Statistics Made Easy

## Introduction to Hypothesis Testing

A statistical hypothesis is an assumption about a population parameter .

For example, we may assume that the mean height of a male in the U.S. is 70 inches.

The assumption about the height is the statistical hypothesis and the true mean height of a male in the U.S. is the population parameter .

A hypothesis test is a formal statistical test we use to reject or fail to reject a statistical hypothesis.

## The Two Types of Statistical Hypotheses

To test whether a statistical hypothesis about a population parameter is true, we obtain a random sample from the population and perform a hypothesis test on the sample data.

There are two types of statistical hypotheses:

The null hypothesis , denoted as H 0 , is the hypothesis that the sample data occurs purely from chance.

The alternative hypothesis , denoted as H 1 or H a , is the hypothesis that the sample data is influenced by some non-random cause.

## Hypothesis Tests

A hypothesis test consists of five steps:

1. State the hypotheses.

State the null and alternative hypotheses. These two hypotheses need to be mutually exclusive, so if one is true then the other must be false.

2. Determine a significance level to use for the hypothesis.

Decide on a significance level. Common choices are .01, .05, and .1.

3. Find the test statistic.

Find the test statistic and the corresponding p-value. Often we are analyzing a population mean or proportion and the general formula to find the test statistic is: (sample statistic – population parameter) / (standard deviation of statistic)

4. Reject or fail to reject the null hypothesis.

Using the test statistic or the p-value, determine if you can reject or fail to reject the null hypothesis based on the significance level.

The p-value tells us the strength of evidence in support of a null hypothesis. If the p-value is less than the significance level, we reject the null hypothesis.

5. Interpret the results.

Interpret the results of the hypothesis test in the context of the question being asked.

## The Two Types of Decision Errors

There are two types of decision errors that one can make when doing a hypothesis test:

Type I error: You reject the null hypothesis when it is actually true. The probability of committing a Type I error is equal to the significance level, often called alpha , and denoted as α.

Type II error: You fail to reject the null hypothesis when it is actually false. The probability of committing a Type II error is called the Power of the test or Beta , denoted as β.

## One-Tailed and Two-Tailed Tests

A statistical hypothesis can be one-tailed or two-tailed.

A one-tailed hypothesis involves making a “greater than” or “less than ” statement.

For example, suppose we assume the mean height of a male in the U.S. is greater than or equal to 70 inches. The null hypothesis would be H0: µ ≥ 70 inches and the alternative hypothesis would be Ha: µ < 70 inches.

A two-tailed hypothesis involves making an “equal to” or “not equal to” statement.

For example, suppose we assume the mean height of a male in the U.S. is equal to 70 inches. The null hypothesis would be H0: µ = 70 inches and the alternative hypothesis would be Ha: µ ≠ 70 inches.

Note: The “equal” sign is always included in the null hypothesis, whether it is =, ≥, or ≤.

Related: What is a Directional Hypothesis?

## Types of Hypothesis Tests

There are many different types of hypothesis tests you can perform depending on the type of data you’re working with and the goal of your analysis.

The following tutorials provide an explanation of the most common types of hypothesis tests:

Introduction to the One Sample t-test Introduction to the Two Sample t-test Introduction to the Paired Samples t-test Introduction to the One Proportion Z-Test Introduction to the Two Proportion Z-Test

## Featured Posts

Hey there. My name is Zach Bobbitt. I have a Master of Science degree in Applied Statistics and I’ve worked on machine learning algorithms for professional businesses in both healthcare and retail. I’m passionate about statistics, machine learning, and data visualization and I created Statology to be a resource for both students and teachers alike. My goal with this site is to help you learn statistics through using simple terms, plenty of real-world examples, and helpful illustrations.

## Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

If you're seeing this message, it means we're having trouble loading external resources on our website.

If you're behind a web filter, please make sure that the domains *.kastatic.org and *.kasandbox.org are unblocked.

To log in and use all the features of Khan Academy, please enable JavaScript in your browser.

## Biology library

Course: biology library > unit 1, the scientific method.

- Controlled experiments
- The scientific method and experimental design

## Introduction

- Make an observation.
- Ask a question.
- Form a hypothesis , or testable explanation.
- Make a prediction based on the hypothesis.
- Test the prediction.
- Iterate: use the results to make new hypotheses or predictions.

## Scientific method example: Failure to toast

1. make an observation..

- Observation: the toaster won't toast.

## 2. Ask a question.

- Question: Why won't my toaster toast?

## 3. Propose a hypothesis.

- Hypothesis: Maybe the outlet is broken.

## 4. Make predictions.

- Prediction: If I plug the toaster into a different outlet, then it will toast the bread.

## 5. Test the predictions.

- Test of prediction: Plug the toaster into a different outlet and try again.
- If the toaster does toast, then the hypothesis is supported—likely correct.
- If the toaster doesn't toast, then the hypothesis is not supported—likely wrong.

## Logical possibility

Practical possibility, building a body of evidence, 6. iterate..

- Iteration time!
- If the hypothesis was supported, we might do additional tests to confirm it, or revise it to be more specific. For instance, we might investigate why the outlet is broken.
- If the hypothesis was not supported, we would come up with a new hypothesis. For instance, the next hypothesis might be that there's a broken wire in the toaster.

## Want to join the conversation?

- Upvote Button navigates to signup page
- Downvote Button navigates to signup page
- Flag Button navigates to signup page

- school Campus Bookshelves
- menu_book Bookshelves
- perm_media Learning Objects
- login Login
- how_to_reg Request Instructor Account
- hub Instructor Commons
- Download Page (PDF)
- Download Full Book (PDF)
- Periodic Table
- Physics Constants
- Scientific Calculator
- Reference & Cite
- Tools expand_more
- Readability

selected template will load here

This action is not available.

## 1.2: The 7-Step Process of Statistical Hypothesis Testing

- Last updated
- Save as PDF
- Page ID 33320

- Penn State's Department of Statistics
- The Pennsylvania State University

We will cover the seven steps one by one.

## Step 1: State the Null Hypothesis

The null hypothesis can be thought of as the opposite of the "guess" the researchers made: in this example, the biologist thinks the plant height will be different for the fertilizers. So the null would be that there will be no difference among the groups of plants. Specifically, in more statistical language the null for an ANOVA is that the means are the same. We state the null hypothesis as: \[H_{0}: \ \mu_{1} = \mu_{2} = \ldots = \mu_{T}\] for \(T\) levels of an experimental treatment.

Why do we do this? Why not simply test the working hypothesis directly? The answer lies in the Popperian Principle of Falsification. Karl Popper (a philosopher) discovered that we can't conclusively confirm a hypothesis, but we can conclusively negate one. So we set up a null hypothesis which is effectively the opposite of the working hypothesis. The hope is that based on the strength of the data, we will be able to negate or reject the null hypothesis and accept an alternative hypothesis. In other words, we usually see the working hypothesis in \(H_{A}\).

## Step 2: State the Alternative Hypothesis

\[H_{A}: \ \text{treatment level means not all equal}\]

The reason we state the alternative hypothesis this way is that if the null is rejected, there are many possibilities.

For example, \(\mu_{1} \neq \mu_{2} = \ldots = \mu_{T}\) is one possibility, as is \(\mu_{1} = \mu_{2} \neq \mu_{3} = \ldots = \mu_{T}\). Many people make the mistake of stating the alternative hypothesis as \(mu_{1} \neq mu_{2} \neq \ldots \neq \mu_{T}\), which says that every mean differs from every other mean. This is a possibility, but only one of many possibilities. To cover all alternative outcomes, we resort to a verbal statement of "not all equal" and then follow up with mean comparisons to find out where differences among means exist. In our example, this means that fertilizer 1 may result in plants that are really tall, but fertilizers 2, 3, and the plants with no fertilizers don't differ from one another. A simpler way of thinking about this is that at least one mean is different from all others.

## Step 3: Set \(\alpha\)

If we look at what can happen in a hypothesis test, we can construct the following contingency table:

You should be familiar with type I and type II errors from your introductory course. It is important to note that we want to set \(\alpha\) before the experiment ( a priori ) because the Type I error is the more grievous error to make. The typical value of \(\alpha\) is 0.05, establishing a 95% confidence level. For this course, we will assume \(\alpha\) =0.05, unless stated otherwise.

## Step 4: Collect Data

Remember the importance of recognizing whether data is collected through an experimental design or observational study.

## Step 5: Calculate a test statistic

For categorical treatment level means, we use an \(F\) statistic, named after R.A. Fisher. We will explore the mechanics of computing the \(F\) statistic beginning in Chapter 2. The \(F\) value we get from the data is labeled \(F_{\text{calculated}}\).

## Step 6: Construct Acceptance / Rejection regions

As with all other test statistics, a threshold (critical) value of \(F\) is established. This \(F\) value can be obtained from statistical tables or software and is referred to as \(F_{\text{critical}}\) or \(F_{\alpha}\). As a reminder, this critical value is the minimum value for the test statistic (in this case the F test) for us to be able to reject the null.

The \(F\) distribution, \(F_{\alpha}\), and the location of acceptance and rejection regions are shown in the graph below:

## Step 7: Based on steps 5 and 6, draw a conclusion about H0

If the \(F_{\text{\calculated}}\) from the data is larger than the \(F_{\alpha}\), then you are in the rejection region and you can reject the null hypothesis with \((1 - \alpha)\) level of confidence.

Note that modern statistical software condenses steps 6 and 7 by providing a \(p\)-value. The \(p\)-value here is the probability of getting an \(F_{\text{calculated}}\) even greater than what you observe assuming the null hypothesis is true. If by chance, the \(F_{\text{calculated}} = F_{\alpha}\), then the \(p\)-value would exactly equal \(\alpha\). With larger \(F_{\text{calculated}}\) values, we move further into the rejection region and the \(p\) - value becomes less than \(\alpha\). So the decision rule is as follows:

If the \(p\) - value obtained from the ANOVA is less than \(\alpha\), then reject \(H_{0}\) and accept \(H_{A}\).

If you are not familiar with this material, we suggest that you review course materials from your basic statistics course.

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

## 17 Introduction to Hypothesis Testing

Jenna Lehmann

## What is Hypothesis Testing?

Hypothesis testing is a big part of what we would actually consider testing for inferential statistics. It’s a procedure and set of rules that allow us to move from descriptive statistics to make inferences about a population based on sample data. It is a statistical method that uses sample data to evaluate a hypothesis about a population.

This type of test is usually used within the context of research. If we expect to see a difference between a treated and untreated group (in some cases the untreated group is the parameters we know about the population), we expect there to be a difference in the means between the two groups, but that the standard deviation remains the same, as if each individual score has had a value added or subtracted from it.

## Steps of Hypothesis Testing

The following steps will be tailored to fit the first kind of hypothesis testing we will learn first: single-sample z-tests. There are many other kinds of tests, so keep this in mind.

- Null Hypothesis (H0): states that in the general population there is no change, no difference, or no relationship, or in the context of an experiment, it predicts that the independent variable has no effect on the dependent variable.
- Alternative Hypothesis (H1): states that there is a change, a difference, or a relationship for the general population, or in the context of an experiment, it predicts that the independent variable has an effect on the dependent variable.

- Critical Region: Composed of the extreme sample values that are very unlikely to be obtained if the null hypothesis is true. Determined by alpha level. If sample data fall in the critical region, the null hypothesis is rejected, because it’s very unlikely they’ve fallen there by chance.
- After collecting the data, we find the sample mean. Now we can compare the sample mean with the null hypothesis by computing a z-score that describes where the sample mean is located relative to the hypothesized population mean. We use the z-score formula.
- We decided previously what the two z-score boundaries are for a critical score. If the z-score we get after plugging the numbers in the aforementioned equation is outside of that critical region, we reject the null hypothesis. Otherwise, we would say that we failed to reject the null hypothesis.

## Regions of the Distribution

Because we’re making judgments based on probability and proportion, our normal distributions and certain regions within them come into play.

The Critical Region is composed of the extreme sample values that are very unlikely to be obtained if the null hypothesis is true. Determined by alpha level. If sample data fall in the critical region, the null hypothesis is rejected, because it’s very unlikely they’ve fallen there by chance.

These regions come into play when talking about different errors.

A Type I Error occurs when a researcher rejects a null hypothesis that is actually true; the researcher concludes that a treatment has an effect when it actually doesn’t. This happens when a researcher unknowingly obtains an extreme, non-representative sample. This goes back to alpha level: it’s the probability that the test will lead to a Type I error if the null hypothesis is true.

A result is said to be significant or statistically significant if it is very unlikely to occur when the null hypothesis is true. That is, the result is sufficient to reject the null hypothesis. For instance, two means can be significantly different from one another.

## Factors that Influence and Assumptions of Hypothesis Testing

Assumptions of Hypothesis Testing:

- Random sampling: it is assumed that the participants used in the study were selected randomly so that we can confidently generalize our findings from the sample to the population.
- Independent observation: two observations are independent if there is no consistent, predictable relationship between the first observation and the second. The value of σ is unchanged by the treatment; if the population standard deviation is unknown, we assume that the standard deviation for the unknown population (after treatment) is the same as it was for the population before treatment. There are ways of checking to see if this is true in SPSS or Excel.
- Normal sampling distribution: in order to use the unit normal table to identify the critical region, we need the distribution of sample means to be normal (which means we need the population to be distributed normally and/or each sample size needs to be 30 or greater based on what we know about the central limit theorem).

Factors that influence hypothesis testing:

- The variability of the scores, which is measured by either the standard deviation or the variance. The variability influences the size of the standard error in the denominator of the z-score.
- The number of scores in the sample. This value also influences the size of the standard error in the denominator.

Test statistic: indicates that the sample data are converted into a single, specific statistic that is used to test the hypothesis (in this case, the z-score statistic).

## Directional Hypotheses and Tailed Tests

In a directional hypothesis test , also known as a one-tailed test, the statistical hypotheses specify with an increase or decrease in the population mean. That is, they make a statement about the direction of the effect.

The Hypotheses for a Directional Test:

- H0: The test scores are not increased/decreased (the treatment doesn’t work)
- H1: The test scores are increased/decreased (the treatment works as predicted)

Because we’re only worried about scores that are either greater or less than the scores predicted by the null hypothesis, we only worry about what’s going on in one tail meaning that the critical region only exists within one tail. This means that all of the alpha is contained in one tail rather than split up into both (so the whole 5% is located in the tail we care about, rather than 2.5% in each tail). So before, we cared about what’s going on at the 0.025 mark of the unit normal table to look at both tails, but now we care about 0.05 because we’re only looking at one tail.

A one-tailed test allows you to reject the null hypothesis when the difference between the sample and the population is relatively small, as long as that difference is in the direction that you predicted. A two-tailed test, on the other hand, requires a relatively large difference independent of direction. In practice, researchers hypothesize using a one-tailed method but base their findings off of whether the results fall into the critical region of a two-tailed method. For the purposes of this class, make sure to calculate your results using the test that is specified in the problem.

## Effect Size

A measure of effect size is intended to provide a measurement of the absolute magnitude of a treatment effect, independent of the size of the sample(s) being used. Usually done with Cohen’s d. If you imagine the two distributions, they’re layered over one another. The more they overlap, the smaller the effect size (the means of the two distributions are close). The more they are spread apart, the greater the effect size (the means of the two distributions are farther apart).

## Statistical Power

The power of a statistical test is the probability that the test will correctly reject a false null hypothesis. It’s usually what we’re hoping to get when we run an experiment. It’s displayed in the table posted above. Power and effect size are connected. So, we know that the greater the distance between the means, the greater the effect size. If the two distributions overlapped very little, there would be a greater chance of selecting a sample that leads to rejecting the null hypothesis.

This chapter was originally posted to the Math Support Center blog at the University of Baltimore on June 11, 2019.

Math and Statistics Guides from UB's Math & Statistics Center Copyright © by Jenna Lehmann is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License , except where otherwise noted.

## Share This Book

## Hypothesis Testing

Hypothesis testing is a tool for making statistical inferences about the population data. It is an analysis tool that tests assumptions and determines how likely something is within a given standard of accuracy. Hypothesis testing provides a way to verify whether the results of an experiment are valid.

A null hypothesis and an alternative hypothesis are set up before performing the hypothesis testing. This helps to arrive at a conclusion regarding the sample obtained from the population. In this article, we will learn more about hypothesis testing, its types, steps to perform the testing, and associated examples.

## What is Hypothesis Testing in Statistics?

Hypothesis testing uses sample data from the population to draw useful conclusions regarding the population probability distribution . It tests an assumption made about the data using different types of hypothesis testing methodologies. The hypothesis testing results in either rejecting or not rejecting the null hypothesis.

## Hypothesis Testing Definition

Hypothesis testing can be defined as a statistical tool that is used to identify if the results of an experiment are meaningful or not. It involves setting up a null hypothesis and an alternative hypothesis. These two hypotheses will always be mutually exclusive. This means that if the null hypothesis is true then the alternative hypothesis is false and vice versa. An example of hypothesis testing is setting up a test to check if a new medicine works on a disease in a more efficient manner.

## Null Hypothesis

The null hypothesis is a concise mathematical statement that is used to indicate that there is no difference between two possibilities. In other words, there is no difference between certain characteristics of data. This hypothesis assumes that the outcomes of an experiment are based on chance alone. It is denoted as \(H_{0}\). Hypothesis testing is used to conclude if the null hypothesis can be rejected or not. Suppose an experiment is conducted to check if girls are shorter than boys at the age of 5. The null hypothesis will say that they are the same height.

## Alternative Hypothesis

The alternative hypothesis is an alternative to the null hypothesis. It is used to show that the observations of an experiment are due to some real effect. It indicates that there is a statistical significance between two possible outcomes and can be denoted as \(H_{1}\) or \(H_{a}\). For the above-mentioned example, the alternative hypothesis would be that girls are shorter than boys at the age of 5.

## Hypothesis Testing P Value

In hypothesis testing, the p value is used to indicate whether the results obtained after conducting a test are statistically significant or not. It also indicates the probability of making an error in rejecting or not rejecting the null hypothesis.This value is always a number between 0 and 1. The p value is compared to an alpha level, \(\alpha\) or significance level. The alpha level can be defined as the acceptable risk of incorrectly rejecting the null hypothesis. The alpha level is usually chosen between 1% to 5%.

## Hypothesis Testing Critical region

All sets of values that lead to rejecting the null hypothesis lie in the critical region. Furthermore, the value that separates the critical region from the non-critical region is known as the critical value.

## Hypothesis Testing Formula

Depending upon the type of data available and the size, different types of hypothesis testing are used to determine whether the null hypothesis can be rejected or not. The hypothesis testing formula for some important test statistics are given below:

- z = \(\frac{\overline{x}-\mu}{\frac{\sigma}{\sqrt{n}}}\). \(\overline{x}\) is the sample mean, \(\mu\) is the population mean, \(\sigma\) is the population standard deviation and n is the size of the sample.
- t = \(\frac{\overline{x}-\mu}{\frac{s}{\sqrt{n}}}\). s is the sample standard deviation.
- \(\chi ^{2} = \sum \frac{(O_{i}-E_{i})^{2}}{E_{i}}\). \(O_{i}\) is the observed value and \(E_{i}\) is the expected value.

We will learn more about these test statistics in the upcoming section.

## Types of Hypothesis Testing

Selecting the correct test for performing hypothesis testing can be confusing. These tests are used to determine a test statistic on the basis of which the null hypothesis can either be rejected or not rejected. Some of the important tests used for hypothesis testing are given below.

## Hypothesis Testing Z Test

A z test is a way of hypothesis testing that is used for a large sample size (n ≥ 30). It is used to determine whether there is a difference between the population mean and the sample mean when the population standard deviation is known. It can also be used to compare the mean of two samples. It is used to compute the z test statistic. The formulas are given as follows:

- One sample: z = \(\frac{\overline{x}-\mu}{\frac{\sigma}{\sqrt{n}}}\).
- Two samples: z = \(\frac{(\overline{x_{1}}-\overline{x_{2}})-(\mu_{1}-\mu_{2})}{\sqrt{\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}}}\).

## Hypothesis Testing t Test

The t test is another method of hypothesis testing that is used for a small sample size (n < 30). It is also used to compare the sample mean and population mean. However, the population standard deviation is not known. Instead, the sample standard deviation is known. The mean of two samples can also be compared using the t test.

- One sample: t = \(\frac{\overline{x}-\mu}{\frac{s}{\sqrt{n}}}\).
- Two samples: t = \(\frac{(\overline{x_{1}}-\overline{x_{2}})-(\mu_{1}-\mu_{2})}{\sqrt{\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}}}\).

## Hypothesis Testing Chi Square

The Chi square test is a hypothesis testing method that is used to check whether the variables in a population are independent or not. It is used when the test statistic is chi-squared distributed.

## One Tailed Hypothesis Testing

One tailed hypothesis testing is done when the rejection region is only in one direction. It can also be known as directional hypothesis testing because the effects can be tested in one direction only. This type of testing is further classified into the right tailed test and left tailed test.

Right Tailed Hypothesis Testing

The right tail test is also known as the upper tail test. This test is used to check whether the population parameter is greater than some value. The null and alternative hypotheses for this test are given as follows:

\(H_{0}\): The population parameter is ≤ some value

\(H_{1}\): The population parameter is > some value.

If the test statistic has a greater value than the critical value then the null hypothesis is rejected

Left Tailed Hypothesis Testing

The left tail test is also known as the lower tail test. It is used to check whether the population parameter is less than some value. The hypotheses for this hypothesis testing can be written as follows:

\(H_{0}\): The population parameter is ≥ some value

\(H_{1}\): The population parameter is < some value.

The null hypothesis is rejected if the test statistic has a value lesser than the critical value.

## Two Tailed Hypothesis Testing

In this hypothesis testing method, the critical region lies on both sides of the sampling distribution. It is also known as a non - directional hypothesis testing method. The two-tailed test is used when it needs to be determined if the population parameter is assumed to be different than some value. The hypotheses can be set up as follows:

\(H_{0}\): the population parameter = some value

\(H_{1}\): the population parameter ≠ some value

The null hypothesis is rejected if the test statistic has a value that is not equal to the critical value.

## Hypothesis Testing Steps

Hypothesis testing can be easily performed in five simple steps. The most important step is to correctly set up the hypotheses and identify the right method for hypothesis testing. The basic steps to perform hypothesis testing are as follows:

- Step 1: Set up the null hypothesis by correctly identifying whether it is the left-tailed, right-tailed, or two-tailed hypothesis testing.
- Step 2: Set up the alternative hypothesis.
- Step 3: Choose the correct significance level, \(\alpha\), and find the critical value.
- Step 4: Calculate the correct test statistic (z, t or \(\chi\)) and p-value.
- Step 5: Compare the test statistic with the critical value or compare the p-value with \(\alpha\) to arrive at a conclusion. In other words, decide if the null hypothesis is to be rejected or not.

## Hypothesis Testing Example

The best way to solve a problem on hypothesis testing is by applying the 5 steps mentioned in the previous section. Suppose a researcher claims that the mean average weight of men is greater than 100kgs with a standard deviation of 15kgs. 30 men are chosen with an average weight of 112.5 Kgs. Using hypothesis testing, check if there is enough evidence to support the researcher's claim. The confidence interval is given as 95%.

Step 1: This is an example of a right-tailed test. Set up the null hypothesis as \(H_{0}\): \(\mu\) = 100.

Step 2: The alternative hypothesis is given by \(H_{1}\): \(\mu\) > 100.

Step 3: As this is a one-tailed test, \(\alpha\) = 100% - 95% = 5%. This can be used to determine the critical value.

1 - \(\alpha\) = 1 - 0.05 = 0.95

0.95 gives the required area under the curve. Now using a normal distribution table, the area 0.95 is at z = 1.645. A similar process can be followed for a t-test. The only additional requirement is to calculate the degrees of freedom given by n - 1.

Step 4: Calculate the z test statistic. This is because the sample size is 30. Furthermore, the sample and population means are known along with the standard deviation.

z = \(\frac{\overline{x}-\mu}{\frac{\sigma}{\sqrt{n}}}\).

\(\mu\) = 100, \(\overline{x}\) = 112.5, n = 30, \(\sigma\) = 15

z = \(\frac{112.5-100}{\frac{15}{\sqrt{30}}}\) = 4.56

Step 5: Conclusion. As 4.56 > 1.645 thus, the null hypothesis can be rejected.

## Hypothesis Testing and Confidence Intervals

Confidence intervals form an important part of hypothesis testing. This is because the alpha level can be determined from a given confidence interval. Suppose a confidence interval is given as 95%. Subtract the confidence interval from 100%. This gives 100 - 95 = 5% or 0.05. This is the alpha value of a one-tailed hypothesis testing. To obtain the alpha value for a two-tailed hypothesis testing, divide this value by 2. This gives 0.05 / 2 = 0.025.

Related Articles:

- Probability and Statistics
- Data Handling

Important Notes on Hypothesis Testing

- Hypothesis testing is a technique that is used to verify whether the results of an experiment are statistically significant.
- It involves the setting up of a null hypothesis and an alternate hypothesis.
- There are three types of tests that can be conducted under hypothesis testing - z test, t test, and chi square test.
- Hypothesis testing can be classified as right tail, left tail, and two tail tests.

## Examples on Hypothesis Testing

- Example 1: The average weight of a dumbbell in a gym is 90lbs. However, a physical trainer believes that the average weight might be higher. A random sample of 5 dumbbells with an average weight of 110lbs and a standard deviation of 18lbs. Using hypothesis testing check if the physical trainer's claim can be supported for a 95% confidence level. Solution: As the sample size is lesser than 30, the t-test is used. \(H_{0}\): \(\mu\) = 90, \(H_{1}\): \(\mu\) > 90 \(\overline{x}\) = 110, \(\mu\) = 90, n = 5, s = 18. \(\alpha\) = 0.05 Using the t-distribution table, the critical value is 2.132 t = \(\frac{\overline{x}-\mu}{\frac{s}{\sqrt{n}}}\) t = 2.484 As 2.484 > 2.132, the null hypothesis is rejected. Answer: The average weight of the dumbbells may be greater than 90lbs
- Example 2: The average score on a test is 80 with a standard deviation of 10. With a new teaching curriculum introduced it is believed that this score will change. On random testing, the score of 38 students, the mean was found to be 88. With a 0.05 significance level, is there any evidence to support this claim? Solution: This is an example of two-tail hypothesis testing. The z test will be used. \(H_{0}\): \(\mu\) = 80, \(H_{1}\): \(\mu\) ≠ 80 \(\overline{x}\) = 88, \(\mu\) = 80, n = 36, \(\sigma\) = 10. \(\alpha\) = 0.05 / 2 = 0.025 The critical value using the normal distribution table is 1.96 z = \(\frac{\overline{x}-\mu}{\frac{\sigma}{\sqrt{n}}}\) z = \(\frac{88-80}{\frac{10}{\sqrt{36}}}\) = 4.8 As 4.8 > 1.96, the null hypothesis is rejected. Answer: There is a difference in the scores after the new curriculum was introduced.
- Example 3: The average score of a class is 90. However, a teacher believes that the average score might be lower. The scores of 6 students were randomly measured. The mean was 82 with a standard deviation of 18. With a 0.05 significance level use hypothesis testing to check if this claim is true. Solution: The t test will be used. \(H_{0}\): \(\mu\) = 90, \(H_{1}\): \(\mu\) < 90 \(\overline{x}\) = 110, \(\mu\) = 90, n = 6, s = 18 The critical value from the t table is -2.015 t = \(\frac{\overline{x}-\mu}{\frac{s}{\sqrt{n}}}\) t = \(\frac{82-90}{\frac{18}{\sqrt{6}}}\) t = -1.088 As -1.088 > -2.015, we fail to reject the null hypothesis. Answer: There is not enough evidence to support the claim.

go to slide go to slide go to slide

Book a Free Trial Class

## FAQs on Hypothesis Testing

What is hypothesis testing.

Hypothesis testing in statistics is a tool that is used to make inferences about the population data. It is also used to check if the results of an experiment are valid.

## What is the z Test in Hypothesis Testing?

The z test in hypothesis testing is used to find the z test statistic for normally distributed data . The z test is used when the standard deviation of the population is known and the sample size is greater than or equal to 30.

## What is the t Test in Hypothesis Testing?

The t test in hypothesis testing is used when the data follows a student t distribution . It is used when the sample size is less than 30 and standard deviation of the population is not known.

## What is the formula for z test in Hypothesis Testing?

The formula for a one sample z test in hypothesis testing is z = \(\frac{\overline{x}-\mu}{\frac{\sigma}{\sqrt{n}}}\) and for two samples is z = \(\frac{(\overline{x_{1}}-\overline{x_{2}})-(\mu_{1}-\mu_{2})}{\sqrt{\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}}}\).

## What is the p Value in Hypothesis Testing?

The p value helps to determine if the test results are statistically significant or not. In hypothesis testing, the null hypothesis can either be rejected or not rejected based on the comparison between the p value and the alpha level.

## What is One Tail Hypothesis Testing?

When the rejection region is only on one side of the distribution curve then it is known as one tail hypothesis testing. The right tail test and the left tail test are two types of directional hypothesis testing.

## What is the Alpha Level in Two Tail Hypothesis Testing?

To get the alpha level in a two tail hypothesis testing divide \(\alpha\) by 2. This is done as there are two rejection regions in the curve.

## Hypothesis tests #

Formal hypothesis testing is perhaps the most prominent and widely-employed form of statistical analysis. It is sometimes seen as the most rigorous and definitive part of a statistical analysis, but it is also the source of many statistical controversies. The currently-prevalent approach to hypothesis testing dates to developments that took place between 1925 and 1940, especially the work of Ronald Fisher , Jerzy Neyman , and Egon Pearson .

In recent years, many prominent statisticians have argued that less emphasis should be placed on the formal hypothesis testing approaches developed in the early twentieth century, with a correspondingly greater emphasis on other forms of uncertainty analysis. Our goal here is to give an overview of some of the well-established and widely-used approaches for hypothesis testing. We will also provide some perspectives on how these tools can be effectively used, and discuss their limitations. We will also discuss some new approaches to hypothesis testing that may eventually come to be as prominent as these classical approaches.

A falsifiable hypothesis is a statement, or hypothesis, that can be contradicted with evidence. In empirical (data-driven) research, this evidence will always be obtained through the data. In statistical hypothesis testing, the hypothesis that we formally test is called the null hypothesis . The alternative hypothesis is a second hypothesis that is our proposed explanation for what happens if the null hypothesis is wrong.

## Test statistics #

The key element of a statistical hypothesis test is the test statistic , which (like any statistic) is a function of the data. A test statistic takes our entire dataset, and reduces it to one number. This one number ideally should contain all the information in the data that is relevant for assessing the two hypotheses of interest, and exclude any aspects of the data that are irrelevant for assessing the two hypotheses. The test statistic measures evidence against the null hypothesis. Most test statistics are constructed so that a value of zero represents the lowest possible level of evidence against the null hypothesis. Test statistic values that deviate from zero represent greater levels of evidence against the null hypothesis. The larger the magnitude of the test statistic, the stronger the evidence against the null hypothesis.

A major theme of statistical research is to devise effective ways to construct test statistics. Many useful ways to do this have been devised, and there is no single approach that is always the best. In this introductory course, we will focus on tests that starting with an estimate of a quantity that is relevant for assessing the hypotheses, then proceed by standardizing this estimate by dividing it by its standard error. This approach is sometimes referred to as “Wald testing”, after Abraham Wald .

## Testing the equality of two proportions #

As a basic example, let’s consider risk perception related to COVID-19. As you will see below, hypothesis testing can appear at first to be a fairly elaborate exercise. Using this example, we describe each aspect of this exercise in detail below.

## The data and research question #

The data shown below are simulated but are designed to reflect actual surveys conducted in the United States in March of 2020. Partipants were asked whether they perceive that they have a substantial risk of dying if they are infected with the novel coronavirus. The number of people stating each response, stratified on age, are shown below (only two age groups are shown):

Each subject’s response is binary – they either perceive themselves to be high risk, or not to be at high risk. When working with this type of data, we are usually interested in the proportion of people who provide each response within each stratum (age group). These are conditional proportions, conditioning on the age group. The numerical values of the conditional proportions are given below:

There are four conditional proportions in the table above – the proportion of younger people who perceive themselves to be at higher risk, 0.110=25/(25+202); the proportion of younger people who do not perceive themselves to be at high risk, 0.890=202/(25+202); the proportion of older people who perceive themselves to be at high risk 0.195=30/(30+124); and the proportion of older people who do not perceive themselves to be at high risk, 0.805=124/(30+124).

The trend in the data is that younger people perceive themselves to be at lower risk of dying than older people, by a difference of 0.195-0.110=0.085 (in terms of proportions). But is this trend only present in this sample, or is it generalizable to a broader population (say the entire US population)? That is the goal of conducting a statistical hypothesis test in this setting.

## The population structure #

Corresponding to our data above is the unobserved population structure, which we can denote as follows

The symbols \(p\) and \(q\) in the table above are population parameters . These are quantitites that we do not know, and wish to assess using the data. In this case, our null hypothesis can be expressed as the statement \(p = q\) . We can estimate \(p\) using the sample proportion \(\hat{p} = 0.110\) , and similarly estimate \(q\) using \(\hat{q} = 0.195\) . However these estimates do not immediately provide us with a way of expressing the evidence relating to the hypothesis that \(p=q\) . This is provided by the test statistic.

## A test statistic #

As noted above, a test statistic is a reduction of the data to one number that captures all of the relevant information for assessing the hypotheses. A natural first choice for a test statistic here would be the difference in sample proportions between the two age groups, which is 0.195 - 0.110 = 0.085. There is a difference of 0.085 between the perceived risks of death in the younger and older age groups.

The difference in rates (0.085) does not on its own make a good test statistic, although it is a good start toward obtaining one. The reason for this is that the evidence underlying this difference in rates depends also on the absolute rates (0.110 and 0.195), and on the sample sizes (227 and 154). If we only know that the difference in rates is 0.085, this is not sufficient to evaluate the hypothesis in a statistical manner. A given difference in rates is much stronger evidence if it is obtained from a larger sample. If we have a difference of 0.085 with a very large sample, say one million people, then we should be almost certain that the true rates differ (i.e. the data are highly incompatiable with the hypothesis that \(p=q\) ). If we have the same difference in rates of 0.085, but with a small sample, say 50 people per age group, then there would be almost no evidence for a true difference in the rates (i.e. the data are compatiable with the hypothesis \(p=q\) ).

To address this issue, we need to consider the uncertainty in the estimated rate difference, which is 0.085. Recall that the estimated rate difference is obtained from the sample and therefore is almost certain to deviate somewhat from the true rate difference in the population (which is unknown). Recall from our study of standard errors that the standard error for an estimated proportion is \(\sqrt{p(1-p)/n}\) , where \(p\) is the outcome probability (here the outcome is that a person perceives a high risk of dying), and \(n\) is the sample size.

In the present analysis, we are comparing two proportions, so we have two standard errors. The estimated standard error for the younger people is \(\sqrt{0.11\cdot 0.89/227} \approx 0.021\) . The estimated standard error for the older people is \(\sqrt{0.195\cdot 0.805/154} \approx 0.032\) . Note that both standard errors are estimated, rather than exact, because we are plugging in estimates of the rates (0.11 and 0.195). Also note that the standard error for the rate among older people is greater than that for younger people. This is because the sample size for older people is smaller, and also because the estimated rate for older people is closer to 1/2.

In our previous discussion of standard errors, we saw how standard errors for independent quantities \(A\) and \(B\) can be used to obtain the standard error for the difference \(A-B\) . Applying that result here, we see that the standard error for the estimated difference in rates 0.195-0.11=0.085 is \(\sqrt{0.021^2 + 0.032^2} \approx 0.038\) .

The final step in constructing our test statistic is to construct a Z-score from the estimated difference in rates. As with all Z-scores, we proceed by taking the estimated difference in rates, and then divide it by its standard error. Thus, we get a test statistic value of \(0.085 / 0.038 \approx 2.24\) .

A test statistic value of 2.24 is not very close to zero, so there is some evidence against the null hypothesis. But the strength of this evidence remains unclear. Thus, we must consider how to calibrate this evidence in a way that makes it more interpretable.

## Calibrating the evidence in the test statistic #

By the central limit theorem (CLT), a Z-score approximately follows a normal distribution. When the null hypothesis holds, the Z-score approximately follows the standard normal distribution (recall that a standard normal distribution is a normal distribution with expected value equal to 0 and variance equal to 1). If the null hypothesis does not hold, then the test statistic continues to approximately follow a normal distribution, but it is not the standard normal distribution.

A test statistic of zero represents the least possible evidence against the null hypothesis. Here, we will obtain a test statistic of zero when the two proportions being compared are identical, i.e. exactly the same proportions of younger and older people perceive a substantial risk of dying from a disease. Even if the test statistic is exactly zero, this does not guarantee that the null hypothesis is true. However it is the least amount of evidence that the data can present against the null hypothesis.

In a hypothesis testing setting using normally-distrbuted Z-scores, as is the case here (due to the CLT), the standard normal distribution is the reference distribution for our test statistic. If the Z-score falls in the center of the reference distribution, there is no evidence against the null hypothesis. If the Z-score falls into either tail of the reference distribution, then there is evidence against the null distribution, and the further into the tails of the reference distribution the Z-score falls, the greater the evidence.

The most conventional way to quantify the evidence in our test statistic is through a probability called the p-value . The p-value has a somewhat complex definition that many people find difficult to grasp. It is the probability of observing as much or more evidence against the null hypothesis as we actually observe, calculated when the null hypothesis is assumed to be true. We will discuss some ways to think about this more intuitively below.

For our purposes, “evidence against the null hypothesis” is reflected in how far into the tails of the reference distribution the Z-score (test statistic) falls. We observed a test statistic of 2.24 in our COVID risk perception analysis. Recall that due to the “empirical rule”, 95% of the time, a draw from a standard normal distribution falls between -2 and 2. Thus, the p-value must be less than 0.05, since 2.24 falls outside this interval. The p-value can be calculated using a computer, in this case it happens to be approximately 0.025.

As stated above, the p-value tells us how likely it would be for us to obtain as much evidence against the the null hypothesis as we observed in our actual data analysis, if we were certain that the null hypothesis were true. When the null hypothesis holds, any evidence against the null hypothesis is spurious. Thus, we will want to see stronger evidence against the null from our actual analysis than we would see if we know that the null hypothesis were true. A smaller p-value therefore reflects more evidence against the null hypothesis than a larger p-value.

By convention, p-values of 0.05 or smaller are considered to represent sufficiently strong evidence against the null hypothesis to make a finding “statistically significant”. This threshold of 0.05 was chosen arbitrarily 100 years ago, and there is no objective reason for it. In recent years, people have argued that either a lesser or a greater p-value threshold should be used. But largely due to convention, the practice of deeming p-values smaller than 0.05 to be statistically significant continues.

## Summary of this example #

Here is a restatement of the above discussion, using slightly different language. In our analysis of COVID risk perceptions, we found a difference in proportions of 0.085 between younger and older subjects, with younger people perceiving a lower risk of dying. This is a difference based on the sample of data that we observed, but what we really want to know is whether there is a difference in COVID risk perception in the population (say, all US adults).

Suppose that in fact there is no difference in risk perception between younger and older people. For instance, suppose that in the population, 15% of people believe that they have a substantial risk of dying should they become infected with the novel coronavirus, regardless of their age. Even though the rates are equal in this imaginary population (both being 15%), the rates in our sample would typically not be equal. Around 3% of the time (0.024=2.4% to be exact), if the rates are actually equal in the population, we would see a test statistic that is 2.4 or larger. Since 3% represents a fairly rare event, we can conclude that our observed data are not compatible with the null hypothesis. We can also say that there is statistically significant evidence against the null hypothesis, and that we have “rejected” the null hypothesis at the 3% level.

In this data analysis, as in any data analysis, we cannot confirm definitively that the alternative hypothesis is true. But based on our data and the analysis performed above, we can claim that there is substantial evidence against the null hypothesis, using standard criteria for what is considered to be “substantial evidence”.

## Comparison of means #

A very common setting where hypothesis testing is used arises when we wish to compare the means of a quantitative measurement obtained for two populations. Imagine, for example, that we have two ways of manufacturing a battery, and we wish to assess which approach yields batteries that are longer-lasting in actual use. To do this, suppose we obtain data that tells us the number of charge cycles that were completed in 200 batteries of type A, and in 300 batteries of type B. For the test developed below to be meaningful, the data must be independent and identically distributed samples.

The raw data for this study consists of 500 numbers, but it turns out that the most relevant information from the data is contained in the sample means and sample standard deviations computed within each battery type. Note that this is a huge reduction in complexity, since we started with 500 measurements and are able to summarize this down to just four numbers.

Suppose the summary statistics are as follows, where \(\bar{x}\) , \(\hat{\sigma}_x\) , and \(n\) denote the sample mean, sample standard deviation, and sample size, respectively.

The simplest measure comparing the two manufacturing approaches is the difference 420 - 403 = 17. That is, batteries of type A tend to have 17 more charge cycles compared to batteries of type B. This difference is present in our sample, but is it also true that the entire population of type A batteries has more charge cycles than the entire population of type B batteries? That is the goal of conducting a hypothesis test.

The next step in the present analysis is to divide the mean difference, which is 17, by its standard error. As we have seen, the standard error of the mean, or SEM, is \(\sigma/n\) , where \(\sigma\) is the standard deviation and \(n\) is the sample size. Since \(\sigma\) is almost never known, we plug in its estimate \(\hat{\sigma}\) . For the type A batteries, the estimated SEM is thus \(70/\sqrt{200} \approx 4.95\) , and for the type B batteries the estimated SEM is \(90/\sqrt{300} \approx 5.2\) .

Since we are comparing two estimated means that are obtained from independent samples, we can pool the standard deviations to obtain an overall standard deviation of \(\sqrt{4.95^2 + 5.2^2} \approx 7.18\) . We can now obtain our test statistic \(17/7.18 \approx 2.37\) .

The test statistic can be calibrated against a standard normal reference distribution. The probability of observing a standard normal value that is greater in magnitude than 2.37 is 0.018 (this can be obtained from a computer). This is the p-value, and since it is smaller than the conventional threshold of 0.05, we can claim that there is a statistically significant difference between the average number of charge cycles for the two types of batteries, with the A batteries having more charge cycles on average.

The analysis illustrated here is called a two independent samples Z-test , or just a two sample Z-test . It may be the most commonly employed of all statistical tests. It is also common to see the very similar two sample t-test , which is different only in that it uses the Student t distribution rather than the normal (Gaussian) distribution to calculate the p-values. In fact, there are quite a few minor variations on this testing framework, including “one sided” and “two sided” tests, and tests based on different ways of pooling the variance. Due to the CLT, if the sample size is modestly large (which is the case here), the results of all of these tests will be almost identical. For simplicity, we only cover the Z-test in this course.

## Assessment of a correlation #

The tests for comparing proportions and means presented above are quite similar in many ways. To provide one more example of a hypothesis test that is somewhat different, we consider a test for a correlation coefficient.

Recall that the sample correlation coefficient \(\hat{r}\) is used to assess the relationship, or association, between two quantities X and Y that are measured on the same units. For example, we may ask whether two biomarkers, serum creatinine and D-dimer, are correlated with each other. These biomarkers are both commonly used in medical settings and are obtained using blood tests. D-dimer is used to assess whether a person has blood clots, and serum creatinine is used to measure kidney performance.

Suppose we are interested in whether there is a correlation in the population between D-dimer and serum creatinine. The population correlation coefficient between these two quantitites can be denoted \(r\) . Our null hypothesis is \(r=0\) . Suppose that we observe a sample correlation coefficient of \(\hat{r}=0.15\) , using an independent and identically distributed sample of pairs \((x, y)\) , where \(x\) is a D-dimer measurement and \(y\) is a serum creatinine measurement. Are these data consistent with the null hypothesis?

As above, we proceed by constructing a test statistic by taking the estimated statistic and dividing it by its standard error. The approximate standard error for \(\hat{r}\) is \(1/\sqrt{n}\) , where \(n\) is the sample size. The test statistic is therefore \(\sqrt{n}\cdot \hat{r} \approx 1.48\) .

We now calibrate this test statistic by comparing it to a standard normal reference distribution. Recall from the empirical rule that 5% of the time, a standard normal value falls outside the interval (-2, 2). Therefore, if the test statistic is smaller than 2 in magnitude, as is the case here, its p-value is greater than 0.05. Thus, in this case we know that the p-value will exceed 0.05 without calculating it, and therefore there is no basis for claiming that D-dimer and serum creatinine levels are correlated in this population.

## Sampling properties of p-values #

A p-value is the most common way of calibrating evidence. Smaller p-values indicate stronger evidence against a null hypothesis. By convention, if the p-value is smaller than some threshold, usually 0.05, we reject the null hypothesis and declare a finding to be “statistically significant”. How can we understand more deeply what this means? One major concern should be obtaining a small p-value when the null hypothesis is true. If the null hypothesis is true, then it is incorrect to reject it. If we reject the null hypothesis, we are making a false claim. This can never be prevented with complete certainty, but we would like to have a very clear understanding of how likely it is to reject the null hypothesis when the null hypothesis is in fact true.

P-values have a special property that when the null distribution is true, the probability of observing a p-value smaller than 0.05 is 0.05 (5%). In fact, the probability of observing a p-value smaller than \(t\) is equal to \(t\) , for any threshold \(t\) . For example, the probability of observing a p-value smaller than 0.1, when the null hypothesis is true, is 10%.

This fact gives a more concrete understanding of how strong the evidence is for a particular p-value. If we always reject the null hypothesis when the p-value is 0.1 or smaller, then over the long run we will reject the null hypothesis 10% of the time when the null hypothesis is true. If we always reject the null hypothesis when the p-value is 0.05 or smaller, then over the long run we will reject the null hypothesis 5% of the time when the null hypothesis is true.

The approach to hypothesis testing discussed above largely follows the framework developed by RA Fisher around 1925. Note that although we mentioned the alternative hypothesis above, we never actually used it. A more elaborate approach to hypothesis testing was developed somewhat later by Egon Pearson and Jerzy Neyman. The “Neyman-Pearson” approach to hypothesis testing is even more formal than Fisher’s approach, and is most suited to highly planned research efforts in which the study is carefully designed, then executed. While ideally all research projects should be carried out this way, in reality we often conduct research using data that are already available, rather than using data that are specifically collected to address the research question.

Neyman-Pearson hypothesis testing involves specifying an alternative hypothesis that we anticipate encountering. Usually this alternative hypothesis represents a realistic guess about what we might find once the data are collected. In each of the three examples above, imagine that the data are not yet collected, and we are asked to specify an alternative hypothesis. We may arrive at the following:

In comparing risk perceptions for COVID, we may anticipate that older people will perceive a 30% risk of dying, and younger people will anticipate a 5% risk of dying.

In comparing the number of charge cycles for two types of batteries, we may anticipate that batter type A will have on average 500 charge cycles, and battery type B will have on average 400 charge cycles.

In assessing the correlation between D-dimer and serum creatinine levels, we may anticipate a correlation of 0.3.

Note that none of the numbers stated here are data-driven – they are specified before any data are collected, so they do not match the results from the data, which were collected only later. These alternative hypotheses are all essentially speculations, based perhaps on related data or theoretical considerations.

There are several benefits of specifying an explicit alternative hypothesis, as done here, even though it is not strictly necessary and can be avoided entirely by adopting Fisher’s approach to hypothesis testing. One benefit of specifying an alternative hypothesis is that we can use it to assess the power of our planned study, which can in turn inform the design of the study, in particular the sample size. The power is the probability of rejecting the null hypothesis when the alternative hypothesis is true. That is, it is the probability of discovering something real. The power should be contrasted with the level of a hypothesis test, which is the probability of rejecting the null hypothesis when the null hypothesis is true. That is, the level is the probability of “discovering” something that is not real.

To calculate the power, recall that for many of the test statistics that we are considering here, the test statistic has the form \(\hat{\theta}/{\rm SE}(\hat{\theta})\) , where \(\hat{\theta}\) is an estimate. For example, \(\hat{\theta}\) ) may be the correlation coefficient between D-dimer and serum creatinine levels. As stated above, the power is the probability of rejecting the null hypothesis when the alternative hypothesis is true. Suppose we decide to reject the null hypothesis when the test statistic is greater than 2, which is approximately equivalent to rejecting the null hypothesis when the p-value is less than 0.05. The following calculation tells us how to obtain the power in this setting:

Under the alternative hypothesis, \(\sqrt{n}(\hat{r} - r)\) approximately follows a standard normal distribution. Therefore, if \(r\) and \(n\) are given, we can easily use the computer to obtain the probability of observing a value greater than \(2 - \sqrt{n}r\) . This gives us the power of the test. For example, if we anticipate \(r=0.3\) and plan to collect data for \(n=100\) observations, the power is 0.84. This is generally considered to be good power – if the true value of \(r\) is in fact 0.3, we would reject the null hypothesis 84% of the time.

A study usually has poor power because it has too small of a sample size. Poorly powered studies can be very misleading, but since large sample sizes are expensive to collect, a lot of research is conducted using sample sizes that yield moderate or even low power. If a study has low power, it is unlikely to reject the null hypothesis even when the alternative hypothesis is true, but it remains possible to reject the null hypothesis when the null hypothesis is true (usually this probability is 5%). Therefore the most likely outcome of a poorly powered study may be an incorrectly rejected null hypothesis.

## User Preferences

Content preview.

Arcu felis bibendum ut tristique et egestas quis:

- Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris
- Duis aute irure dolor in reprehenderit in voluptate
- Excepteur sint occaecat cupidatat non proident

## Keyboard Shortcuts

5.2 - writing hypotheses.

The first step in conducting a hypothesis test is to write the hypothesis statements that are going to be tested. For each test you will have a null hypothesis (\(H_0\)) and an alternative hypothesis (\(H_a\)).

When writing hypotheses there are three things that we need to know: (1) the parameter that we are testing (2) the direction of the test (non-directional, right-tailed or left-tailed), and (3) the value of the hypothesized parameter.

- At this point we can write hypotheses for a single mean (\(\mu\)), paired means(\(\mu_d\)), a single proportion (\(p\)), the difference between two independent means (\(\mu_1-\mu_2\)), the difference between two proportions (\(p_1-p_2\)), a simple linear regression slope (\(\beta\)), and a correlation (\(\rho\)).
- The research question will give us the information necessary to determine if the test is two-tailed (e.g., "different from," "not equal to"), right-tailed (e.g., "greater than," "more than"), or left-tailed (e.g., "less than," "fewer than").
- The research question will also give us the hypothesized parameter value. This is the number that goes in the hypothesis statements (i.e., \(\mu_0\) and \(p_0\)). For the difference between two groups, regression, and correlation, this value is typically 0.

Hypotheses are always written in terms of population parameters (e.g., \(p\) and \(\mu\)). The tables below display all of the possible hypotheses for the parameters that we have learned thus far. Note that the null hypothesis always includes the equality (i.e., =).

- Search Search Please fill out this field.
- Fundamental Analysis

## Hypothesis to Be Tested: Definition and 4 Steps for Testing with Example

## What Is Hypothesis Testing?

Hypothesis testing, sometimes called significance testing, is an act in statistics whereby an analyst tests an assumption regarding a population parameter. The methodology employed by the analyst depends on the nature of the data used and the reason for the analysis.

Hypothesis testing is used to assess the plausibility of a hypothesis by using sample data. Such data may come from a larger population, or from a data-generating process. The word "population" will be used for both of these cases in the following descriptions.

## Key Takeaways

- Hypothesis testing is used to assess the plausibility of a hypothesis by using sample data.
- The test provides evidence concerning the plausibility of the hypothesis, given the data.
- Statistical analysts test a hypothesis by measuring and examining a random sample of the population being analyzed.
- The four steps of hypothesis testing include stating the hypotheses, formulating an analysis plan, analyzing the sample data, and analyzing the result.

## How Hypothesis Testing Works

In hypothesis testing, an analyst tests a statistical sample, with the goal of providing evidence on the plausibility of the null hypothesis.

Statistical analysts test a hypothesis by measuring and examining a random sample of the population being analyzed. All analysts use a random population sample to test two different hypotheses: the null hypothesis and the alternative hypothesis.

The null hypothesis is usually a hypothesis of equality between population parameters; e.g., a null hypothesis may state that the population mean return is equal to zero. The alternative hypothesis is effectively the opposite of a null hypothesis (e.g., the population mean return is not equal to zero). Thus, they are mutually exclusive , and only one can be true. However, one of the two hypotheses will always be true.

The null hypothesis is a statement about a population parameter, such as the population mean, that is assumed to be true.

## 4 Steps of Hypothesis Testing

All hypotheses are tested using a four-step process:

- The first step is for the analyst to state the hypotheses.
- The second step is to formulate an analysis plan, which outlines how the data will be evaluated.
- The third step is to carry out the plan and analyze the sample data.
- The final step is to analyze the results and either reject the null hypothesis, or state that the null hypothesis is plausible, given the data.

## Real-World Example of Hypothesis Testing

If, for example, a person wants to test that a penny has exactly a 50% chance of landing on heads, the null hypothesis would be that 50% is correct, and the alternative hypothesis would be that 50% is not correct.

Mathematically, the null hypothesis would be represented as Ho: P = 0.5. The alternative hypothesis would be denoted as "Ha" and be identical to the null hypothesis, except with the equal sign struck-through, meaning that it does not equal 50%.

A random sample of 100 coin flips is taken, and the null hypothesis is then tested. If it is found that the 100 coin flips were distributed as 40 heads and 60 tails, the analyst would assume that a penny does not have a 50% chance of landing on heads and would reject the null hypothesis and accept the alternative hypothesis.

If, on the other hand, there were 48 heads and 52 tails, then it is plausible that the coin could be fair and still produce such a result. In cases such as this where the null hypothesis is "accepted," the analyst states that the difference between the expected results (50 heads and 50 tails) and the observed results (48 heads and 52 tails) is "explainable by chance alone."

Some staticians attribute the first hypothesis tests to satirical writer John Arbuthnot in 1710, who studied male and female births in England after observing that in nearly every year, male births exceeded female births by a slight proportion. Arbuthnot calculated that the probability of this happening by chance was small, and therefore it was due to “divine providence.”

## What is Hypothesis Testing?

Hypothesis testing refers to a process used by analysts to assess the plausibility of a hypothesis by using sample data. In hypothesis testing, statisticians formulate two hypotheses: the null hypothesis and the alternative hypothesis. A null hypothesis determines there is no difference between two groups or conditions, while the alternative hypothesis determines that there is a difference. Researchers evaluate the statistical significance of the test based on the probability that the null hypothesis is true.

## What are the Four Key Steps Involved in Hypothesis Testing?

Hypothesis testing begins with an analyst stating two hypotheses, with only one that can be right. The analyst then formulates an analysis plan, which outlines how the data will be evaluated. Next, they move to the testing phase and analyze the sample data. Finally, the analyst analyzes the results and either rejects the null hypothesis or states that the null hypothesis is plausible, given the data.

## What are the Benefits of Hypothesis Testing?

Hypothesis testing helps assess the accuracy of new ideas or theories by testing them against data. This allows researchers to determine whether the evidence supports their hypothesis, helping to avoid false claims and conclusions. Hypothesis testing also provides a framework for decision-making based on data rather than personal opinions or biases. By relying on statistical analysis, hypothesis testing helps to reduce the effects of chance and confounding variables, providing a robust framework for making informed conclusions.

## What are the Limitations of Hypothesis Testing?

Hypothesis testing relies exclusively on data and doesn’t provide a comprehensive understanding of the subject being studied. Additionally, the accuracy of the results depends on the quality of the available data and the statistical methods used. Inaccurate data or inappropriate hypothesis formulation may lead to incorrect conclusions or failed tests. Hypothesis testing can also lead to errors, such as analysts either accepting or rejecting a null hypothesis when they shouldn’t have. These errors may result in false conclusions or missed opportunities to identify significant patterns or relationships in the data.

## The Bottom Line

Hypothesis testing refers to a statistical process that helps researchers and/or analysts determine the reliability of a study. By using a well-formulated hypothesis and set of statistical tests, individuals or businesses can make inferences about the population that they are studying and draw conclusions based on the data presented. There are different types of hypothesis testing, each with their own set of rules and procedures. However, all hypothesis testing methods have the same four step process, which includes stating the hypotheses, formulating an analysis plan, analyzing the sample data, and analyzing the result. Hypothesis testing plays a vital part of the scientific process, helping to test assumptions and make better data-based decisions.

Sage. " Introduction to Hypothesis Testing. " Page 4.

Elder Research. " Who Invented the Null Hypothesis? "

Formplus. " Hypothesis Testing: Definition, Uses, Limitations and Examples. "

- Terms of Service
- Editorial Policy
- Privacy Policy
- Your Privacy Choices

## Tutorial Playlist

Statistics tutorial, everything you need to know about the probability density function in statistics, the best guide to understand central limit theorem, an in-depth guide to measures of central tendency : mean, median and mode, the ultimate guide to understand conditional probability.

A Comprehensive Look at Percentile in Statistics

## The Best Guide to Understand Bayes Theorem

Everything you need to know about the normal distribution, an in-depth explanation of cumulative distribution function, a complete guide to chi-square test, a complete guide on hypothesis testing in statistics, understanding the fundamentals of arithmetic and geometric progression, the definitive guide to understand spearman’s rank correlation, a comprehensive guide to understand mean squared error, all you need to know about the empirical rule in statistics, the complete guide to skewness and kurtosis, a holistic look at bernoulli distribution.

All You Need to Know About Bias in Statistics

## A Complete Guide to Get a Grasp of Time Series Analysis

The Key Differences Between Z-Test Vs. T-Test

## The Complete Guide to Understand Pearson's Correlation

A complete guide on the types of statistical studies, everything you need to know about poisson distribution, your best guide to understand correlation vs. regression, the most comprehensive guide for beginners on what is correlation, what is hypothesis testing in statistics types and examples.

Lesson 10 of 24 By Avijeet Biswal

## Table of Contents

In today’s data-driven world , decisions are based on data all the time. Hypothesis plays a crucial role in that process, whether it may be making business decisions, in the health sector, academia, or in quality improvement. Without hypothesis & hypothesis tests, you risk drawing the wrong conclusions and making bad decisions. In this tutorial, you will look at Hypothesis Testing in Statistics.

## What Is Hypothesis Testing in Statistics?

Hypothesis Testing is a type of statistical analysis in which you put your assumptions about a population parameter to the test. It is used to estimate the relationship between 2 statistical variables.

Let's discuss few examples of statistical hypothesis from real-life -

- A teacher assumes that 60% of his college's students come from lower-middle-class families.
- A doctor believes that 3D (Diet, Dose, and Discipline) is 90% effective for diabetic patients.

Now that you know about hypothesis testing, look at the two types of hypothesis testing in statistics.

## Hypothesis Testing Formula

Z = ( x̅ – μ0 ) / (σ /√n)

- Here, x̅ is the sample mean,
- μ0 is the population mean,
- σ is the standard deviation,
- n is the sample size.

## How Hypothesis Testing Works?

An analyst performs hypothesis testing on a statistical sample to present evidence of the plausibility of the null hypothesis. Measurements and analyses are conducted on a random sample of the population to test a theory. Analysts use a random population sample to test two hypotheses: the null and alternative hypotheses.

The null hypothesis is typically an equality hypothesis between population parameters; for example, a null hypothesis may claim that the population means return equals zero. The alternate hypothesis is essentially the inverse of the null hypothesis (e.g., the population means the return is not equal to zero). As a result, they are mutually exclusive, and only one can be correct. One of the two possibilities, however, will always be correct.

## Your Dream Career is Just Around The Corner!

## Null Hypothesis and Alternate Hypothesis

The Null Hypothesis is the assumption that the event will not occur. A null hypothesis has no bearing on the study's outcome unless it is rejected.

H0 is the symbol for it, and it is pronounced H-naught.

The Alternate Hypothesis is the logical opposite of the null hypothesis. The acceptance of the alternative hypothesis follows the rejection of the null hypothesis. H1 is the symbol for it.

Let's understand this with an example.

A sanitizer manufacturer claims that its product kills 95 percent of germs on average.

To put this company's claim to the test, create a null and alternate hypothesis.

H0 (Null Hypothesis): Average = 95%.

Alternative Hypothesis (H1): The average is less than 95%.

Another straightforward example to understand this concept is determining whether or not a coin is fair and balanced. The null hypothesis states that the probability of a show of heads is equal to the likelihood of a show of tails. In contrast, the alternate theory states that the probability of a show of heads and tails would be very different.

## Become a Data Scientist with Hands-on Training!

## Hypothesis Testing Calculation With Examples

Let's consider a hypothesis test for the average height of women in the United States. Suppose our null hypothesis is that the average height is 5'4". We gather a sample of 100 women and determine that their average height is 5'5". The standard deviation of population is 2.

To calculate the z-score, we would use the following formula:

z = ( x̅ – μ0 ) / (σ /√n)

z = (5'5" - 5'4") / (2" / √100)

z = 0.5 / (0.045)

We will reject the null hypothesis as the z-score of 11.11 is very large and conclude that there is evidence to suggest that the average height of women in the US is greater than 5'4".

## Steps of Hypothesis Testing

Step 1: specify your null and alternate hypotheses.

It is critical to rephrase your original research hypothesis (the prediction that you wish to study) as a null (Ho) and alternative (Ha) hypothesis so that you can test it quantitatively. Your first hypothesis, which predicts a link between variables, is generally your alternate hypothesis. The null hypothesis predicts no link between the variables of interest.

## Step 2: Gather Data

For a statistical test to be legitimate, sampling and data collection must be done in a way that is meant to test your hypothesis. You cannot draw statistical conclusions about the population you are interested in if your data is not representative.

## Step 3: Conduct a Statistical Test

Other statistical tests are available, but they all compare within-group variance (how to spread out the data inside a category) against between-group variance (how different the categories are from one another). If the between-group variation is big enough that there is little or no overlap between groups, your statistical test will display a low p-value to represent this. This suggests that the disparities between these groups are unlikely to have occurred by accident. Alternatively, if there is a large within-group variance and a low between-group variance, your statistical test will show a high p-value. Any difference you find across groups is most likely attributable to chance. The variety of variables and the level of measurement of your obtained data will influence your statistical test selection.

## Step 4: Determine Rejection Of Your Null Hypothesis

Your statistical test results must determine whether your null hypothesis should be rejected or not. In most circumstances, you will base your judgment on the p-value provided by the statistical test. In most circumstances, your preset level of significance for rejecting the null hypothesis will be 0.05 - that is, when there is less than a 5% likelihood that these data would be seen if the null hypothesis were true. In other circumstances, researchers use a lower level of significance, such as 0.01 (1%). This reduces the possibility of wrongly rejecting the null hypothesis.

## Step 5: Present Your Results

The findings of hypothesis testing will be discussed in the results and discussion portions of your research paper, dissertation, or thesis. You should include a concise overview of the data and a summary of the findings of your statistical test in the results section. You can talk about whether your results confirmed your initial hypothesis or not in the conversation. Rejecting or failing to reject the null hypothesis is a formal term used in hypothesis testing. This is likely a must for your statistics assignments.

## Types of Hypothesis Testing

To determine whether a discovery or relationship is statistically significant, hypothesis testing uses a z-test. It usually checks to see if two means are the same (the null hypothesis). Only when the population standard deviation is known and the sample size is 30 data points or more, can a z-test be applied.

A statistical test called a t-test is employed to compare the means of two groups. To determine whether two groups differ or if a procedure or treatment affects the population of interest, it is frequently used in hypothesis testing.

## Chi-Square

You utilize a Chi-square test for hypothesis testing concerning whether your data is as predicted. To determine if the expected and observed results are well-fitted, the Chi-square test analyzes the differences between categorical variables from a random sample. The test's fundamental premise is that the observed values in your data should be compared to the predicted values that would be present if the null hypothesis were true.

## Hypothesis Testing and Confidence Intervals

Both confidence intervals and hypothesis tests are inferential techniques that depend on approximating the sample distribution. Data from a sample is used to estimate a population parameter using confidence intervals. Data from a sample is used in hypothesis testing to examine a given hypothesis. We must have a postulated parameter to conduct hypothesis testing.

Bootstrap distributions and randomization distributions are created using comparable simulation techniques. The observed sample statistic is the focal point of a bootstrap distribution, whereas the null hypothesis value is the focal point of a randomization distribution.

A variety of feasible population parameter estimates are included in confidence ranges. In this lesson, we created just two-tailed confidence intervals. There is a direct connection between these two-tail confidence intervals and these two-tail hypothesis tests. The results of a two-tailed hypothesis test and two-tailed confidence intervals typically provide the same results. In other words, a hypothesis test at the 0.05 level will virtually always fail to reject the null hypothesis if the 95% confidence interval contains the predicted value. A hypothesis test at the 0.05 level will nearly certainly reject the null hypothesis if the 95% confidence interval does not include the hypothesized parameter.

## Simple and Composite Hypothesis Testing

Depending on the population distribution, you can classify the statistical hypothesis into two types.

Simple Hypothesis: A simple hypothesis specifies an exact value for the parameter.

Composite Hypothesis: A composite hypothesis specifies a range of values.

A company is claiming that their average sales for this quarter are 1000 units. This is an example of a simple hypothesis.

Suppose the company claims that the sales are in the range of 900 to 1000 units. Then this is a case of a composite hypothesis.

## One-Tailed and Two-Tailed Hypothesis Testing

The One-Tailed test, also called a directional test, considers a critical region of data that would result in the null hypothesis being rejected if the test sample falls into it, inevitably meaning the acceptance of the alternate hypothesis.

In a one-tailed test, the critical distribution area is one-sided, meaning the test sample is either greater or lesser than a specific value.

In two tails, the test sample is checked to be greater or less than a range of values in a Two-Tailed test, implying that the critical distribution area is two-sided.

If the sample falls within this range, the alternate hypothesis will be accepted, and the null hypothesis will be rejected.

## Become a Data Scientist With Real-World Experience

## Right Tailed Hypothesis Testing

If the larger than (>) sign appears in your hypothesis statement, you are using a right-tailed test, also known as an upper test. Or, to put it another way, the disparity is to the right. For instance, you can contrast the battery life before and after a change in production. Your hypothesis statements can be the following if you want to know if the battery life is longer than the original (let's say 90 hours):

- The null hypothesis is (H0 <= 90) or less change.
- A possibility is that battery life has risen (H1) > 90.

The crucial point in this situation is that the alternate hypothesis (H1), not the null hypothesis, decides whether you get a right-tailed test.

## Left Tailed Hypothesis Testing

Alternative hypotheses that assert the true value of a parameter is lower than the null hypothesis are tested with a left-tailed test; they are indicated by the asterisk "<".

Suppose H0: mean = 50 and H1: mean not equal to 50

According to the H1, the mean can be greater than or less than 50. This is an example of a Two-tailed test.

In a similar manner, if H0: mean >=50, then H1: mean <50

Here the mean is less than 50. It is called a One-tailed test.

## Type 1 and Type 2 Error

A hypothesis test can result in two types of errors.

Type 1 Error: A Type-I error occurs when sample results reject the null hypothesis despite being true.

Type 2 Error: A Type-II error occurs when the null hypothesis is not rejected when it is false, unlike a Type-I error.

Suppose a teacher evaluates the examination paper to decide whether a student passes or fails.

H0: Student has passed

H1: Student has failed

Type I error will be the teacher failing the student [rejects H0] although the student scored the passing marks [H0 was true].

Type II error will be the case where the teacher passes the student [do not reject H0] although the student did not score the passing marks [H1 is true].

## Level of Significance

The alpha value is a criterion for determining whether a test statistic is statistically significant. In a statistical test, Alpha represents an acceptable probability of a Type I error. Because alpha is a probability, it can be anywhere between 0 and 1. In practice, the most commonly used alpha values are 0.01, 0.05, and 0.1, which represent a 1%, 5%, and 10% chance of a Type I error, respectively (i.e. rejecting the null hypothesis when it is in fact correct).

## Future-Proof Your AI/ML Career: Top Dos and Don'ts

A p-value is a metric that expresses the likelihood that an observed difference could have occurred by chance. As the p-value decreases the statistical significance of the observed difference increases. If the p-value is too low, you reject the null hypothesis.

Here you have taken an example in which you are trying to test whether the new advertising campaign has increased the product's sales. The p-value is the likelihood that the null hypothesis, which states that there is no change in the sales due to the new advertising campaign, is true. If the p-value is .30, then there is a 30% chance that there is no increase or decrease in the product's sales. If the p-value is 0.03, then there is a 3% probability that there is no increase or decrease in the sales value due to the new advertising campaign. As you can see, the lower the p-value, the chances of the alternate hypothesis being true increases, which means that the new advertising campaign causes an increase or decrease in sales.

## Why is Hypothesis Testing Important in Research Methodology?

Hypothesis testing is crucial in research methodology for several reasons:

- Provides evidence-based conclusions: It allows researchers to make objective conclusions based on empirical data, providing evidence to support or refute their research hypotheses.
- Supports decision-making: It helps make informed decisions, such as accepting or rejecting a new treatment, implementing policy changes, or adopting new practices.
- Adds rigor and validity: It adds scientific rigor to research using statistical methods to analyze data, ensuring that conclusions are based on sound statistical evidence.
- Contributes to the advancement of knowledge: By testing hypotheses, researchers contribute to the growth of knowledge in their respective fields by confirming existing theories or discovering new patterns and relationships.

## Limitations of Hypothesis Testing

Hypothesis testing has some limitations that researchers should be aware of:

- It cannot prove or establish the truth: Hypothesis testing provides evidence to support or reject a hypothesis, but it cannot confirm the absolute truth of the research question.
- Results are sample-specific: Hypothesis testing is based on analyzing a sample from a population, and the conclusions drawn are specific to that particular sample.
- Possible errors: During hypothesis testing, there is a chance of committing type I error (rejecting a true null hypothesis) or type II error (failing to reject a false null hypothesis).
- Assumptions and requirements: Different tests have specific assumptions and requirements that must be met to accurately interpret results.

After reading this tutorial, you would have a much better understanding of hypothesis testing, one of the most important concepts in the field of Data Science . The majority of hypotheses are based on speculation about observed behavior, natural phenomena, or established theories.

If you are interested in statistics of data science and skills needed for such a career, you ought to explore Simplilearn’s Post Graduate Program in Data Science.

If you have any questions regarding this ‘Hypothesis Testing In Statistics’ tutorial, do share them in the comment section. Our subject matter expert will respond to your queries. Happy learning!

## 1. What is hypothesis testing in statistics with example?

Hypothesis testing is a statistical method used to determine if there is enough evidence in a sample data to draw conclusions about a population. It involves formulating two competing hypotheses, the null hypothesis (H0) and the alternative hypothesis (Ha), and then collecting data to assess the evidence. An example: testing if a new drug improves patient recovery (Ha) compared to the standard treatment (H0) based on collected patient data.

## 2. What is hypothesis testing and its types?

Hypothesis testing is a statistical method used to make inferences about a population based on sample data. It involves formulating two hypotheses: the null hypothesis (H0), which represents the default assumption, and the alternative hypothesis (Ha), which contradicts H0. The goal is to assess the evidence and determine whether there is enough statistical significance to reject the null hypothesis in favor of the alternative hypothesis.

Types of hypothesis testing:

- One-sample test: Used to compare a sample to a known value or a hypothesized value.
- Two-sample test: Compares two independent samples to assess if there is a significant difference between their means or distributions.
- Paired-sample test: Compares two related samples, such as pre-test and post-test data, to evaluate changes within the same subjects over time or under different conditions.
- Chi-square test: Used to analyze categorical data and determine if there is a significant association between variables.
- ANOVA (Analysis of Variance): Compares means across multiple groups to check if there is a significant difference between them.

## 3. What are the steps of hypothesis testing?

The steps of hypothesis testing are as follows:

- Formulate the hypotheses: State the null hypothesis (H0) and the alternative hypothesis (Ha) based on the research question.
- Set the significance level: Determine the acceptable level of error (alpha) for making a decision.
- Collect and analyze data: Gather and process the sample data.
- Compute test statistic: Calculate the appropriate statistical test to assess the evidence.
- Make a decision: Compare the test statistic with critical values or p-values and determine whether to reject H0 in favor of Ha or not.
- Draw conclusions: Interpret the results and communicate the findings in the context of the research question.

## 4. What are the 2 types of hypothesis testing?

- One-tailed (or one-sided) test: Tests for the significance of an effect in only one direction, either positive or negative.
- Two-tailed (or two-sided) test: Tests for the significance of an effect in both directions, allowing for the possibility of a positive or negative effect.

The choice between one-tailed and two-tailed tests depends on the specific research question and the directionality of the expected effect.

## 5. What are the 3 major types of hypothesis?

The three major types of hypotheses are:

- Null Hypothesis (H0): Represents the default assumption, stating that there is no significant effect or relationship in the data.
- Alternative Hypothesis (Ha): Contradicts the null hypothesis and proposes a specific effect or relationship that researchers want to investigate.
- Nondirectional Hypothesis: An alternative hypothesis that doesn't specify the direction of the effect, leaving it open for both positive and negative possibilities.

## Find our Data Analyst Online Bootcamp in top cities:

About the author.

Avijeet is a Senior Research Analyst at Simplilearn. Passionate about Data Analytics, Machine Learning, and Deep Learning, Avijeet is also interested in politics, cricket, and football.

## Recommended Resources

Free eBook: Top Programming Languages For A Data Scientist

Normality Test in Minitab: Minitab with Statistics

Machine Learning Career Guide: A Playbook to Becoming a Machine Learning Engineer

- PMP, PMI, PMBOK, CAPM, PgMP, PfMP, ACP, PBA, RMP, SP, and OPM3 are registered marks of the Project Management Institute, Inc.

Meteorology Department Penn State

## Hypothesis Formation and Testing for 1 Sample: Part 1

Prioritize....

By the end of this section, you should be able to distinguish between data that come from a parametric distribution and those that do not, select the null and alternative hypotheses, identify the appropriate test statistic, and choose and interpret the level of significance.

Let's say you think BBQ sales triple when the temperature exceeds 20°C in Scotland. How would you test that? Well one way is through hypothesis testing. Hypothesis generation and testing can seem confusing at times. This section will contain a lot of potentially new terminology. The key for success in this section is to know the terms; know exactly what they mean and how to interpret them. Working through examples will be extremely beneficial. There will be an entire section filled with examples. Take the time now to understand the terminology.

Here is a general overview of hypothesis formation and testing. This is meant to be a basic procedure which you can follow:

- State the question.
- Select the null and alternative hypothesis.
- Check basic assumptions.
- Identify the test statistic.
- Specify the level of significance.
- State the decision rules.
- Compute the test statistics and calculate confidence intervals.
- Make decision about rejecting null hypothesis and interpret results.

## State the Question

Stating the question is an important part of the process when it comes to hypothesis testing. You want to frame a question that answers something you are interested in but also is something that you can answer. When coming up with questions, try and remember that the basis of hypothesis testing is the formation of a null and alternative hypothesis. You want to frame the question in a way that you can test the possibility of rejecting a claim.

## Selection of the Null Hypothesis and Alternative Hypothesis

When selecting the null and alternative hypothesis, we use the question that we stated and formulate the hypotheses based on questioning the null hypothesis. A common example of a hypothesis is to determine whether an observed target value, μ o , is equal to the population mean, μ. The hypothesis has two parts, the null hypothesis and the alternative hypothesis. The null hypothesis (H o ) is the statement we will test. Through hypothesis testing, we are trying to find evidence against the null hypothesis. The null hypothesis is what we are trying to disprove or reject. The alternative hypothesis (H 1 sometimes H A ) states the other alternative - it's usually what think to be true. The two are mutually exclusive and together cover all possible outcomes. The alternative hypothesis is what you speculate to be true and is the opposite of the null hypothesis.

There are three ways to format the hypothesis depending on the question being asked: two tailed test , upper tailed test (right tailed test) , and the lower tailed test (left tailed test) . For the two tailed test, the null hypothesis states that the target value (μ o ) is equal to the population mean (μ). We would write this as:

The alternative hypothesis is that the null hypothesis is not true. We would write it as: H 1 : μ ≠ μ o

An example would be that we want to know whether the total amount of rain that fell this month is unusual.

The upper tailed test is an example of a one-sided test. For the upper tailed test, we speculate that the population mean (μ) is greater than the target value (μ o ). This might seem backwards, but let’s write it out first. The null hypothesis would be that the population mean (μ) is less than or equal to the target value (μ o ):

And the alternative hypothesis would be that the population mean (μ) is greater than the target value (μ o ):

It’s called the upper tailed test because we are examining the likelihood of the sample mean being observed in the upper tail of the distribution if the null hypothesis were true. In this case, the null hypothesis is that the target value (μ o ) is equal to or greater than the population mean (μ); it lies in the upper tail. An example would be that the temperature today feels unusually cold for the month. We are hoping to reject that the temperature is actually warmer than the usual.

The lower tailed test is also an example of a one-sided test. For the lower tailed test, we speculate that the target value (μ o ) is greater than the population mean (μ). Again, let's write this out. The null hypothesis would be that the target value (μ o ) is less than or equal to the population mean (μ):

And the alternative hypothesis would be that the target value (μ o ) is greater than the population mean (μ): H 1 : μ < μ o

This is called the lower tailed because we are testing whether the target value (μ o ) is less than the population mean (μ); we are testing that the target value (μ o ) lies in the lower tail. An example would be that the wind feels unusually gusty today. We speculate that the wind is gusty. We want to reject that the wind is lower than usual, so we test whether it is in the lower tail or not.

For now, all you need to know is how to form the null hypothesis and alternative hypothesis and whether this results in a two-sided or one-sided test (lower or upper). Knowing the type of test will be important when determining the decision rules. Here is a summary:

Speculate that the population mean is simply not equal to the target value:

- Two-Tailed Test H 0 : μ = μ o H 1 : μ ≠ μ o

Speculate that the value is less than the mean:

- One-Tailed Test: Upper H 0 : μ ≤ μ o H 1 : μ > μ o

Speculate that the value is greater than the mean:

- One-Tailed Test: Lower H 0 : μ ≥ μ o H 1 : μ < μ o

For nonparametric testing, the null and alternative hypothesis are stated the same way. Both one-tailed and two tailed tests can be performed. The main difference is that generally the median is considered instead of the mean.

## Basic Assumptions

There are several assumptions made when hypothesis testing. These assumptions vary depending on the type of hypothesis test you are interested in, but the assumptions will usually involve the level of measurement error of the variable, the method of sampling, the shape of the population distribution, and the sample size. If you check these assumptions, you should be able to determine whether your data is suitable for hypothesis testing.

All hypothesis testing requires your data to be an independent random sample. Each draw of the variable must be independent of each other; otherwise hypothesis testing cannot proceed. If your data is an independent random sample, then you can continue on. The next question is whether your data is parametric or not. Parametric data is data that is fit by a known distribution so you can use the set of hypothesis tests specific to that distribution. For example, if the data is normally distributed then the data meets the requirements for hypothesis testing using that distribution and you can continue with the associated procedures. For non-normally distributed data, you can invoke the central limit theory. If this does not work, you can transform to normal, use the parametric test appropriate to the distribution your data is fit by, or use a nonparametric test. In any case, at that point your data meets the requirements for hypothesis testing and you can continue on. If your data is non-normally distributed, has a small sample size, and cannot be transformed, you will have switch to the nonparametric testing methods which will be discussed later on. The caveat about nonparametric test statistics is that, because they make no assumptions about the underlying probability distributions, the results are less robust. Below is an interactive flow chart you can use to help you determine whether your data meets the requirements for hypothesis testing. Here is a larger, static view.

## Test Statistics

Once we have stated the hypotheses, we must choose a test statistic appropriate to our null hypothesis. We can calculate any statistic from our sample data and there is more than one test to allow us to see how likely it is that the population value is different from some target. For this lesson, we are going to focus specifically on the means. There are two test statistics for data that are either normally distributed or numerous enough that we can invoke the central limit theory. The first is the Z-test. The Z-test is the same as the Z-score:

X is the target value (μ o from the hypothesis statement), μ is the population mean, σ is the population standard deviation, and n is the number of samples. When we use the Z-test, we assume that the number of samples is sufficiently large enough so that the sample mean and standard deviation are representative of the population mean and standard deviation. We use a Z-table to determine the probability associated with the Z-statistic value calculated from our data. The Z-test can be used for both one-sided and two sided tests.

If we have a small dataset (less than 30), then we will need to perform a t-test instead. The main difference between the t-test and the Z-test is that in the Z-test we assume that the standard deviation of the data (the sample standard deviation) represents the population standard deviation, because the sample size is large enough (greater than 30). If the sample size is small, the standard deviation of the dataset does not represent the population standard deviation. We therefore have to assume a t-distribution. The test statistic itself is calculated exactly the same as the Z-statistic:

The difference is that we use a t-table to determine the corresponding probability. The probabilities in the t-table vary with the number of cases in the dataset, so that they approach the probabilities in the Z-table as the number of cases approaches 30, so there's no "lurch" as you switch from one table to the other at 30. Note that you do not have to memorize these formulas. There are functions in R that will calculate these tests for you. I will show them later on.

Those are the two tests to use for parametric fits: distributions that are normal with a sample size greater than 30, normally distributed but with sample size less than 30, or a sample size large enough to assume it is normally distributed even with a different underlying distribution.

If we have data that is nonparametric, we need to apply tests which do not make assumptions about its distribution. There are several nonparametric tests available. I will only be going over two popular ones in this lesson.

The first is the Sign Test, S= , which makes no assumption about symmetry of the data, meaning that if your data are skewed you can still use this test. One thing that is different from the tests above: the hypothesis is in terms of the median (η) instead of the mean (μ):

- Two Sided: H 0 : η = η o H 1 : η ≠ η o
- Upper Tailed: H 0 : η ≤ η o H 1 : η > η o
- Lower Tailed: H 0 : η ≥ η o H 1 : η < η o

The other popular nonparametric test is the Wilcoxon statistic . This statistic assumes a symmetric distribution - but it can be non-normal. Again, the hypothesis is written in terms of the median (same as above). There are functions in R which I will show later on that will calculate these test statistics for you. Below is another interactive flow chart that shows you one way to pick your test statistic. Again, a static view is available .

## Level of Significance

The next step in the hypothesis testing procedure is to pick a level of significance, alpha (α). Alpha describes the probability that we are rejecting a null hypothesis that is actually true, which is sometimes called a "false positive". Statisticians call this a type I error. We want to minimize this probability of a type I error. To do that, we want to set a relatively small value for alpha, increasing our confidence in the results. You must choose alpha before calculating the test statistics because it determines the threshold of the test statistic beyond which you reject the null hypothesis! The exact value is up to you. Consider the dataset you are using, the problem you are trying to solve, and the amount of confidence you require in your result, or how comfortable you are with the potential of a type I error. The choice depends on the cost, to you, of falsely rejecting the null hypothesis. Two traditional choices for alpha are 0.05 or 0.01, a 5% and 1% probability, respectively, of having a type I error. We would describe this as being 95% or 99% confident in our result.

Since there are type I errors, you're probably not surprised that there are also type II errors. They're just the opposite, falsely not rejecting the null hypothesis, a “false negative”. But this type of error is harder to deal with or minimize. Because of this, we will only focus on the level of significance, alpha. You can read more about type II errors and how to minimize them here .

## IMAGES

## VIDEO

## COMMENTS

Table of contents. Step 1: State your null and alternate hypothesis. Step 2: Collect data. Step 3: Perform a statistical test. Step 4: Decide whether to reject or fail to reject your null hypothesis. Step 5: Present your findings. Other interesting articles. Frequently asked questions about hypothesis testing.

Below these are summarized into six such steps to conducting a test of a hypothesis. Set up the hypotheses and check conditions: Each hypothesis test includes two hypotheses about the population. One is the null hypothesis, notated as H 0, which is a statement of a particular parameter value. This hypothesis is assumed to be true until there is ...

A hypothesis test consists of five steps: 1. State the hypotheses. State the null and alternative hypotheses. These two hypotheses need to be mutually exclusive, so if one is true then the other must be false. 2. Determine a significance level to use for the hypothesis. Decide on a significance level.

At the core of biology and other sciences lies a problem-solving approach called the scientific method. The scientific method has five basic steps, plus one feedback step: Make an observation. Ask a question. Form a hypothesis, or testable explanation. Make a prediction based on the hypothesis. Test the prediction.

Test Statistic: z = ¯ x − μo σ / √n since it is calculated as part of the testing of the hypothesis. Definition 7.1.4. p - value: probability that the test statistic will take on more extreme values than the observed test statistic, given that the null hypothesis is true.

A standardized test statistic for a hypothesis test is the statistic that is formed by subtracting from the statistic of interest its mean and dividing by its standard deviation. For example, reviewing Example 8.1.3 8.1. 3, if instead of working with the sample mean X¯¯¯¯ X ¯ we instead work with the test statistic.

S.3 Hypothesis Testing. In reviewing hypothesis tests, we start first with the general idea. Then, we keep returning to the basic procedures of hypothesis testing, each time adding a little more detail. The general idea of hypothesis testing involves: Making an initial assumption. Collecting evidence (data).

Hypothesis testing is a crucial procedure to perform when you want to make inferences about a population using a random sample. These inferences include estimating population properties such as the mean, differences between means, proportions, and the relationships between variables. This post provides an overview of statistical hypothesis testing.

Step 7: Based on steps 5 and 6, draw a conclusion about H0. If the F\calculated F \calculated from the data is larger than the Fα F α, then you are in the rejection region and you can reject the null hypothesis with (1 − α) ( 1 − α) level of confidence. Note that modern statistical software condenses steps 6 and 7 by providing a p p -value.

Hypothesis testing is a big part of what we would actually consider testing for inferential statistics. It's a procedure and set of rules that allow us to move from descriptive statistics to make inferences about a population based on sample data. It is a statistical method that uses sample data to evaluate a hypothesis about a population.

Confidence intervals form an important part of hypothesis testing. This is because the alpha level can be determined from a given confidence interval. Suppose a confidence interval is given as 95%. Subtract the confidence interval from 100%. This gives 100 - 95 = 5% or 0.05. This is the alpha value of a one-tailed hypothesis testing.

Hypothesis tests # Formal hypothesis testing is perhaps the most prominent and widely-employed form of statistical analysis. It is sometimes seen as the most rigorous and definitive part of a statistical analysis, but it is also the source of many statistical controversies. The currently-prevalent approach to hypothesis testing dates to developments that took place between 1925 and 1940 ...

5.2 - Writing Hypotheses. The first step in conducting a hypothesis test is to write the hypothesis statements that are going to be tested. For each test you will have a null hypothesis ( H 0) and an alternative hypothesis ( H a ). When writing hypotheses there are three things that we need to know: (1) the parameter that we are testing (2) the ...

Hypothesis testing is an act in statistics whereby an analyst tests an assumption regarding a population parameter. The methodology employed by the analyst depends on the nature of the data used ...

Hypothesis testing. Hypothesis testing is a form of statistical inference that uses data from a sample to draw conclusions about a population parameter or a population probability distribution.First, a tentative assumption is made about the parameter or distribution. This assumption is called the null hypothesis and is denoted by H 0.An alternative hypothesis (denoted H a), which is the ...

Performing a Hypothesis Test Setting Up the Hypothesis Test For the sake of simplicity, this best practice examines the case of a hypothesis test about a population mean. Table 2 shows the three forms of the null and alternative hypotheses where 𝜇0 is the value of the population mean under the null hypothesis.

Hypothesis testing is a statistical method used to determine if there is enough evidence in a sample data to draw conclusions about a population. It involves formulating two competing hypotheses, the null hypothesis (H0) and the alternative hypothesis (Ha), and then collecting data to assess the evidence.

The above image shows a table with some of the most common test statistics and their corresponding tests or models.. A statistical hypothesis test is a method of statistical inference used to decide whether the data sufficiently support a particular hypothesis. A statistical hypothesis test typically involves a calculation of a test statistic.Then a decision is made, either by comparing the ...

A hypothesis test allows us to test the claim about the population and find out how likely it is to be true. The hypothesis test consists of several components; two statements, the null hypothesis and the alternative hypothesis, the test statistic and the critical value, which in turn give us the P-value and the rejection region ...

The hypothesis has two parts, the null hypothesis and the alternative hypothesis. The null hypothesis (H o) is the statement we will test. Through hypothesis testing, we are trying to find evidence against the null hypothesis. ... All hypothesis testing requires your data to be an independent random sample. Each draw of the variable must be ...

Hypothesis testing uses the information about a parameter that is contained in a sample of data, namely its least squares point estimate and its standard error, to draw a conclusion about the conjecture, or hypothesis. In each and every hypothesis test four ingredients must be present: Components of Hypothesis Tests 1. A null hypothesis, H0 2.

One-tailed hypothesis tests are also known as directional and one-sided tests because you can test for effects in only one direction. When you perform a one-tailed test, the entire significance level percentage goes into the extreme end of one tail of the distribution. In the examples below, I use an alpha of 5%.