What's Your Question?

What Is a Case Study?

When you’re performing research as part of your job or for a school assignment, you’ll probably come across case studies that help you to learn more about the topic at hand. But what is a case study and why are they helpful? Read on to learn all about case studies.

Deep Dive into a Topic

At face value, a case study is a deep dive into a topic. Case studies can be found in many fields, particularly across the social sciences and medicine. When you conduct a case study, you create a body of research based on an inquiry and related data from analysis of a group, individual or controlled research environment.

As a researcher, you can benefit from the analysis of case studies similar to inquiries you’re currently studying. Researchers often rely on case studies to answer questions that basic information and standard diagnostics cannot address.

Study a Pattern

One of the main objectives of a case study is to find a pattern that answers whatever the initial inquiry seeks to find. This might be a question about why college students are prone to certain eating habits or what mental health problems afflict house fire survivors. The researcher then collects data, either through observation or data research, and starts connecting the dots to find underlying behaviors or impacts of the sample group’s behavior.

Gather Evidence

During the study period, the researcher gathers evidence to back the observed patterns and future claims that’ll be derived from the data. Since case studies are usually presented in the professional environment, it’s not enough to simply have a theory and observational notes to back up a claim. Instead, the researcher must provide evidence to support the body of study and the resulting conclusions.

Present Findings

As the study progresses, the researcher develops a solid case to present to peers or a governing body. Case study presentation is important because it legitimizes the body of research and opens the findings to a broader analysis that may end up drawing a conclusion that’s more true to the data than what one or two researchers might establish. The presentation might be formal or casual, depending on the case study itself.

Draw Conclusions

Once the body of research is established, it’s time to draw conclusions from the case study. As with all social sciences studies, conclusions from one researcher shouldn’t necessarily be taken as gospel, but they’re helpful for advancing the body of knowledge in a given field. For that purpose, they’re an invaluable way of gathering new material and presenting ideas that others in the field can learn from and expand upon.


case study data set

Start Your First Project

Learn By Doing

write for projectpro

10 Real World Data Science Case Studies Projects with Example

Top 10 Data Science Case Studies Projects with Examples and Solutions in Python to inspire your data science learning in 2023. Last Updated: 17 Aug 2023

author profile

BelData science has been a trending buzzword in recent times. With wide applications in various sectors like healthcare , education, retail, transportation, media, and banking -data science applications are at the core of pretty much every industry out there. The possibilities are endless: analysis of frauds in the finance sector or the personalization of recommendations on eCommerce businesses.  We have developed ten exciting data science case studies to explain how data science is leveraged across various industries to make smarter decisions and develop innovative personalized products tailored to specific customers.


Walmart Sales Forecasting Data Science Project

Downloadable solution code | Explanatory videos | Tech Support

Table of Contents

Data science case studies in retail , data science case study examples in entertainment industry , data analytics case study examples in travel industry , case studies for data analytics in social media , real world data science projects in healthcare, data analytics case studies in oil and gas, what is a case study in data science, how do you prepare a data science case study, 10 most interesting data science case studies with examples.

data science case studies

So, without much ado, let's get started with data science business case studies !

With humble beginnings as a simple discount retailer, today, Walmart operates in 10,500 stores and clubs in 24 countries and eCommerce websites, employing around 2.2 million people around the globe. For the fiscal year ended January 31, 2021, Walmart's total revenue was $559 billion showing a growth of $35 billion with the expansion of the eCommerce sector. Walmart is a data-driven company that works on the principle of 'Everyday low cost' for its consumers. To achieve this goal, they heavily depend on the advances of their data science and analytics department for research and development, also known as Walmart Labs. Walmart is home to the world's largest private cloud, which can manage 2.5 petabytes of data every hour! To analyze this humongous amount of data, Walmart has created 'Data Café,' a state-of-the-art analytics hub located within its Bentonville, Arkansas headquarters. The Walmart Labs team heavily invests in building and managing technologies like cloud, data, DevOps , infrastructure, and security.

ProjectPro Free Projects on Big Data and Data Science

Walmart is experiencing massive digital growth as the world's largest retailer . Walmart has been leveraging Big data and advances in data science to build solutions to enhance, optimize and customize the shopping experience and serve their customers in a better way. At Walmart Labs, data scientists are focused on creating data-driven solutions that power the efficiency and effectiveness of complex supply chain management processes. Here are some of the applications of data science  at Walmart:

i) Personalized Customer Shopping Experience

Walmart analyses customer preferences and shopping patterns to optimize the stocking and displaying of merchandise in their stores. Analysis of Big data also helps them understand new item sales, make decisions on discontinuing products, and the performance of brands.

ii) Order Sourcing and On-Time Delivery Promise

Millions of customers view items on, and Walmart provides each customer a real-time estimated delivery date for the items purchased. Walmart runs a backend algorithm that estimates this based on the distance between the customer and the fulfillment center, inventory levels, and shipping methods available. The supply chain management system determines the optimum fulfillment center based on distance and inventory levels for every order. It also has to decide on the shipping method to minimize transportation costs while meeting the promised delivery date.

iii) Packing Optimization 

Also known as Box recommendation is a daily occurrence in the shipping of items in retail and eCommerce business. When items of an order or multiple orders for the same customer are ready for packing, Walmart has developed a recommender system that picks the best-sized box which holds all the ordered items with the least in-box space wastage within a fixed amount of time. This Bin Packing problem is a classic NP-Hard problem familiar to data scientists .

Whenever items of an order or multiple orders placed by the same customer are picked from the shelf and are ready for packing, the box recommendation system determines the best-sized box to hold all the ordered items with a minimum of in-box space wasted. This problem is known as the Bin Packing Problem, another classic NP-Hard problem familiar to data scientists.

Here is a link to a sales prediction data science case study to help you understand the applications of Data Science in the real world. Walmart Sales Forecasting Project uses historical sales data for 45 Walmart stores located in different regions. Each store contains many departments, and you must build a model to project the sales for each department in each store. This data science case study aims to create a predictive model to predict the sales of each product. You can also try your hands-on Inventory Demand Forecasting Data Science Project to develop a machine learning model to forecast inventory demand accurately based on historical sales data.

Get Closer To Your Dream of Becoming a Data Scientist with 70+ Solved End-to-End ML Projects

Amazon is an American multinational technology-based company based in Seattle, USA. It started as an online bookseller, but today it focuses on eCommerce, cloud computing , digital streaming, and artificial intelligence . It hosts an estimate of 1,000,000,000 gigabytes of data across more than 1,400,000 servers. Through its constant innovation in data science and big data Amazon is always ahead in understanding its customers. Here are a few data analytics case study examples at Amazon:

i) Recommendation Systems

Data science models help amazon understand the customers' needs and recommend them to them before the customer searches for a product; this model uses collaborative filtering. Amazon uses 152 million customer purchases data to help users to decide on products to be purchased. The company generates 35% of its annual sales using the Recommendation based systems (RBS) method.

Here is a Recommender System Project to help you build a recommendation system using collaborative filtering. 

ii) Retail Price Optimization

Amazon product prices are optimized based on a predictive model that determines the best price so that the users do not refuse to buy it based on price. The model carefully determines the optimal prices considering the customers' likelihood of purchasing the product and thinks the price will affect the customers' future buying patterns. Price for a product is determined according to your activity on the website, competitors' pricing, product availability, item preferences, order history, expected profit margin, and other factors.

Check Out this Retail Price Optimization Project to build a Dynamic Pricing Model.

iii) Fraud Detection

Being a significant eCommerce business, Amazon remains at high risk of retail fraud. As a preemptive measure, the company collects historical and real-time data for every order. It uses Machine learning algorithms to find transactions with a higher probability of being fraudulent. This proactive measure has helped the company restrict clients with an excessive number of returns of products.

You can look at this Credit Card Fraud Detection Project to implement a fraud detection model to classify fraudulent credit card transactions.

New Projects

case study data set

View all New Projects

Let us explore data analytics case study examples in the entertainment indusry.

Ace Your Next Job Interview with Mock Interviews from Experts to Improve Your Skills and Boost Confidence!

Data Science Interview Preparation

Netflix started as a DVD rental service in 1997 and then has expanded into the streaming business. Headquartered in Los Gatos, California, Netflix is the largest content streaming company in the world. Currently, Netflix has over 208 million paid subscribers worldwide, and with thousands of smart devices which are presently streaming supported, Netflix has around 3 billion hours watched every month. The secret to this massive growth and popularity of Netflix is its advanced use of data analytics and recommendation systems to provide personalized and relevant content recommendations to its users. The data is collected over 100 billion events every day. Here are a few examples of data analysis case studies applied at Netflix :

i) Personalized Recommendation System

Netflix uses over 1300 recommendation clusters based on consumer viewing preferences to provide a personalized experience. Some of the data that Netflix collects from its users include Viewing time, platform searches for keywords, Metadata related to content abandonment, such as content pause time, rewind, rewatched. Using this data, Netflix can predict what a viewer is likely to watch and give a personalized watchlist to a user. Some of the algorithms used by the Netflix recommendation system are Personalized video Ranking, Trending now ranker, and the Continue watching now ranker.

ii) Content Development using Data Analytics

Netflix uses data science to analyze the behavior and patterns of its user to recognize themes and categories that the masses prefer to watch. This data is used to produce shows like The umbrella academy, and Orange Is the New Black, and the Queen's Gambit. These shows seem like a huge risk but are significantly based on data analytics using parameters, which assured Netflix that they would succeed with its audience. Data analytics is helping Netflix come up with content that their viewers want to watch even before they know they want to watch it.

iii) Marketing Analytics for Campaigns

Netflix uses data analytics to find the right time to launch shows and ad campaigns to have maximum impact on the target audience. Marketing analytics helps come up with different trailers and thumbnails for other groups of viewers. For example, the House of Cards Season 5 trailer with a giant American flag was launched during the American presidential elections, as it would resonate well with the audience.

Here is a Customer Segmentation Project using association rule mining to understand the primary grouping of customers based on various parameters.

Get FREE Access to Machine Learning Example Codes for Data Cleaning, Data Munging, and Data Visualization

In a world where Purchasing music is a thing of the past and streaming music is a current trend, Spotify has emerged as one of the most popular streaming platforms. With 320 million monthly users, around 4 billion playlists, and approximately 2 million podcasts, Spotify leads the pack among well-known streaming platforms like Apple Music, Wynk, Songza, amazon music, etc. The success of Spotify has mainly depended on data analytics. By analyzing massive volumes of listener data, Spotify provides real-time and personalized services to its listeners. Most of Spotify's revenue comes from paid premium subscriptions. Here are some of the examples of case study on data analytics used by Spotify to provide enhanced services to its listeners:

i) Personalization of Content using Recommendation Systems

Spotify uses Bart or Bayesian Additive Regression Trees to generate music recommendations to its listeners in real-time. Bart ignores any song a user listens to for less than 30 seconds. The model is retrained every day to provide updated recommendations. A new Patent granted to Spotify for an AI application is used to identify a user's musical tastes based on audio signals, gender, age, accent to make better music recommendations.

Spotify creates daily playlists for its listeners, based on the taste profiles called 'Daily Mixes,' which have songs the user has added to their playlists or created by the artists that the user has included in their playlists. It also includes new artists and songs that the user might be unfamiliar with but might improve the playlist. Similar to it is the weekly 'Release Radar' playlists that have newly released artists' songs that the listener follows or has liked before.

ii) Targetted marketing through Customer Segmentation

With user data for enhancing personalized song recommendations, Spotify uses this massive dataset for targeted ad campaigns and personalized service recommendations for its users. Spotify uses ML models to analyze the listener's behavior and group them based on music preferences, age, gender, ethnicity, etc. These insights help them create ad campaigns for a specific target audience. One of their well-known ad campaigns was the meme-inspired ads for potential target customers, which was a huge success globally.

iii) CNN's for Classification of Songs and Audio Tracks

Spotify builds audio models to evaluate the songs and tracks, which helps develop better playlists and recommendations for its users. These allow Spotify to filter new tracks based on their lyrics and rhythms and recommend them to users like similar tracks ( collaborative filtering). Spotify also uses NLP ( Natural language processing) to scan articles and blogs to analyze the words used to describe songs and artists. These analytical insights can help group and identify similar artists and songs and leverage them to build playlists.

Here is a Music Recommender System Project for you to start learning. We have listed another music recommendations dataset for you to use for your projects: Dataset1 . You can use this dataset of Spotify metadata to classify songs based on artists, mood, liveliness. Plot histograms, heatmaps to get a better understanding of the dataset. Use classification algorithms like logistic regression, SVM, and Principal component analysis to generate valuable insights from the dataset.

Explore Categories

Below you will find case studies for data analytics in the travel and tourism industry.

Airbnb was born in 2007 in San Francisco and has since grown to 4 million Hosts and 5.6 million listings worldwide who have welcomed more than 1 billion guest arrivals in almost every country across the globe. Airbnb is active in every country on the planet except for Iran, Sudan, Syria, and North Korea. That is around 97.95% of the world. Using data as a voice of their customers, Airbnb uses the large volume of customer reviews, host inputs to understand trends across communities, rate user experiences, and uses these analytics to make informed decisions to build a better business model. The data scientists at Airbnb are developing exciting new solutions to boost the business and find the best mapping for its customers and hosts. Airbnb data servers serve approximately 10 million requests a day and process around one million search queries. Data is the voice of customers at AirBnB and offers personalized services by creating a perfect match between the guests and hosts for a supreme customer experience. 

i) Recommendation Systems and Search Ranking Algorithms

Airbnb helps people find 'local experiences' in a place with the help of search algorithms that make searches and listings precise. Airbnb uses a 'listing quality score' to find homes based on the proximity to the searched location and uses previous guest reviews. Airbnb uses deep neural networks to build models that take the guest's earlier stays into account and area information to find a perfect match. The search algorithms are optimized based on guest and host preferences, rankings, pricing, and availability to understand users’ needs and provide the best match possible.

ii) Natural Language Processing for Review Analysis

Airbnb characterizes data as the voice of its customers. The customer and host reviews give a direct insight into the experience. The star ratings alone cannot be an excellent way to understand it quantitatively. Hence Airbnb uses natural language processing to understand reviews and the sentiments behind them. The NLP models are developed using Convolutional neural networks .

Practice this Sentiment Analysis Project for analyzing product reviews to understand the basic concepts of natural language processing.

iii) Smart Pricing using Predictive Analytics

The Airbnb hosts community uses the service as a supplementary income. The vacation homes and guest houses rented to customers provide for rising local community earnings as Airbnb guests stay 2.4 times longer and spend approximately 2.3 times the money compared to a hotel guest. The profits are a significant positive impact on the local neighborhood community. Airbnb uses predictive analytics to predict the prices of the listings and help the hosts set a competitive and optimal price. The overall profitability of the Airbnb host depends on factors like the time invested by the host and responsiveness to changing demands for different seasons. The factors that impact the real-time smart pricing are the location of the listing, proximity to transport options, season, and amenities available in the neighborhood of the listing.

Here is a Price Prediction Project to help you understand the concept of predictive analysis which is widely common in case studies for data analytics. 

Uber is the biggest global taxi service provider. As of December 2018, Uber has 91 million monthly active consumers and 3.8 million drivers. Uber completes 14 million trips each day. Uber uses data analytics and big data-driven technologies to optimize their business processes and provide enhanced customer service. The Data Science team at uber has been exploring futuristic technologies to provide better service constantly. Machine learning and data analytics help Uber make data-driven decisions that enable benefits like ride-sharing, dynamic price surges, better customer support, and demand forecasting. Here are some of the real world data science projects used by uber:

i) Dynamic Pricing for Price Surges and Demand Forecasting

Uber prices change at peak hours based on demand. Uber uses surge pricing to encourage more cab drivers to sign up with the company, to meet the demand from the passengers. When the prices increase, the driver and the passenger are both informed about the surge in price. Uber uses a predictive model for price surging called the 'Geosurge' ( patented). It is based on the demand for the ride and the location.

ii) One-Click Chat

Uber has developed a Machine learning and natural language processing solution called one-click chat or OCC for coordination between drivers and users. This feature anticipates responses for commonly asked questions, making it easy for the drivers to respond to customer messages. Drivers can reply with the clock of just one button. One-Click chat is developed on Uber's machine learning platform Michelangelo to perform NLP on rider chat messages and generate appropriate responses to them.

iii) Customer Retention

Failure to meet the customer demand for cabs could lead to users opting for other services. Uber uses machine learning models to bridge this demand-supply gap. By using prediction models to predict the demand in any location, uber retains its customers. Uber also uses a tier-based reward system, which segments customers into different levels based on usage. The higher level the user achieves, the better are the perks. Uber also provides personalized destination suggestions based on the history of the user and their frequently traveled destinations.

You can take a look at this Python Chatbot Project and build a simple chatbot application to understand better the techniques used for natural language processing. You can also practice the working of a demand forecasting model with this project using time series analysis. You can look at this project which uses time series forecasting and clustering on a dataset containing geospatial data for forecasting customer demand for ola rides.

Explore More  Data Science and Machine Learning Projects for Practice. Fast-Track Your Career Transition with ProjectPro

7) LinkedIn 

LinkedIn is the largest professional social networking site with nearly 800 million members in more than 200 countries worldwide. Almost 40% of the users access LinkedIn daily, clocking around 1 billion interactions per month. The data science team at LinkedIn works with this massive pool of data to generate insights to build strategies, apply algorithms and statistical inferences to optimize engineering solutions, and help the company achieve its goals. Here are some of the real world data science projects at LinkedIn:

i) LinkedIn Recruiter Implement Search Algorithms and Recommendation Systems

LinkedIn Recruiter helps recruiters build and manage a talent pool to optimize the chances of hiring candidates successfully. This sophisticated product works on search and recommendation engines. The LinkedIn recruiter handles complex queries and filters on a constantly growing large dataset. The results delivered have to be relevant and specific. The initial search model was based on linear regression but was eventually upgraded to Gradient Boosted decision trees to include non-linear correlations in the dataset. In addition to these models, the LinkedIn recruiter also uses the Generalized Linear Mix model to improve the results of prediction problems to give personalized results.

ii) Recommendation Systems Personalized for News Feed

The LinkedIn news feed is the heart and soul of the professional community. A member's newsfeed is a place to discover conversations among connections, career news, posts, suggestions, photos, and videos. Every time a member visits LinkedIn, machine learning algorithms identify the best exchanges to be displayed on the feed by sorting through posts and ranking the most relevant results on top. The algorithms help LinkedIn understand member preferences and help provide personalized news feeds. The algorithms used include logistic regression, gradient boosted decision trees and neural networks for recommendation systems.

iii) CNN's to Detect Inappropriate Content

To provide a professional space where people can trust and express themselves professionally in a safe community has been a critical goal at LinkedIn. LinkedIn has heavily invested in building solutions to detect fake accounts and abusive behavior on their platform. Any form of spam, harassment, inappropriate content is immediately flagged and taken down. These can range from profanity to advertisements for illegal services. LinkedIn uses a Convolutional neural networks based machine learning model. This classifier trains on a training dataset containing accounts labeled as either "inappropriate" or "appropriate." The inappropriate list consists of accounts having content from "blocklisted" phrases or words and a small portion of manually reviewed accounts reported by the user community.

Here is a Text Classification Project to help you understand NLP basics for text classification. You can find a news recommendation system dataset to help you build a personalized news recommender system. You can also use this dataset to build a classifier using logistic regression, Naive Bayes, or Neural networks to classify toxic comments.

Get confident to build end-to-end projects.

Access to a curated library of 250+ end-to-end industry projects with solution code, videos and tech support.

Pfizer is a multinational pharmaceutical company headquartered in New York, USA. One of the largest pharmaceutical companies globally known for developing a wide range of medicines and vaccines in disciplines like immunology, oncology, cardiology, and neurology. Pfizer became a household name in 2010 when it was the first to have a COVID-19 vaccine with FDA. In early November 2021, The CDC has approved the Pfizer vaccine for kids aged 5 to 11. Pfizer has been using machine learning and artificial intelligence to develop drugs and streamline trials, which played a massive role in developing and deploying the COVID-19 vaccine. Here are a few data analytics case studies by Pfizer :

i) Identifying Patients for Clinical Trials

Artificial intelligence and machine learning are used to streamline and optimize clinical trials to increase their efficiency. Natural language processing and exploratory data analysis of patient records can help identify suitable patients for clinical trials. These can help identify patients with distinct symptoms. These can help examine interactions of potential trial members' specific biomarkers, predict drug interactions and side effects which can help avoid complications. Pfizer's AI implementation helped rapidly identify signals within the noise of millions of data points across their 44,000-candidate COVID-19 clinical trial.

ii) Supply Chain and Manufacturing

Data science and machine learning techniques help pharmaceutical companies better forecast demand for vaccines and drugs and distribute them efficiently. Machine learning models can help identify efficient supply systems by automating and optimizing the production steps. These will help supply drugs customized to small pools of patients in specific gene pools. Pfizer uses Machine learning to predict the maintenance cost of equipment used. Predictive maintenance using AI is the next big step for Pharmaceutical companies to reduce costs.

iii) Drug Development

Computer simulations of proteins, and tests of their interactions, and yield analysis help researchers develop and test drugs more efficiently. In 2016 Watson Health and Pfizer announced a collaboration to utilize IBM Watson for Drug Discovery to help accelerate Pfizer's research in immuno-oncology, an approach to cancer treatment that uses the body's immune system to help fight cancer. Deep learning models have been used recently for bioactivity and synthesis prediction for drugs and vaccines in addition to molecular design. Deep learning has been a revolutionary technique for drug discovery as it factors everything from new applications of medications to possible toxic reactions which can save millions in drug trials.

You can create a Machine learning model to predict molecular activity to help design medicine using this dataset . You may build a CNN or a Deep neural network for this data analyst case study project.

Access Data Science and Machine Learning Project Code Examples

9) Shell Data Analyst Case Study Project

Shell is a global group of energy and petrochemical companies with over 80,000 employees in around 70 countries. Shell uses advanced technologies and innovations to help build a sustainable energy future. Shell is going through a significant transition as the world needs more and cleaner energy solutions to be a clean energy company by 2050. It requires substantial changes in the way in which energy is used. Digital technologies, including AI and Machine Learning, play an essential role in this transformation. These include efficient exploration and energy production, more reliable manufacturing, more nimble trading, and a personalized customer experience. Using AI in various phases of the organization will help achieve this goal and stay competitive in the market. Here are a few data analytics case studies in the petrochemical industry:

i) Precision Drilling

Shell is involved in the processing mining oil and gas supply, ranging from mining hydrocarbons to refining the fuel to retailing them to customers. Recently Shell has included reinforcement learning to control the drilling equipment used in mining. Reinforcement learning works on a reward-based system based on the outcome of the AI model. The algorithm is designed to guide the drills as they move through the surface, based on the historical data from drilling records. It includes information such as the size of drill bits, temperatures, pressures, and knowledge of the seismic activity. This model helps the human operator understand the environment better, leading to better and faster results will minor damage to machinery used. 

ii) Efficient Charging Terminals

Due to climate changes, governments have encouraged people to switch to electric vehicles to reduce carbon dioxide emissions. However, the lack of public charging terminals has deterred people from switching to electric cars. Shell uses AI to monitor and predict the demand for terminals to provide efficient supply. Multiple vehicles charging from a single terminal may create a considerable grid load, and predictions on demand can help make this process more efficient.

iii) Monitoring Service and Charging Stations

Another Shell initiative trialed in Thailand and Singapore is the use of computer vision cameras, which can think and understand to watch out for potentially hazardous activities like lighting cigarettes in the vicinity of the pumps while refueling. The model is built to process the content of the captured images and label and classify it. The algorithm can then alert the staff and hence reduce the risk of fires. You can further train the model to detect rash driving or thefts in the future.

Here is a project to help you understand multiclass image classification. You can use the Hourly Energy Consumption Dataset to build an energy consumption prediction model. You can use time series with XGBoost to develop your model.

Most Watched Projects

View all Most Watched Projects

10) Zomato Case Study on Data Analytics

Zomato was founded in 2010 and is currently one of the most well-known food tech companies. Zomato offers services like restaurant discovery, home delivery, online table reservation, online payments for dining, etc. Zomato partners with restaurants to provide tools to acquire more customers while also providing delivery services and easy procurement of ingredients and kitchen supplies. Currently, Zomato has over 2 lakh restaurant partners and around 1 lakh delivery partners. Zomato has closed over ten crore delivery orders as of date. Zomato uses ML and AI to boost their business growth, with the massive amount of data collected over the years from food orders and user consumption patterns. Here are a few examples of data analyst case study project developed by the data scientists at Zomato:

i) Personalized Recommendation System for Homepage

Zomato uses data analytics to create personalized homepages for its users. Zomato uses data science to provide order personalization, like giving recommendations to the customers for specific cuisines, locations, prices, brands, etc. Restaurant recommendations are made based on a customer's past purchases, browsing history, and what other similar customers in the vicinity are ordering. This personalized recommendation system has led to a 15% improvement in order conversions and click-through rates for Zomato. 

You can use the Restaurant Recommendation Dataset to build a restaurant recommendation system to predict what restaurants customers are most likely to order from, given the customer location, restaurant information, and customer order history.

ii) Analyzing Customer Sentiment

Zomato uses Natural language processing and Machine learning to understand customer sentiments using social media posts and customer reviews. These help the company gauge the inclination of its customer base towards the brand. Deep learning models analyze the sentiments of various brand mentions on social networking sites like Twitter, Instagram, Linked In, and Facebook. These analytics give insights to the company, which helps build the brand and understand the target audience.

iii) Predicting Food Preparation Time (FPT)

Food delivery time is an essential variable in the estimated delivery time of the order placed by the customer using Zomato. The food preparation time depends on numerous factors like the number of dishes ordered, time of the day, footfall in the restaurant, day of the week, etc. Accurate prediction of the food preparation time can help make a better prediction of the Estimated delivery time, which will help delivery partners less likely to breach it. Zomato uses a Bidirectional LSTM-based deep learning model that considers all these features and provides food preparation time for each order in real-time. 

Data scientists are companies' secret weapons when analyzing customer sentiments and behavior and leveraging it to drive conversion, loyalty, and profits. These 10 data science case studies projects with examples and solutions show you how various organizations use data science technologies to succeed and be at the top of their field! To summarize, Data Science has not only accelerated the performance of companies but has also made it possible to manage & sustain their performance with ease.

FAQs on Data Analysis Case Studies

A case study in data science is an in-depth analysis of a real-world problem using data-driven approaches. It involves collecting, cleaning, and analyzing data to extract insights and solve challenges, offering practical insights into how data science techniques can address complex issues across various industries.

To create a data science case study, identify a relevant problem, define objectives, and gather suitable data. Clean and preprocess data, perform exploratory data analysis, and apply appropriate algorithms for analysis. Summarize findings, visualize results, and provide actionable recommendations, showcasing the problem-solving potential of data science techniques.

Access Solved Big Data and Data Science Projects


  • Data Science

Top 8 Data Science Case Studies for Data Science Enthusiasts

Home Blog Data Science Top 8 Data Science Case Studies for Data Science Enthusiasts

Play icon

Data science has become popular in the last few years due to its successful application in making business decisions. Data scientists have been using data science techniques to solve challenging real-world issues in healthcare, agriculture, manufacturing, automotive, and many more. For this purpose, a data enthusiast needs to stay updated with the latest technological advancements in AI. An excellent way to achieve this is through reading industry case studies. Check out  Knowledgehut  Data Science  With  Python course syllabus  to start your data science journey.  

Let’s discuss some case studies that contain detailed and systematic data analysis of people, objects, or entities focusing on multiple factors present in the dataset. Aspiring and practising data scientists can motivate themselves to learn more about the sector, an alternative way of thinking, or methods to improve their organization based on comparable experiences. Almost every industry uses data science in some way. You can learn more about  data science fundamentals  in this  data science course content . Data scientists may use it to spot fraudulent conduct in insurance claims. Automotive data scientists may use it to improve self-driving cars. In contrast, e-commerce data scientists can use it to add more personalization for their consumers—the possibilities are unlimited and unexplored.  

We will take a look at the top eight  data science case studies  in this article so you can understand how businesses from many sectors have benefitted from data science to boost productivity, revenues, and more. Read on to explore more, or use the following links to go straight to the case study of your choice.  

Know more about measures of dispersion .

case study data set


  • Airbnb focuses on growth by  analyzing  customer voice using data science  
  • Qantas uses predictive analytics to mitigate losses  


  • Novo Nordisk  is  Driving innovation with NLP
  • AstraZeneca harnesses data for innovation in medicine  

Covid 19  

  • Johnson and Johnson use s  d ata science  to fight the Pandemic  


  • Amazon uses data science to personalize shop p ing experiences and improve customer satisfaction  

Supply chain management  

  • UPS optimizes supp l y chain with big data analytics


  • IMD leveraged data science to achieve a rec o rd 1.2m evacuation before cyclone ''Fani''  

Entertainment Industry  

  • Netflix  u ses data science to personalize the content and improve recommendations  
  • Spotify uses big   data to deliver a rich user experience for online music streaming  

Banking and Finance  

  • HDFC utilizes Big  D ata Analytics to increase income and enhance  the  banking experience  

8 Data Science Case Studies  

1. data science in hospitality industry.

In the hospitality sector, data analytics assists hotels in better pricing strategies, customer analysis, brand marketing , tracking market trends, and many more.

Airbnb focuses on growth by analyzing customer voice using data science. 

A famous example in this sector is the unicorn '' Airbnb '', a startup that focussed on data science early to grow and adapt to the market faster. This company witnessed a 43000 percent hypergrowth in as little as five years using data science. They included data science techniques to process the data, translate this data for better understanding the voice of the customer, and use the insights for decision making. They also scaled the approach to cover all aspects of the organization. Airbnb uses statistics to analyze and aggregate individual experiences to establish trends throughout the community. These analyzed trends using data science techniques impact their business choices while helping them grow further.  

Travel industry and data science

Predictive analytics benefits many parameters in the travel industry. These companies can use recommendation engines with data science to achieve higher personalization and improved user interactions. They can study and cross-sell products by recommending relevant products to drive sales and increase revenue. Data science is also employed in analyzing social media posts for sentiment analysis, bringing invaluable travel-related insights. Whether these views are positive, negative, or neutral can help these agencies understand the user demographics, the expected experiences by their target audiences, and so on. These insights are essential for developing aggressive pricing strategies to draw customers and provide better customization to customers in the travel packages and allied services. Travel agencies like Expedia and use predictive analytics to create personalized recommendations, product development, and effective marketing of their products. Not just travel agencies but airlines also benefit from the same approach. Airlines frequently face losses due to flight cancellations, disruptions, and delays. Data science helps them identify patterns and predict possible bottlenecks, thereby effectively mitigating the losses and improving the overall customer traveling experience.  

How Qantas uses predictive analytics to mitigate losses  

Qantas , one of Australia's largest airlines, leverages data science to reduce losses caused due to flight delays, disruptions, and cancellations. They also use it to provide a better traveling experience for their customers by reducing the number and length of delays caused due to huge air traffic, weather conditions, or difficulties arising in operations. Back in 2016, when heavy storms badly struck Australia's east coast, only 15 out of 436 Qantas flights were cancelled due to their predictive analytics-based system against their competitor Virgin Australia, which witnessed 70 cancelled flights out of 320.  

2. Data Science in Healthcare

The  Healthcare sector  is immensely benefiting from the advancements in AI. Data science, especially in medical imaging, has been helping healthcare professionals come up with better diagnoses and effective treatments for patients. Similarly, several advanced healthcare analytics tools have been developed to generate clinical insights for improving patient care. These tools also assist in defining personalized medications for patients reducing operating costs for clinics and hospitals. Apart from medical imaging or computer vision,  Natural Language Processing (NLP)  is frequently used in the healthcare domain to study the published textual research data.     


Driving innovation with NLP: Novo Nordisk  

Novo Nordisk  uses the Linguamatics NLP platform from internal and external data sources for text mining purposes that include scientific abstracts, patents, grants, news, tech transfer offices from universities worldwide, and more. These NLP queries run across sources for the key therapeutic areas of interest to the Novo Nordisk R&D community. Several NLP algorithms have been developed for the topics of safety, efficacy, randomized controlled trials, patient populations, dosing, and devices. Novo Nordisk employs a data pipeline to capitalize the tools' success on real-world data and uses interactive dashboards and cloud services to visualize this standardized structured information from the queries for exploring commercial effectiveness, market situations, potential, and gaps in the product documentation. Through data science, they are able to automate the process of generating insights, save time and provide better insights for evidence-based decision making.  

How AstraZeneca harnesses data for innovation in medicine  

AstraZeneca  is a globally known biotech company that leverages data using AI technology to discover and deliver newer effective medicines faster. Within their R&D teams, they are using AI to decode the big data to understand better diseases like cancer, respiratory disease, and heart, kidney, and metabolic diseases to be effectively treated. Using data science, they can identify new targets for innovative medications. In 2021, they selected the first two AI-generated drug targets collaborating with BenevolentAI in Chronic Kidney Disease and Idiopathic Pulmonary Fibrosis.   

Data science is also helping AstraZeneca redesign better clinical trials, achieve personalized medication strategies, and innovate the process of developing new medicines. Their Center for Genomics Research uses  data science and AI  to analyze around two million genomes by 2026. Apart from this, they are training their AI systems to check these images for disease and biomarkers for effective medicines for imaging purposes. This approach helps them analyze samples accurately and more effortlessly. Moreover, it can cut the analysis time by around 30%.   

AstraZeneca also utilizes AI and machine learning to optimize the process at different stages and minimize the overall time for the clinical trials by analyzing the clinical trial data. Summing up, they use data science to design smarter clinical trials, develop innovative medicines, improve drug development and patient care strategies, and many more.

Wearable Technology  

Wearable technology is a multi-billion-dollar industry. With an increasing awareness about fitness and nutrition, more individuals now prefer using fitness wearables to track their routines and lifestyle choices.  

Fitness wearables are convenient to use, assist users in tracking their health, and encourage them to lead a healthier lifestyle. The medical devices in this domain are beneficial since they help monitor the patient's condition and communicate in an emergency situation. The regularly used fitness trackers and smartwatches from renowned companies like Garmin, Apple, FitBit, etc., continuously collect physiological data of the individuals wearing them. These wearable providers offer user-friendly dashboards to their customers for analyzing and tracking progress in their fitness journey.

3. Covid 19 and Data Science

In the past two years of the Pandemic, the power of data science has been more evident than ever. Different  pharmaceutical companies  across the globe could synthesize Covid 19 vaccines by analyzing the data to understand the trends and patterns of the outbreak. Data science made it possible to track the virus in real-time, predict patterns, devise effective strategies to fight the Pandemic, and many more.  

How Johnson and Johnson uses data science to fight the Pandemic   

The  data science team  at  Johnson and Johnson  leverages real-time data to track the spread of the virus. They built a global surveillance dashboard (granulated to county level) that helps them track the Pandemic's progress, predict potential hotspots of the virus, and narrow down the likely place where they should test its investigational COVID-19 vaccine candidate. The team works with in-country experts to determine whether official numbers are accurate and find the most valid information about case numbers, hospitalizations, mortality and testing rates, social compliance, and local policies to populate this dashboard. The team also studies the data to build models that help the company identify groups of individuals at risk of getting affected by the virus and explore effective treatments to improve patient outcomes.

4. Data Science in Ecommerce  

In the  e-commerce sector , big data analytics can assist in customer analysis, reduce operational costs, forecast trends for better sales, provide personalized shopping experiences to customers, and many more.  

Amazon uses data science to personalize shopping experiences and improve customer satisfaction.  Amazon  is a globally leading eCommerce platform that offers a wide range of online shopping services. Due to this, Amazon generates a massive amount of data that can be leveraged to understand consumer behavior and generate insights on competitors' strategies. Amazon uses its data to provide recommendations to its users on different products and services. With this approach, Amazon is able to persuade its consumers into buying and making additional sales. This approach works well for Amazon as it earns 35% of the revenue yearly with this technique. Additionally, Amazon collects consumer data for faster order tracking and better deliveries.     

Similarly, Amazon's virtual assistant, Alexa, can converse in different languages; uses speakers and a   camera to interact with the users. Amazon utilizes the audio commands from users to improve Alexa and deliver a better user experience. 

5. Data Science in Supply Chain Management

Predictive analytics and big data are driving innovation in the Supply chain domain. They offer greater visibility into the company operations, reduce costs and overheads, forecasting demands, predictive maintenance, product pricing, minimize supply chain interruptions, route optimization, fleet management , drive better performance, and more.     

Optimizing supply chain with big data analytics: UPS

UPS  is a renowned package delivery and supply chain management company. With thousands of packages being delivered every day, on average, a UPS driver makes about 100 deliveries each business day. On-time and safe package delivery are crucial to UPS's success. Hence, UPS offers an optimized navigation tool ''ORION'' (On-Road Integrated Optimization and Navigation), which uses highly advanced big data processing algorithms. This tool for UPS drivers provides route optimization concerning fuel, distance, and time. UPS utilizes supply chain data analysis in all aspects of its shipping process. Data about packages and deliveries are captured through radars and sensors. The deliveries and routes are optimized using big data systems. Overall, this approach has helped UPS save 1.6 million gallons of gasoline in transportation every year, significantly reducing delivery costs.    

6. Data Science in Meteorology

Weather prediction is an interesting  application of data science . Businesses like aviation, agriculture and farming, construction, consumer goods, sporting events, and many more are dependent on climatic conditions. The success of these businesses is closely tied to the weather, as decisions are made after considering the weather predictions from the meteorological department.   

Besides, weather forecasts are extremely helpful for individuals to manage their allergic conditions. One crucial application of weather forecasting is natural disaster prediction and risk management.  

Weather forecasts begin with a large amount of data collection related to the current environmental conditions (wind speed, temperature, humidity, clouds captured at a specific location and time) using sensors on IoT (Internet of Things) devices and satellite imagery. This gathered data is then analyzed using the understanding of atmospheric processes, and machine learning models are built to make predictions on upcoming weather conditions like rainfall or snow prediction. Although data science cannot help avoid natural calamities like floods, hurricanes, or forest fires. Tracking these natural phenomena well ahead of their arrival is beneficial. Such predictions allow governments sufficient time to take necessary steps and measures to ensure the safety of the population.  

IMD leveraged data science to achieve a record 1.2m evacuation before cyclone ''Fani''   

Most  d ata scientist’s responsibilities  rely on satellite images to make short-term forecasts, decide whether a forecast is correct, and validate models. Machine Learning is also used for pattern matching in this case. It can forecast future weather conditions if it recognizes a past pattern. When employing dependable equipment, sensor data is helpful to produce local forecasts about actual weather models. IMD used satellite pictures to study the low-pressure zones forming off the Odisha coast (India). In April 2019, thirteen days before cyclone ''Fani'' reached the area,  IMD  (India Meteorological Department) warned that a massive storm was underway, and the authorities began preparing for safety measures.  

It was one of the most powerful cyclones to strike India in the recent 20 years, and a record 1.2 million people were evacuated in less than 48 hours, thanks to the power of data science.   

7. Data Science in Entertainment Industry

Due to the Pandemic, demand for OTT (Over-the-top) media platforms has grown significantly. People prefer watching movies and web series or listening to the music of their choice at leisure in the convenience of their homes. This sudden growth in demand has given rise to stiff competition. Every platform now uses data analytics in different capacities to provide better-personalized recommendations to its subscribers and improve user experience.   

How Netflix uses data science to personalize the content and improve recommendations  

Netflix  is an extremely popular internet television platform with streamable content offered in several languages and caters to various audiences. In 2006, when Netflix entered this media streaming market, they were interested in increasing the efficiency of their existing ''Cinematch'' platform by 10% and hence, offered a prize of $1 million to the winning team. This approach was successful as they found a solution developed by the BellKor team at the end of the competition that increased prediction accuracy by 10.06%. Over 200 work hours and an ensemble of 107 algorithms provided this result. These winning algorithms are now a part of the Netflix recommendation system.  

Netflix also employs Ranking Algorithms to generate personalized recommendations of movies and TV Shows appealing to its users.   

Spotify uses big data to deliver a rich user experience for online music streaming  

Personalized online music streaming is another area where data science is being used.  Spotify  is a well-known on-demand music service provider launched in 2008, which effectively leveraged big data to create personalized experiences for each user. It is a huge platform with more than 24 million subscribers and hosts a database of nearly 20million songs; they use the big data to offer a rich experience to its users. Spotify uses this big data and various algorithms to train machine learning models to provide personalized content. Spotify offers a "Discover Weekly" feature that generates a personalized playlist of fresh unheard songs matching the user's taste every week. Using the Spotify "Wrapped" feature, users get an overview of their most favorite or frequently listened songs during the entire year in December. Spotify also leverages the data to run targeted ads to grow its business. Thus, Spotify utilizes the user data, which is big data and some external data, to deliver a high-quality user experience.  

8. Data Science in Banking and Finance

Data science is extremely valuable in the Banking and  Finance industry . Several high priority aspects of Banking and Finance like credit risk modeling (possibility of repayment of a loan), fraud detection (detection of malicious or irregularities in transactional patterns using machine learning), identifying customer lifetime value (prediction of bank performance based on existing and potential customers), customer segmentation (customer profiling based on behavior and characteristics for personalization of offers and services). Finally, data science is also used in real-time predictive analytics (computational techniques to predict future events).    

How HDFC utilizes Big Data Analytics to increase revenues and enhance the banking experience    

One of the major private banks in India,  HDFC Bank , was an early adopter of AI. It started with Big Data analytics in 2004, intending to grow its revenue and understand its customers and markets better than its competitors. Back then, they were trendsetters by setting up an enterprise data warehouse in the bank to be able to track the differentiation to be given to customers based on their relationship value with HDFC Bank. Data science and analytics have been crucial in helping HDFC bank segregate its customers and offer customized personal or commercial banking services. The analytics engine and SaaS use have been assisting the HDFC bank in cross-selling relevant offers to its customers. Apart from the regular fraud prevention, it assists in keeping track of customer credit histories and has also been the reason for the speedy loan approvals offered by the bank.  

Where to Find Full Data Science Case Studies?  

Data science is a highly evolving domain with many practical applications and a huge open community. Hence, the best way to keep updated with the latest trends in this domain is by reading case studies and technical articles. Usually, companies share their success stories of how data science helped them achieve their goals to showcase their potential and benefit the greater good. Such case studies are available online on the respective company websites and dedicated technology forums like Towards Data Science or Medium.  

Additionally, we can get some practical examples in recently published research papers and textbooks in data science.  

What Are the Skills Required for Data Scientists?  

Data scientists play an important role in the data science process as they are the ones who work on the data end to end. To be able to work on a data science case study, there are several skills required for data scientists like a good grasp of the fundamentals of data science, deep knowledge of statistics, excellent programming skills in Python or R, exposure to data manipulation and data analysis, ability to generate creative and compelling data visualizations, good knowledge of big data, machine learning and deep learning concepts for model building & deployment. Apart from these technical skills, data scientists also need to be good storytellers and should have an analytical mind with strong communication skills.    


These were some interesting  data science case studies  across different industries. There are many more domains where data science has exciting applications, like in the Education domain, where data can be utilized to monitor student and instructor performance, develop an innovative curriculum that is in sync with the industry expectations, etc.   

Almost all the companies looking to leverage the power of big data begin with a swot analysis to narrow down the problems they intend to solve with data science. Further, they need to assess their competitors to develop relevant data science tools and strategies to address the challenging issue. This approach allows them to differentiate themselves from their competitors and offer something unique to their customers.  

With data science, the companies have become smarter and more data-driven to bring about tremendous growth. Moreover, data science has made these organizations more sustainable. Thus, the utility of data science in several sectors is clearly visible, a lot is left to be explored, and more is yet to come. Nonetheless, data science will continue to boost the performance of organizations in this age of big data.  

Frequently Asked Questions (FAQs)

A case study in data science requires a systematic and organized approach for solving the problem. Generally, four main steps are needed to tackle every data science case study: 

  • Defining the problem statement and strategy to solve it  
  • Gather and pre-process the data by making relevant assumptions  
  • Select tool and appropriate algorithms to build machine learning /deep learning models 
  • Make predictions, accept the solutions based on evaluation metrics, and improve the model if necessary. 

Getting data for a case study starts with a reasonable understanding of the problem. This gives us clarity about what we expect the dataset to include. Finding relevant data for a case study requires some effort. Although it is possible to collect relevant data using traditional techniques like surveys and questionnaires, we can also find good quality data sets online on different platforms like Kaggle, UCI Machine Learning repository, Azure open data sets, Government open datasets, Google Public Datasets, Data World and so on.  

Data science projects involve multiple steps to process the data and bring valuable insights. A data science project includes different steps - defining the problem statement, gathering relevant data required to solve the problem, data pre-processing, data exploration & data analysis, algorithm selection, model building, model prediction, model optimization, and communicating the results through dashboards and reports.  


Devashree Madhugiri

Devashree holds an M.Eng degree in Information Technology from Germany and a background in Data Science. She likes working with statistics and discovering hidden insights in varied datasets to create stunning dashboards. She enjoys sharing her knowledge in AI by writing technical articles on various technological platforms. She loves traveling, reading fiction, solving Sudoku puzzles, and participating in coding competitions in her leisure time.

Avail your free 1:1 mentorship session.

Something went wrong

Upcoming Data Science Batches & Dates

Course advisor icon

Study Site Homepage

  • Request new password
  • Create a new account

Using Software in Qualitative Research

A step-by-step guide, student resources, case study sample data.

Case Studies

Throughout Using Software in Qualitative Research   three case-study examples illustrate analytic tasks, their execution in CAQDAS packages and the potentials of different products. Chapter 2 summarizes the data sets, lists the research questions and outlines suggested processes for analysis.

The case-study examples are drawn from real research projects and/or reflect contemporary sociological issues. We use them to illustrate common analytic tasks encountered in a range of methodologies and to enable discussion of efficient and robust analytic strategies. Our intention is not to promote any particular method of analysis, or to suggest that there is necessarily an ‘ideal’ way of using a particular software program. Rather, we offer ideas for analysis in relation to different data types and methodological and practical contexts.

From this website you can download sample data that we refer to in the book, and follow through the chapter exercises using your chosen software package. Alternatively, you can choose to experiment with alternative ways of working. Your purpose in working with our sample data may be to familiarize with and compare particular software packages. Or you may use them as a means of experimenting with different tools in order to inform the development of your own software-supported analytic strategy. Whatever your purpose, be creative and experimental. The processes we present are not the only ways of proceeding with these types of data. You will get more out of software and data analysis if you try out different tools and processes and reflect on how they will suit the needs of your data and your preferred ways of working.

Please click on the links below to begin:

  • Young People’s Perspectives Case A
  • Financial Downturn Case B
  • Coca Cola  Case C

A Dataset Exploration Case Study with Know Your Data

Data underlies much of machine learning (ML) research and development, helping to structure what a machine learning algorithm learns and how models are evaluated and benchmarked. However, data collection and labeling can be complicated by unconscious biases, data access limitations and privacy concerns, among other challenges. As a result, machine learning datasets can reflect unfair social biases along dimensions of race, gender, age, and more.

Methods of examining datasets that can surface information about how different social groups are represented within are a key component of ensuring development of ML models and datasets is aligned with our AI Principles . Such methods can inform the responsible use of ML datasets and point toward potential mitigations of unfair outcomes. For example, prior research has demonstrated that some object recognition datasets are biased toward images sourced from North America and Western Europe, prompting Google’s Crowdsource effort to balance out image representations in other parts of the world.

Today, we demonstrate some of the functionality of a dataset exploration tool, Know Your Data (KYD), recently introduced at Google I/O, using the COCO Captions dataset as a case study. Using this tool, we find a range of gender and age biases in COCO Captions — biases that can be traced to both dataset collection and annotation practices. KYD is a dataset analysis tool that complements the growing suite of responsible AI tools being developed across Google and the broader research community. Currently, KYD only supports analysis of a small set of image datasets, but we’re working hard to make the tool accessible beyond this set.

Introducing Know Your Data

Know Your Data helps ML research, product and compliance teams understand datasets, with the goal of improving data quality, and thus helping to mitigate fairness and bias issues. KYD offers a range of features that allow users to explore and examine machine learning datasets — users can filter, group, and study correlations based on annotations already present in a given dataset. KYD also presents automatically computed labels from Google’s Cloud Vision API , providing users with a simple way to explore their data based on signals that weren’t originally present in the dataset.

A KYD Case Study

As a case study, we explore some of these features using the COCO Captions dataset , an image dataset that contains five human-generated captions for each of over 300k images. Given the rich annotations provided by free-form text, we focus our analysis on signals already present within the dataset.

Exploring Gender Bias

Previous research has demonstrated undesirable gender biases within computer vision datasets, including pornographic imagery of women and image label correlations that align with harmful gender stereotypes. We use KYD to explore gender biases within COCO Captions by examining gendered correlations within the image captions. We find a gender bias in the depiction of different activities across the images in the dataset, as well as biases relating to how people of different genders are described by annotators.

The first part of our analysis aimed to surface gender biases with respect to different activities depicted in the dataset. We examined images captioned with words describing different activities and analyzed their relation to gendered caption words, such as “man” or “woman”. Building upon recent work that leverages the PMI metric to measure associations learned by a model , the KYD relations tab makes it easy to examine associations between different signals in a dataset. This tab visualizes the extent to which two signals in the dataset co-occur more (or less) than would be expected by chance. Each cell indicates either a positive (blue color) or negative (orange color) correlation between two specific signal values along with the strength of that correlation.

KYD also allows users to filter rows of a relations table based on substring matching. Using this functionality, we initially probed for caption words containing “-ing”, as a simple way to filter by verbs. We immediately saw strong gendered correlations :

Digging further into these correlations, we found that several activities stereotypically associated with women, such as “shopping” and “cooking”, co-occur with images captioned with “women” or “woman” at a higher rate than with images captioned with “men” or “man”. In contrast captions describing many physically intensive activities, such as “skateboarding”, “surfing”, and “snowboarding”, co-occur with images captioned with “man” or “men” at higher rates.

While individual image captions may not use stereotypical or derogatory language, such as with the example below, if certain gender groups are over (or under) represented within a particular activity across the whole dataset, models developed from the dataset risk learning stereotypical associations. KYD makes it easy to surface, quantify, and make plans to mitigate this risk.

In addition to examining biases with respect to the social groups depicted with different activities, we also explored biases in how annotators described the appearance of people they perceived as male or female. Inspired by media scholars who have examined the “male gaze” embedded in other forms of visual media, we examined the frequency with which individuals perceived as women in COCO are described using adjectives that position them as an object of desire. KYD allowed us to easily examine co-occurrences between words associated with binary gender (e.g. "female/girl/woman" vs. "male/man/boy") and words associated with evaluating physical attractiveness. Importantly, these are captions written by human annotators, who are making subjective assessments about the gender of people in the image and choosing a descriptor for attractiveness. We see that the words "attractive", "beautiful", "pretty", and "sexy" are overrepresented in describing people perceived as women as compared to those perceived as men, confirming what prior work has said about how gender is viewed in visual media.

KYD also allows us to manually inspect images for each relation by clicking on the relation in question. For example, we can see images whose captions include female terms (e.g. “woman”) and the word “beautiful”.

Exploring Age Bias

Adults older than 65 have been shown to be underrepresented in datasets relative to their presence in the general population — a first step toward improving age representation is to allow developers to assess it in their datasets. By looking at caption words describing different activities and analyzing their relation to caption words describing age, KYD helped us to assess the range of example captions depicting older adults. Having example captions of adults in a range of environments and activities is important for a variety of tasks, such as image captioning or pedestrian detection.

The first trend that KYD made clear is how rarely annotators described people as older adults in captions detailing different activities. The relations tab also shows a trend wherein “elderly”, “old”, and “older” tend not to occur with verbs that describe a variety of physical activities that might be important for a system to be able to detect. Important to note is that, relative to “young”, “old” is more often used to describe things other than people, such as belongings or clothing, so these relations are also capturing some uses that don’t describe people.

The underrepresentation of captions containing the references to older adults that we examined here could be rooted in a relative lack of images depicting older adults as well as in a tendency for annotators to omit older age-related terms when describing people in images. While manual inspection of the intersection of “old” and “running” shows a negative relation, we notice that it shows no older people and a number of locomotives . KYD makes it easy to quantitatively and qualitatively inspect relations to identify dataset strengths and areas for improvement.

Understanding the contents of ML datasets is a critical first step to developing suitable strategies to mitigate the downstream impact of unfair dataset bias. The above analysis points towards several potential mitigations. For example, correlations between certain activities and social groups, which can lead trained models to reproduce social stereotypes, can be potentially mitigated by “dataset balancing” — increasing the representation of under-represented group/activity combinations. However, mitigations focused exclusively on dataset balancing are not sufficient, as our analysis of how different genders are described by annotators demonstrated. We found annotators’ subjective judgements of people portrayed in images were reflected within the final dataset, suggesting a deeper look at methods of image annotations are needed. One solution for data practitioners who are developing image captioning datasets is to consider integrating guidelines that have been developed for writing image descriptions that are sensitive to race, gender, and other identity categories.

The above case studies highlight only some of the KYD features. For example, Cloud Vision API signals are also integrated into KYD and can be used to infer signals that annotators haven't labeled directly. We encourage the broader ML community to perform their own KYD case studies and share their findings.

KYD complements other dataset analysis tools being developed across the ML community, including Google's growing Responsible AI toolkit . We look forward to ML practitioners using KYD to better understand their datasets and mitigate potential bias and fairness concerns. If you have feedback on KYD, please write to [email protected] .


The analysis and write-up in this post were conducted with equal contribution by Emily Denton, Mark Díaz, and Alex Hanna. We thank Marie Pellat, Ludovic Peran, Daniel Smilkov, Nikhil Thorat and Tsung-Yi for their contributions to and reviews of this post. We also thank the researchers and teams that have developed the signals and metrics used in KYD and particularly the team that has helped us implement nPMI.


Kaggle Case Studies for Data Science Beginners

Aman Kharwal

  • October 14, 2022
  • Machine Learning

Kaggle is a Data Science community owned by Google. You will find thousands of datasets and case studies on Kaggle to improve your Data Science skills. So, if you are looking for some case studies to practice your Data Science skills, this article is for you. In this article, I will take you through some of the best Kaggle case studies for Data Science beginners.

Below are some of the best Kaggle case studies for Data Science beginners you should try after learning the fundamentals of Data Science.

  • Iris Flower Classification

The Iris dataset is a popular dataset among the Data Science community. Many educational institutions use this dataset to teach the fundamentals of machine learning. The data contains 50 samples of three types of Iris species (Iris Setosa, Iris Virginica, and Iris Versicolor). The data has features based on the length and width of the sepals and petals of the Iris flowers.

Your end goal here is to train a classification model to classify iris species based on the length and width of their sepals and petals. You can find this dataset and case study  here .

California House Price Prediction

The California House Price dataset is an ideal dataset to implement your regression analysis skills. This dataset is also used in the popular Machine Learning book “Hands-on Machine Learning with Scikit-learn, Keras, and Tensorflow” .

The dataset contains information from the California census of 1990. It contains features like longitude and latitude, total rooms, total bedrooms, and many other features which are enough to predict the price of a housing property.

This case study will help you implement the fundamentals of Machine Learning for regression analysis. You can find this dataset and case study  here .

Titanic – Machine Learning for Disaster

The Titanic case study is among the most popular competitions on Kaggle. Here you are required to train a model to predict the passengers who survived the Titanic shipwreck.

Researchers analyzed that some groups of people were more likely to survive the sinking of the Titanic than others. In the dataset, you will find many helpful features that will help you classify and make clusters to find the type of people who were most likely to survive.

You can find this dataset and case study  here .

These case studies are enough for beginners, and you can easily find many resources on the internet to solve these case studies differently. That’s what makes these case studies must try for every Data Science beginner.

So some of the best Kaggle case studies for Data Science beginners are:

  • California House Price prediction
  • Titanic – Machine Learning from Disaster

So these were some of the best Kaggle case studies for Data Science beginners. Feel free to ask valuable questions in the comments section below.

Aman Kharwal

Aman Kharwal

I'm a writer and data scientist on a mission to educate others about the incredible power of data📈.

Recommended For You

Machine Learning Algorithms Guide

Machine Learning Algorithms Guide

  • August 30, 2023

Data Science Project Ideas on Supply Chain

Data Science Project Ideas on Supply Chain

  • August 29, 2023

Demand Forecasting and Inventory Optimization using Python

Demand Forecasting and Inventory Optimization using Python

  • August 28, 2023

Courses or Degrees for Data Science: What's Better?

Courses or Degrees for Data Science: What’s Better?

  • August 24, 2023

Leave a Reply Cancel reply

case study data set

  • Register or Log In
  • 0) { document.location='/search/'+document.getElementById('quicksearch').value.trim().toLowerCase(); }">

case study data set

Statistics Case Study and Dataset Resources

The philosophies of transparency and open access are becoming more widespread, more popular, and—with the ever-increasing expansion of the Internet—more attainable. Governments and institutions around the world are working to make more and more of their accumulated data available online for free. The datasets below are just a small sample of what is available. If you have a particular interest, do not hesitate to search for datasets on that topic. The table below provides a quick visual representation of what each resource offers, while the annotated links below the table provide further information on each website. Links to additional data sets are also provided.

Annotated Links and Further Data Sources

The links below follow a general-to-specific trajectory and have been marked with a maple leaf where content is Canada-specific. At the top of the list are datasets that have been created with post-secondary statistics students in mind.

Approximately two case studies per year have been featured at the Statistical Society of Canada Annual Meetings. This website includes all case studies since 1996. Case Studies vary widely in subject matter, from the cod fishery in Newfoundland, to the gender gap in earnings among young people, to the effect of genetic variation on the relationship between diet and cardiovascular disease risk. The data is contextualized, provided for download in multiple formats, and includes questions to consider as well as references for each data set. The case studies for the current year can be found by clicking on the “Meetings” tab in the navigation sidebar, or by searching for “case study” in the search bar.

Journal of Statistics Education

This international journal, published and accessible online for free, includes at least two data sets with each volume. All volumes to 1993 are archived and available online. Each data set includes the context, methodology, questions asked, analysis, and relevant references. The data are included in the journal’s data archive , linked to both on the webpage sidebar and at the end of each data set.

UK Data Service, Economic and Social Data Service Teaching Datasets

The Economic and Social Data Service (run by the government of the United Kingdom) has an online catalogue of over 5,000 datasets with over 35 sampler survey datasets tailor-made to be easier for students to use. Study methods and data can be downloaded free of charge. These datasets use UK studies from the University of Essex and the University of Manchester. The datasets are for NESSTOR, not SPSS, but can also be downloaded in plain-text format.

The Rice Virtual Lab in Statistics, Case Studies

The Rice Virtual Lab in Statistics is an initiative by the National Science Foundation in the United States created to provide free online statistics help and practice. The online case studies are fantastic not only because they provide context, datasets, and downloadable raw data where appropriate, but they also allow the user to search by type of statistical analysis required for the case study, allowing you to focus on t-tests, histograms, regression, ANOVA, or whatever you need the most practice with. There are a limited number of case studies on this site.

The United Nations (UN) Statistics Division of the Department of Economic and Social Affairs has pooled major UN databases from the various divisions as accumulated over the past sixty or more years in order to allow users to access information from multiple UN sources simultaneously. This database of datasets includes over 60 million data points. The datasets can be searched, filtered, have columns changed, and downloaded for ease of use.

Open Data is an initiative by the Government of Canada to provide free, easily navigable access to data collected by the Canadian Government in areas such as health, environment, agriculture, and natural resources. You can browse the datasets by subject, file format, or department, or use an advanced search to filter using all of the above as well as keywords. The site also includes links to Provincial and Municipal-level open data sites available across Canada (accessible in the “Links” section of the left-hand sidebar).

The University of Toronto Library has prepared this excellent and exhaustive list of sources for Canadian Statistics on a wide variety of topics, organized by topic. Some have restricted access; you may or may not be able to access these through your university library, depending on which online databases your institution is subscribed to. The restricted links are all clearly labelled in red. This resource also has an international section, accessible through the horizontal vertical toolbar at the top left of the page.

CANSIM is Statistics Canada’s key socioeconomic database, providing fast and easy access to a large range of the latest statistics available in Canada. The data is sorted both by category and survey in which the data was collected. The site not only allows you to access tables of data, but lets you customize your own table of data based on what information you would like CANSIM to display. You can add or remove content, change the way in which the information is summarized, and download your personalized data table.

The National Climate Data and Information Archive provides historical climate data for major cities across Canada, both online and available for download, as collected by the Government of Canada Weather Office. The data can be displayed hourly for each day, or daily for each month. Other weather statistics including engineering climate datasets can be found at .

GeoGratis is a portal provided by Natural Resources Canada which provides a single point of access to a broad collection of geospatial data, topographic and geoscience maps, images, and scientific publications that cover all of Canada at no cost and with no restrictions. Most of this data is in GIS format. You can use the Government of Canada’s GeoConnections website’s advanced search function to filter out only information that includes datasets available for download. Not all of the data that comes up on GeoConnections is available online for free, which is why we have linked to GeoGratis in this guide.

This website allows users to download datasets collected by the Canadian Association of Research Libraries (CARL) on collection size, emerging services, and salaries, by year, in excel format.

Online Sources of International Statistics Guide, University of Maryland

This online resource, provided by the University of Maryland’s Libraries website, has an impressive list of links to datasets organized by Country and Region, as well as by category (Economic, Environmental, Political, Social, and Population). Some of the datasets are only available through subscriptions to sites such as Proquest. Check with your institution’s library to see if you can access these resources.

Organization for Economic Co-Operation and Development (OECD) Better Life Index

The OECD ’s mission is to promote policies that will improve the economic and social well-being of people around the world. Governments work together, using the OECD as a forum to share experiences and seek solutions to common problems. In service to this mission, the OECD created the Better Life Index, which uses United Nations statistics as well as national statistics, to represent all 34 member countries of the OECD in a relational survey of life satisfaction. The index is interactive, allowing you to set your own levels of importance and the website organizes the data to represent how each country does according to your rankings. The raw index data is also available for download on the website (see the link on the left-hand sidebar).

Human Development Index

The HDI, run by the United Nations Development Programme , combines indicators of life expectancy, educational attainment, and income into a composite index, providing a single statistic to serve as a frame of reference for both social and economic development. Under the “ Getting and Using Data ” tab in the left-hand sidebar, the HDI website provides downloads of the raw data sorted in various ways (including an option to build your own data table), as well as the statistical tables underlying the HDI report. In the “ Tools and Rankings ” section ( also in the left-hand side bar) you can also see various visualizations of the data and tools for readjusting the HDI.

The World Bank DataBank

The World Bank is an international financial institution that provides loans to developing countries towards the goal of worldwide reduction of poverty. DataBank is an analysis and visualization tool that allows you to generate charts, tables, and maps based on the data available in several databases. You can also access the raw data by country, topic, or by source on their Data page.

Commission for Environmental Cooperation (CEC): North American Environmental Atlas

The CEC is a collaborative effort between Canada, the United States, and Mexico to address environmental issues of continental concern. The North American Environmental Atlas (first link above) is an interactive mapping tool to research, analyze, and manage environmental issues across the continent. You can also download the individual map files and data sets that comprise the interactive atlas on the CEC website. Most of the map layers are available in several mapping files, but also provide links to the source datasets that they use, which are largely available for download.

Population Reference Bureau DataFinder

The Population Reference Bureau informs people about population, health, and the environment, and empowers them to use that information to advance the well-being of current and future generations. It is based in the United States but has international data. The DataFinder website combines US Census Bureau data with international data from national surveys. It allows users to search and create custom tables comparing countries and variables of your choice.

Mathematics-in-Industry Case Studies Journal

This international online journal (run by the FIELDS Institute for Research in Mathematical Sciences, Toronto) is dedicated to stimulating innovative mathematics by the modelling and analysis of problems across the physical, biological, and social sciences. While the information in this journal is more about the process of modelling various industry-related issues, and so it does not explicitly provide case study data sets for students to explore on their own, this journal does provide examples of problems worked on by mathematicians in industry, and can give you an understanding of the myriad ways in which statistics and modelling can be applied in a variety of industries.

UCLA Department of Statistics Case Studies

The University of California Los Angeles offers HTML-based case studies for student perusal. Many of these include small datasets, a problem, and a worked solution. They are short and easy to use, but not formatted to allow students to try their hand before seeing the answer. This website has not been updated since 2001.

National Center for Case Study Teaching in Science

This website, maintained by the National Center for Case Study Teaching in Science out of the University of Buffalo, is a collection of over 450 peer-reviewed cases at the high school, undergraduate, and graduate school levels. The cases can be filtered by subject, and several are listed under “statistics.” In order to access the answer keys, you must be an instructor affiliated with an educational institution. If you would like to access the answer to a particular case study, you can ask your professor to register in order to access the answer key, if he or she will not be marking your case study his/herself.

The DHS Program

The Demographic and Health Surveys Program collects and has ready to use data for over 90 countries from over 300 surveys. The website is very comprehensive and contains detailed information pertaining to the different survey data available for each of the participating countries, a guide to the DHS statistics and recode manual, as well as tips on working with the different data sets. Although registration is required for access to the data, registration is free.

Select your Country


  1. Extended ER model of case study database including the data set

    case study data set

  2. 11: Principle data analysis scheme of this case study

    case study data set

  3. PPT

    case study data set

  4. PPT

    case study data set

  5. PPT

    case study data set

  6. How to Customize a Case Study Infographic With Animated Data

    case study data set


  1. [R18] Case study 2 data analysis using R Language


  3. Case study Questions


  5. MAS Placement Experience: Data Analyst At JPMC

  6. Providing Data Storage to US Hospitals, Part 1


  1. What Is a Case Study?

    When you’re performing research as part of your job or for a school assignment, you’ll probably come across case studies that help you to learn more about the topic at hand. But what is a case study and why are they helpful? Read on to lear...

  2. Why Are Case Studies Important?

    Case studies are important because they help make something being discussed more realistic for both teachers and learners. Case studies help students to see that what they have learned is not purely theoretical but instead can serve to crea...

  3. What Are Some Examples of Case Studies?

    Examples of a case study could be anything from researching why a single subject has nightmares when they sleep in their new apartment, to why a group of people feel uncomfortable in heavily populated areas. A case study is an in-depth anal...

  4. data analytics case study

    I am trying to do stock market analysis using data analytics technique and SQL.i have downloaded data sets but can not move ahead needed some guidelines

  5. Retail Case Study Data

    About Dataset. Analytics in Retail: With the retail market getting more and more competitive by the day, there has never been

  6. 10 Real World Data Science Case Studies Projects with Example

    component analysis to generate valuable insights from the dataset.

  7. Top 8 Data Science Case Studies for Data Science Enthusiasts

    Check out these Data Science Case Studies on Popular Industries and ... or entities focusing on multiple factors present in the dataset.

  8. Case Study Sample Data

    Chapter 2 summarizes the data sets, lists the research questions and outlines suggested processes for analysis. The case-study examples are drawn from real

  9. Case Study Data

    The case study database will include the case data, such as documents, video or audio tapes of interviews, survey or other quantitative data, and the field

  10. A Dataset Exploration Case Study with Know Your Data

    KYD is a dataset analysis tool that complements the growing suite of responsible AI tools being developed across Google and the broader research

  11. Kaggle Case Studies for Data Science Beginners

    Kaggle is a Data Science community owned by Google. You will find thousands of datasets and case studies on Kaggle to improve your Data

  12. Data in Action: 7 Data Science Case Studies Worth Reading

    And in the next decade, new ways of automating data collection processes and deriving insights from data will boost workflow efficiencies like

  13. Resources

    Find the most comprehensive Case Studies resources to upskill yourself or your employees in their data training journey.

  14. Statistics Case Study and Dataset Resources

    Links to additional data sets are also provided. Source name and URL. Case study provided. Dataset provided. Dataset downloadable. Canadian content.