one for newer studies that are similar, one for splicing, and one for the type of cucumber you are using.

Step 2 Look at previous studies that focus on what you want to do.

  • To conduct the experiment, you will splice plants that manifest certain characteristics to see which produces the desired results. In this case, you are manipulating genes by picking plants for certain characteristics.
  • According to Explorable, the point of an experiment is to change one variable while controlling other ones and watching for changes. [3] X Research source That is, with the cucumbers, you would need a control, such as splicing one set of cucumber plants at random, noting its characteristics, instead of choosing for a particular characteristic. Then you compare the fruit each type of plants produce.

Step 4 Based on your research, predict how the experiment will turn out.

  • Also include how you plan to carry out the experiment and what you expect to happen. Because a hypothesis is a guess about what will happen, you have to spell out for your reader what you're thinking.
  • Start putting it together into a formal sentence. Basically, your hypothesis is how you tell your reader in one concise sentence what you are going to do. You are boiling it down as much as possible.

Step 6 Be as specific as possible.

  • For instance, for this experiment, you could write something like, “This experiment will test the hypothesis that selecting Armenian cucumbers (scientific name Cucumis melo var. flexuosus) for crispiness and splicing those plants together will, over time, produce a crisper cucumber, and this hypothesis will be tested by selecting cucumbers for crispiness to splice with cucumbers with similar traits, along with a control group for comparing results.”
  • This hypothesis is specific, it tells what you want to do, and it gives an idea of how you are going to do it.

Step 7 Have someone read over your hypothesis.

Expert Q&A

  • Essentially, to write a hypothesis, you need to pick a field and narrow down to an experiment you want to conduct. Make an educated guess about that experiment, and write it up formally for your paper. Thanks Helpful 0 Not Helpful 0
  • For instance, a kid doing science project might guess that a plant will grow better if it is fed tea rather than water. It is an educated guess because the kid knows that tea has more nutrients than water, so it might help it grow faster. The kid will then test the hypothesis by performing a set of experiments over time, comparing a plant growing with just water to one growing with tea, to prove whether her hypothesis was correct or not. Thanks Helpful 0 Not Helpful 0
  • Remember that you will not necessarily prove your hypothesis is correct. The point of the experiment is to see if you are right, but you may not be. The outcome of the experiment should not affect the quality of the essay one way or the other. Thanks Helpful 0 Not Helpful 0

You Might Also Like

Become Taller Naturally

  • ↑ http://dictionary.reference.com/browse/hypothesis
  • ↑ http://writingcenter.waldenu.edu/314.htm
  • ↑ https://explorable.com/experimental-research

About this article

Did this article help you.

Become Taller Naturally

  • About wikiHow
  • Terms of Use
  • Privacy Policy
  • Do Not Sell or Share My Info
  • Not Selling Info

Southport latest: Protesters penned in around war memorial as flares thrown at Downing Street gates after riot

As the situation in Southport remains tense after violence last night, police are dealing with another protest outside Downing Street. It follows false reports that the suspect in Monday's knife attack was an asylum seeker.

Wednesday 31 July 2024 23:12, UK

Please use Chrome browser for a more accessible video player

  • Protesters clash with police outside Downing Street in wake of Southport riot | Dozens arrested as officers disperse crowds
  • Watch:  Violence erupts in heart of Westminster
  • Police have 'intelligence' about more potential events
  • More than 50 officers injured in last night's far-right riot
  • Two nights of violence - believed to involve EDL supporters - follows false reports and speculation that suspect in Monday's knife attack was an asylum seeker
  • Explained: Why we can't name suspect arrested over stabbings
  • Martin Brunt: Are riots spreading around the country?
  • If you've been impacted by or witnessed this incident, please get in touch on WhatsApp or email us at [email protected]
  • Live reporting by Lauren Russell and (earlier)  Ollie Cooper

A mother, whose daughter was friends with one of the victims of the Southport stabbings, has posted a tribute to seven-year-old Elsie Dot Stancombe.

Sharing various images of Elsie with her daughter Teddy, the mother, whose name is unknown, wrote: "Elsie Dot - You were small but made the biggest impression on everyone around you. 

"You will live forever in our hearts."

Elise died on Monday night after the attack at a community centre on Hart Street.

The post on X included a link to a GoFundMe site for Elsie's family, which has raised over £30,000 so far.

In a post yesterday, the mother - who posts under the username HightownJFL - explained that Teddy went to the Taylor Swift-themed dance class with Elsie on Monday when the attack occurred.

The mother said she was one of the first on the scene after the attack, alongside her dad and Elsie's mother.

Four people have been arrested after protests, which police believe are in connection to the Southport knife attack, broke out in Hartlepool.

Cleveland Police has urged the public to stay away from the area around Murray Street, as young people and protesters gathered on corners. 

Individuals have been detained for various offences after protesters threw missiles, glass bottles and eggs at officers, police said.

Several officers sustained minor injuries as a result. 

A number of road closures remain in place around Murray Street including Sherriff Street, Grange Road, Sandringham Road and Duke Street.

Similar scenes were also seen on Oldham Road in Newton Health, Manchester as objects were thrown at police officers and the public, Greater Manchester Police said. 

The force said two men aged 18 and 25 were later arrested for violent disorder and assault of an emergency worker and remain in custody.

It did not confirm if the disorder was in connection to the Southport incident. 

More footage from the violence seen in Southport last night has emerged.

So far, five people have been arrested over the riot, which erupted following false reports that the suspect in Monday's knife attack was an asylum seeker.

In the footage, one demonstrator is seen getting hit in the crotch by what appears to be a brick as he walks up to a line of police holding up riot shields.

He is filmed being assisted away from the scene, clearly in pain. 

Other clips show protesters - many who police believe are members of the English Defence League - dragging wheelie bins through the street and throwing objects into the distance.

A fifth person has been arrested in connection with last night's riot in Southport, Merseyside Police has said. 

A 39-year-old man was detained after officers recognised him from footage of the disorder when attending to a report of domestic abuse earlier today.

Police took the suspect to hospital for treatment for a head injury, which he is believed to have sustained after having thrown rocks at officers and striking a police van.

The man has been arrested on suspicion of violent disorder, threats to kill and a racially aggravated public order offence. 

He is also alleged to have racially abused a fellow patient while at hospital.

Man charged with possession of weapon

In a separate incident, a 32-year-old man has been charged with possession of an offensive weapon, Merseyside Police said.

Jordan Davies of Portland Street, Southport was arrested yesterday in Eastbank Street near where the peaceful vigil for the three victims of the knife attack took place last night. 

He will appear at Wirral Adult Remand Court tomorrow.

England international Anthony Gordon has donated £10,000 to the victims of the mass stabbing in Southport.

The 23-year-old footballer, who was born on Merseyside, has pledged the sum to the GoFundMe account set up by the dance community in response to the tragedy in which three girls were killed.

His donation is currently the highest received by the Southport Dance Group Emergency Fund, with almost £50,000 raised in total as of tonight.

The fundraiser is separate to the £323,000 raised by two members of the Taylor Swift UK and EU Facebook Group, in partnership with Alder Hey Children's Charity.

Gordon, the Newcastle forward and former Everton star, has made four appearances for England, including one during their run to the final of Euro 2024.

Our crime correspondent Martin Brunt is in Southport tonight, where there's "no hint of any trouble" after last night's riot.

"But it's a very different picture elsewhere," he says, principally in the capital where hundreds of right-wing protesters have clashed with the police near Downing Street.

There appears to have been at least a dozen arrests, with protesters being detained as police drive them into Trafalgar Square.

Several men were wrestled to the floor and handcuffed, and police are now attempting to open Whitehall to traffic.

And in Hartlepool, says Brunt, "there appears to be - according to some footage posted on social media - at least a stand-off or two between police in riot gear and perhaps a few-hundred noisy protesters".

The violence in Southport, believed to involve English Defence League supporters, followed false reports and online speculation that the suspect in Monday's knife attack was an asylum seeker.

"There was concern after last night's riots here [in Southport] there was potential for this being something that might spread around the country," says Brunt.

"We've seen it in London tonight, perhaps an element of it in Hartlepool, and people here in Southport are hoping last night's events don't become the catalyst for more widespread protests."

After two nights of protests - one in Southport and the other in central London - following Monday's knife attack, Sky News has examined how misinformation fuels far-right discourse on social media.

Read the full report by Sky News' data and forensics correspondent Tom Cheshire and OSINT producer Sam Doak , below…

Sky News correspondent Tom Cheshire   is at the scene of tonight's right-wing demonstration outside Downing Street.

The Enough Is Enough protest began around Whitehall at 7pm, with a police-enforced dispersal order having come into force at 8.30pm.

Those still present are now in breach of public order restrictions.

"Protesters have now been told to remain in one place, the police are going in and making some arrests, but it seems to have been cooling down slightly," Cheshire says.

"One of the group went up towards Trafalgar Square. There were about 1,000 protesters, it was violent, but now it seems to be under control.

"We have heard a lot of chants about Tommy Robinson, but it seems the police have a good handle on this, they know how to police this area, they do it often."

The protest was organised the night after a riot in Southport, following false reports that the suspect arrested after Monday's knife attack was an asylum seeker.

A local Southport resident has urged people to "ignore the nonsense" on social media and continue to visit the seaside town.

Norman Wallace told Sky News's  Sarah-Jane Mee   people are rightly concerned for the safety of their families, but insisted Southport "remains one of the safest places in the UK" despite Monday's attack.

"I have three children, everyday I hug my children and I can't think what it must be like to not do that ever again, it is just terrible. But people should not be worried about coming to Southport," Mr Wallace said.

"[But] this is a one-off, isolated incident.

"Please no one think Southport is not a safe place… don't listen to all this nonsense on social media, people like to get others worried and scared, there is no reason to be scared."

The local continued: "Southport is open for business, 100%."

As a protest continues to take place in the centre of London, police and emergency services are on standby in Southport, where Monday's knife attack occurred. 

Police vans, cars and horses have been deployed to the town in preparation of any disturbance that might happen following the riot that erupted last night.

Reinforcements have also been called in from forces across the region.

More than 50 police officers were injured in last night's violence - which police believe was started by individuals who were part of the far-right English Defence League.

The mayor of the Liverpool City Region, Steve Rotheram, told Sky News earlier that he does not believe violence will be repeated tonight.

Be the first to get Breaking News

Install the Sky News app for free

how to set up a hypothesis

IMAGES

  1. How to Write a Hypothesis

    how to set up a hypothesis

  2. 13 Different Types of Hypothesis (2024)

    how to set up a hypothesis

  3. How to Write a Hypothesis: The Ultimate Guide with Examples

    how to set up a hypothesis

  4. PPT

    how to set up a hypothesis

  5. How to Write a Hypothesis: The Ultimate Guide with Examples

    how to set up a hypothesis

  6. How to Formulate a Hypothesis for an Experiment

    how to set up a hypothesis

VIDEO

  1. MAT 152 8.1-7 HW Examples

  2. MAT 152 8.1.9 HW Example TI

  3. Lesson 16-1 Testing the difference between mean Large independent samples

  4. Setting Up a Hypothesis Test

  5. How to set up a Hypothesis Test in Symbolic Form

  6. Setting up a Hypothesis Test for Matched Pair data

COMMENTS

  1. How to Write a Strong Hypothesis

    Developing a hypothesis (with example) Step 1. Ask a question. Writing a hypothesis begins with a research question that you want to answer. The question should be focused, specific, and researchable within the constraints of your project. Example: Research question.

  2. How to Write a Strong Hypothesis in 6 Simple Steps

    Learning how to write a hypothesis comes down to knowledge and strategy. So where do you start? Learn how to make your hypothesis strong step-by-step here.

  3. Hypothesis Testing

    Present the findings in your results and discussion section. Though the specific details might vary, the procedure you will use when testing a hypothesis will always follow some version of these steps. Table of contents. Step 1: State your null and alternate hypothesis. Step 2: Collect data. Step 3: Perform a statistical test.

  4. How to Write a Strong Hypothesis

    Step 4: Refine your hypothesis. You need to make sure your hypothesis is specific and testable. There are various ways of phrasing a hypothesis, but all the terms you use should have clear definitions, and the hypothesis should contain: The relevant variables. The specific group being studied.

  5. 6a.2

    Below these are summarized into six such steps to conducting a test of a hypothesis. Set up the hypotheses and check conditions: Each hypothesis test includes two hypotheses about the population. One is the null hypothesis, notated as H 0, which is a statement of a particular parameter value. This hypothesis is assumed to be true until there is ...

  6. How to Write a Hypothesis w/ Strong Examples

    Simple Hypothesis Examples. Increasing the amount of natural light in a classroom will improve students' test scores. Drinking at least eight glasses of water a day reduces the frequency of headaches in adults. Plant growth is faster when the plant is exposed to music for at least one hour per day.

  7. 1.2: The 7-Step Process of Statistical Hypothesis Testing

    Step 7: Based on steps 5 and 6, draw a conclusion about H0. If the F\calculated F \calculated from the data is larger than the Fα F α, then you are in the rejection region and you can reject the null hypothesis with (1 − α) ( 1 − α) level of confidence. Note that modern statistical software condenses steps 6 and 7 by providing a p p -value.

  8. 1.2

    Step 1: State the Null Hypothesis. ... So we set up a null hypothesis which is effectively the opposite of the working hypothesis. The hope is that based on the strength of the data we will be able to negate or reject the null hypothesis and accept an alternative hypothesis. In other words, we usually see the working hypothesis in \(H_A\).

  9. What is a Research Hypothesis: How to Write it, Types, and Examples

    It seeks to explore and understand a particular aspect of the research subject. In contrast, a research hypothesis is a specific statement or prediction that suggests an expected relationship between variables. It is formulated based on existing knowledge or theories and guides the research design and data analysis. 7.

  10. 10.1

    10.1 - Setting the Hypotheses: Examples. A significance test examines whether the null hypothesis provides a plausible explanation of the data. The null hypothesis itself does not involve the data. It is a statement about a parameter (a numerical characteristic of the population). These population values might be proportions or means or ...

  11. What is and How to Write a Good Hypothesis in Research?

    An effective hypothesis in research is clearly and concisely written, and any terms or definitions clarified and defined. Specific language must also be used to avoid any generalities or assumptions. Use the following points as a checklist to evaluate the effectiveness of your research hypothesis: Predicts the relationship and outcome.

  12. A Strong Hypothesis

    Good Hypothesis : Poor Hypothesis: When there is less oxygen in the water, rainbow trout suffer more lice. Kristin says: "This hypothesis is good because it is testable, simple, written as a statement, and establishes the participants (trout), variables (oxygen in water, and numbers of lice), and predicts effect (as oxygen levels go down, the numbers of lice go up)."

  13. How to Write a Hypothesis: 13 Steps (with Pictures)

    Select a topic. Pick a topic that interests you, and that you think it would be good to know more about. [2] If you are writing a hypothesis for a school assignment, this step may be taken care of for you. 2. Read existing research. Gather all the information you can about the topic you've selected.

  14. How to Write a Hypothesis

    Step 8: Test your Hypothesis. Design an experiment or conduct observations to test your hypothesis. Example: Grow three sets of plants: one set exposed to 2 hours of sunlight daily, another exposed to 4 hours, and a third exposed to 8 hours. Measure and compare their growth after a set period.

  15. How to Set Up a Hypothesis Test: Null versus Alternative

    Every hypothesis test contains a set of two opposing statements, or hypotheses, about a population parameter. The first hypothesis is called the null hypothesis, denoted H 0. The null hypothesis always states that the population parameter is equal to the claimed value. For example, if the claim is that the average time to make a name-brand ...

  16. What Is a Hypothesis and How Do I Write One?

    Merriam Webster defines a hypothesis as "an assumption or concession made for the sake of argument.". In other words, a hypothesis is an educated guess. Scientists make a reasonable assumption--or a hypothesis--then design an experiment to test whether it's true or not.

  17. How to Write a Hypothesis 101: A Step-by-Step Guide

    Step 3: Build the Hypothetical Relationship. In understanding how to compose a hypothesis, constructing the relationship between the variables is key. Based on your research question and variables, predict the expected outcome or connection.

  18. Hypothesis Testing explained in 4 parts

    Set up the question properly using core statistical concepts, and connect them to Hypothesis Testing, while striking a balance between technically correct and simplicity. Specifically, We emphasize a clear distinction between the standard deviation and the standard error, and why the latter is used in Hypothesis Testing

  19. 5.3.1- Steps in Conducting a Hypothesis Test for \(\mu\)

    Step 1: Set up the hypotheses and check conditions. One Mean t-test Hypotheses. H 0: μ = μ 0. H a: μ ≠ μ 0. Conditions: The data comes from an approximately normal distribution or the sample size is at least 30. Step 2: Decide on the significance level, α. Typically, 5%. If α is not specified, use 5%. Step 3: Calculate the test statistic.

  20. How To Develop a Hypothesis (With Elements, Types and Examples)

    4. Formulate your hypothesis. After collecting background information and making a prediction based on your question, plan a statement that lays out your variables, subjects and predicted outcome. Whether you write it as an "if/then" or declarative statement, your hypothesis should include the prediction to be tested.

  21. The Complete Guide: Hypothesis Testing in R

    A hypothesis test is a formal statistical test we use to reject or fail to reject some statistical hypothesis. This tutorial explains how to perform the following hypothesis tests in R: One sample t-test. Two sample t-test. Paired samples t-test. We can use the t.test () function in R to perform each type of test:

  22. How to Write a Hypothesis for an Essay: 12 Steps (with Pictures)

    Hypotheses are mainly used in the sciences, but you still need to narrow down the field. If your class is in organic chemistry or botany, you still need to narrow down the field even further. Choose a particular aspect of the field, such as genetics in botany. 2. Do some preliminary research in the narrowed field.

  23. Southport stabbings latest: EDL believed to be behind 'sickening

    A number of officers have been injured in the violent riot that has broken out in Southport this evening, Merseyside Police has said. Cars have been set alight and a shop has been looted as well ...